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A Sub-100 mW Dual-Core HOG Accelerator VLSI for Parallel
Feature Extraction Processing for HDTV Resolution Video
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Hiroshi KAWAGUCHI†, and Masahiko YOSHIMOTO†, Members

SUMMARY This paper describes a Histogram of Oriented Gradients
(HOG) feature extraction accelerator that features a VLSI-oriented HOG
algorithm with early classification in Support Vector Machine (SVM) clas-
sification, dual core architecture for parallel feature extraction and multi-
ple object detection, and detection-window-size scalable architecture with
reconfigurable MAC array for processing objects of several shapes. To
achieve low-power consumption for mobile applications, early classifica-
tion reduces the amount of computations in SVM classification efficiently
with no accuracy degradation. The dual core architecture enables parallel
feature extraction in one frame for high-speed or low-power computing and
detection of multiple objects simultaneously with low power consumption
by HOG feature sharing. Objects of several shapes, a vertically long object,
a horizontally long object, and a square object, can be detected because of
cooperation between the two cores. The proposed methods provide pro-
cessing capability for HDTV resolution video (1920 × 1080 pixels) at 30
frames per second (fps). The test chip, which has been fabricated using
65 nm CMOS technology, occupies 4.2 × 2.1 mm2 containing 502 Kgates
and 1.22 Mbit on-chip SRAMs. The simulated data show 99.5 mW power
consumption at 42.9 MHz and 1.1 V.
key words: HOG, object detection, low-power, HDTV

1. Introduction

Object detection from visual images is an important task for
many computer vision applications such as surveillance, en-
tertainment, automotive systems, and robotics. An impor-
tant algorithm used in object detection systems, Histogram
of Oriented Gradients (HOG) [1], has robustness to change
of illumination and attains high computational accuracy in
detection of variously textured objects.

Recent high-performance general-purpose processors
can achieve real-time object detection, but at a heavy com-
putational cost. The processor requires high power con-
sumption and is therefore unsuitable for mobile systems un-
der limited battery conditions. Consequently, a low-power
and high-performance HOG feature extraction processor is
necessary to widen the range of applications.

Figure 1 presents the image resolution versus frame
rate for several published descriptions of HOG hardware.
In the figure, a mark for each work denotes target applica-
tion. A single circle signifies single-object detection. The
double circle represents multiple object detection. Zhang
et al. [2] proposed efficient object detection using GPGPU.
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Fig. 1 Previous works of HOG feature extraction processor.

Some FPGA implementations [3]–[8] and an FPGA-GPU
architecture [9] have been proposed for real-time applica-
tions. Yazawa et al. proposed a target-reconfigurable ob-
ject detector for multiple object detection. However, classi-
fication data must be reloaded in other object detection so
that multiple objects cannot be detected at the same time.
Our previous work [10] realized an FPGA implementation
with superior performance compared with that of other im-
plementations. However, that study particularly targeted
pedestrian detection. HOG features are adaptable to widely
various applications. Consequently, next-generation HOG
feature extraction processors must provide higher expand-
ability and higher performance. Therefore, our goal is to
develop design techniques for a real-time HOG feature ex-
traction processor for use in multiple object detection from
HDTV-resolution video.

Most conventional processors use a window-based ap-
proach, for which an amount of computations of 447.7
GOPS and memory bandwidth of 55 Gbps are necessary for
HDTV resolution because of repetitive computations. Our
previous work demonstrated that the amount of computa-
tions and memory bandwidth are greatly reduced by the
reuse of calculated data or by adoption of efficient computa-
tion [10]. However, the power consumption is still high for
mobile applications. Figure 2 shows the power consump-
tion rate in our previous FPGA implementation. The most
dominant part is cell histogram generation. The second is
SVM classification. To achieve low-power object detection,

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Power consumption in the previous FPGA implementation.

the dominant two parts are necessary to improve power effi-
ciency.

To achieve real-time and low-power HOG feature ex-
traction for HDTV resolution video, we propose the follow-
ing three techniques.

• Simplified HOG algorithm with early rejection and early
detection in SVM classification.
• Dual core architecture for parallel feature extraction and

multiple object detection with HOG feature sharing.
• Detection-window-size scalable architecture with recon-

figurable MAC array for processing objects of several
shapes.

As described in this paper, details of the simplified
HOG algorithm are described in Sect. 2. The proposed ar-
chitecture is addressed in Sect. 3. Then, these are followed
by VLSI implementation in Sect. 4. Section 5 concludes this
paper.

2. Algorithm

2.1 Algorithm Overview

Figure 3 portrays a flow diagram of object detection using
the original HOG algorithm [1]. Scanning on the input im-
age is based on the detection window. The window is di-
vided into cells, for each cell accumulating a histogram of
gradient orientations over the pixels of the cell. For better
invariance to illumination, histogram normalization can be
accomplished by accumulating a measure of the local his-
togram energy over blocks and using the results to normal-
ize all cells in the block. The normalized histograms (HOG
features) are collected over the detection window. The col-
lected features are fed to a linear SVM for object/non-object
classification.

2.2 Simplified HOG Algorithm for Hardware Implemen-
tation

A simplified HOG algorithm for hardware implementation
is introduced in this subsection. This algorithm is based on
our previous work [10]. Figure 4 portrays a flow diagram of
object detection using the simplified HOG algorithm. This

Fig. 3 Original HOG algorithm flow.

flow is modified from the original algorithm using the fol-
lowing seven techniques.

1. Cell-based scanning
Figure 4 shows cell-based scanning approach. HOG fea-
tures are extracted from cell-based calculations. No cell
overlaps with other cells. Sharing and reuse of a cell
strongly affect memory bandwidth reduction.

2. Gradient calculation using CORDIC [11]
3. Approximation of weighted voting for spatial and orien-

tation anti-aliasing
4. Newton method with approximated initial value
5. Simultaneous SVM calculation

Figure 4 presents simultaneous SVM calculations for
cell-based processing. Partial HOG features belong to
105 windows maximally and are located at different po-
sitions in each window. Partial HOG features are multi-
plied and accumulated by the SVM coefficients of each
window. The accumulation result is stored and reused
in the subsequent SVM calculation. Simultaneous SVM
calculation is suitable for parallel computing in hard-
ware.

6. Early rejection and early detection
This technique is newly added in this paper. A partial
sum of products is compared with early classification
threshold. A target object is detected or rejected in early
stage if the comparison condition is true. This technique
is detailed in Sect. 2.3.

7. Parameter optimization

2.3 SVM Classification with Early Rejection and Early
Detection

In Linear SVM classification, extracted features and SVM
coefficients are simply multiplied and accumulated until the
operations reach window level. Consequently, this is suit-
able for parallel computing in hardware. Sufficient paral-
lelism reduces the required cycle count by 99%. However,
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Fig. 4 Simplified HOG algorithm flow.

the amount of computations is 6.34 GOPS and large when
compared to the other calculations in an HOG processor.

As described above, a summation of products of the
entire HOG feature and its paired SVM coefficients are nec-
essary for classification. However, by classification with a
partial sum of products obtained sequentially by cell-based
processing, subsequent calculations can be skipped. Conse-
quently, both the amount of computations and power con-
sumption on classification are reduced. Figure 5 shows a
distribution of summations and of partial sums (2/3 of en-
tire feature) of positive (human) and negative (non-human)
sample images in the training dataset.

Figure 5 shows that positive and negative classes are
separated sufficiently on the distribution of partial sums,
compared to the distribution of summations of the entire
feature. This permits early classification using a partial sum
instead of the entire feature and summations.

Early classification with a single threshold degrades the
classification performance, because the classes on an early
stage are less separated than those on a later stage. Within

Fig. 5 Early rejection and early detection.

Fig. 6 Trade-off between the amount of computations and area under
curve.

an overlapping area of the two classes, a misclassification
occurs. To avoid performance degradation, we adopted a
classification using two thresholds representing the interval
causing misclassification. Estimating the interval approxi-
mating the distributions as a normal distribution, the incom-
ing data are classified according to whether they are outside
the interval. Data within the interval on the early stage are
sent to the later stage and calculations are continued using
subsequent partial features. Early classifications are evalu-
ated 14 times per detection-window on every time after the
partial HOG on a last row in the window is obtained.

The interval is learned preliminarily with training
dataset. Then the early classification is applied to incom-
ing image data. Classifying presumed data in the early stage
permits skipping of subsequent calculations while avoid-
ing classification performance degradation. However the
amount-of-computations reductions and the performance
degradation tradeoffs depend on the misclassification inter-
val size.

Figure 6 shows a simulation result of the tradeoff be-
tween the amount of computations and area under curve
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Table 1 Algorithm parameters.

Fig. 7 Accuracy degradation using the employed algorithm.

(AUC) of trade-off curve between miss rate and false pos-
itives per window. The lower AUC represents better classi-
fication performance. Presuming that a positive class and
negative class are both distributed normally, standard de-
viations σpos, σneg and means μpos, μneg are estimated.
The misclassification intervals are set from [μpos-nσpos,
μneg+nσneg] as n varied from 3, 3.5, and 4. Simulation
results show that the interval of [μpos-4σpos, μneg+4σneg]
reduced amount of computations to 22.3% with no degrada-
tion from the original classification method. Consequently,
the early classification method reduces the amount of com-
putations in SVM classification from 6.34 GOPS to 4.92
GOPS.

2.4 Simulation Results

Performance and accuracy degradation were confirmed by
using software implementation for the simplified algorithm
with early classification. The simplified algorithm is com-
pared with original linear rectangular HOG (Lin. R-HOG)
[1]. The algorithm parameters for the simulation are shown
in Table 1. The development environment is Microsoft Vi-
sual C++ 2008 Express Edition (Microsoft Corp.) with the
INRIA Person Dataset [12], which includes several people
in various backgrounds. Figure 7 presents a graph of false
positives per window (FPPW) versus the miss rate. The
original algorithm shows worse results from original paper

[1] because our test condition is different from original one.
The simulation results with the simplified algorithm and the
optimized bit width show that no miss rate degradation oc-
curs at 0.0001 FPPW. The algorithm that was used provides
sufficient performance for general-purpose applications.

3. Architecture

3.1 Dual Core Architecture with Cell-Based Pipeline

Figure 8 depicts a block diagram of the dual core archi-
tecture and external peripherals. The proposed architecture
comprises two HOG feature extraction cores, a CPU inter-
face, and a memory interface. The HOG feature extraction
core comprises a controller, address generators, cell his-
togram generation module, histogram normalization mod-
ule, SVM classification module, and working SRAMs. The
HOG feature extraction processor is controlled by an exter-
nal CPU, and the input grayscale image is loaded to an inter-
nal SRAM from an external SRAM via a memory interface.
The internal datapath modules process the input image and
output a detection result. The CPU receives the detection
result from HOG feature extraction processor; then it draws
the result on a display.

Each core exchanges HOG feature and intermedi-
ate classification result with another core. This structure
enables the HOG feature sharing described in Sect. 3.3
and detection-window-size scalable processing described in
Sect. 3.4.

For cell histogram generation module and histogram
normalization module, we used the same architecture as pre-
viously proposed in [10]. In cell histogram generation, four-
way architecture is adopted because one cell is commonly
used for four blocks maximally. Histogram normalization is
two-stage architecture to implement L2-Hys normalization
[13].

Our architecture adopts a cell-based pipeline flow, as
presented in Fig. 9. The upper portion shows a relation be-
tween cells, blocks, windows, and a frame and the lower
potion depicts a cell-based pipeline flow. The numbers in
the left side are corresponding to the process explained be-
low. C, B, H, and W are abbreviations of Cell, Block, HOG,
and Window, respectively. Cell-based pipeline processing is
conducted as follows:

1. A cell histogram is generated with cell-based scanning.
2. When the process described above reaches the block

level, a block-level cell histogram is normalized; then the
block-level HOG feature is extracted.

3. Block-level HOG features and SVM coefficients corre-
sponding to each window are multiplied and accumu-
lated.

4. A partial sum of products is compared with early classifi-
cation threshold. The corresponding window is classified
in early stage if the comparison condition is true.

5. An accumulation result of the window level is compared
with the SVM threshold. Then the detection result is ob-
tained.
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Fig. 8 Dual core architecture for parallel feature extraction.

The cell-based pipeline architecture greatly reduces the
memory bandwidth because it prevents the reloading of in-
put pixels in different detection windows. The window-
based approach for HDTV resolution requires memory
bandwidth of 55 Gbps. Our architecture reduces the mem-
ory bandwidth to 0.499 Gbps with circuit area overhead for
extra SRAMs to store intermediate cell histograms and clas-
sification results.

3.2 Parallel Processing in One Frame

This subsection describes parallel processing methods for
single object detection to reduce the required cycle count. In
our architecture, two methods, horizontal division and ver-
tical division, are adopted as presented in Fig. 10.

The HDTV resolution frame is divided into two frames
of 1920 × 600 pixels in the horizontal division. Each frame

overlaps by 120 pixels for calculating HOG features in the
border between the two frames. Horizontal division is a
well-balanced method because each core manages the same
number of pixels. The vertical division divides the frame
into two frames of 992× 1080 pixels and 984× 1080 pixels.
Each frame overlaps by 56 pixels. Each core can efficiently
calculate HOG features because the pixel overlap between
each frame is less than that of horizontal division. There-
fore, the vertical division can provide more cycle reduction
than the horizontal division. In the following section, two-
core processing means the method using vertical division.

3.3 Parallel Processing for Multiple Object Detection

To detect multiple objects, conventional architecture re-
quires independent processors corresponding to the number
of target objects. However it dissipates power wastefully
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Fig. 9 Cell-based pipeline flow.

for extraction of the same HOG feature. HOG feature ex-
traction is the dominant part of the object detection task, as
described in Sect. 1. Consequently, calculation of the same
features must be avoided if low power operation is to be
achieved.

Our architecture can provide low-power operation in
multiple object detection. Figure 11 shows the block dia-
gram in multiple object detection. One SVM classification
module is used for processing a single object. Each core
contains an independent SRAM for SVM coefficients corre-
sponding to a single object. In case of that different SVM

coefficients are loaded into the SRAM of each core, two dif-
ferent objects can be concurrently detected. Each core se-
lects an internal HOG feature or external one. The HOG fea-
ture can be shared if the two cores process the same frame.
Therefore, in one core, HOG feature extraction module, in-
put image buffer, and working memory for HOG feature ex-
traction are completely turned off to reduce power consump-
tion.
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Fig. 10 Frame division methods for parallel processing.

Fig. 11 Block diagram in multiple object detection.

3.4 Detection-Window-Size Scalable Architecture

Object detection for a single target is insufficient for recent
advanced applications. For example, on-vehicle applica-
tions target pedestrian, cars, and traffic sign. Objects have
various shapes such as vertically long, horizontally long,
and square. Consequently, it is demanded that an object de-
tection processor manages several target objects.

Our architecture provides object detection for the three
shapes shown above. Figure 12 shows a block diagram of
a reconfigurable SVM classification module for a vertically
long object, a horizontally long one, and a square one. This
module comprises a reconfigurable MAC array, which is re-
configured according to the shape of target objects. A verti-
cally long object is processed if the MAC array is connected
horizontally as presented in Fig. 12(b). It corresponds to the
detection window of 64 × 128 pixels. A horizontally long
object is detected if the MAC array is connected vertically
as displayed in Fig. 12(c). The detection of a square ob-
ject is conducted with cooperation of two processor cores as
presented in Fig. 12(d). The classification core 0 in core 1
loads an intermediate result in classification core 7 in core 0
as the initial value. It enables classification with a detection

window of 128 × 128 pixels.

3.5 SVM Classification Module with Early Rejection and
Early Detection

Figure 13 shows an SVM classification module with an early
classification function described in Sect. 2.3. Early classifi-
cation is conducted in the end of each classification core.
A classification flag is enabled if an intermediate result is
greater than an early detection threshold or less than an early
rejection threshold. To reduce wasteful power for classifi-
cation of non-target object, the classification flag controls
whether each classification core runs. If a classification flag
of a detection window is activated, the controller enables a
clock gating of the MAC module corresponding to the de-
tection window. The classification flag is stored to SRAM
with an intermediate classification result.

3.6 Performance Evaluation

The number of cycle counts was estimated using a Verilog-
HDL simulator. The proposed architecture was compared
with our previous architecture [10] and architecture without
parallelization. Estimation results are presented in Fig. 14,
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Fig. 12 Block diagrams of reconfigurable MAC array (a) and SVM classification module for (b) a
vertically long object, (c) a horizontally long object, and (d) a square object.

which demonstrates the superiority of the proposed archi-
tecture for HDTV resolution. Results show that the number
of cycle counts with two cores in cell histogram generation,
histogram normalization, and SVM classification are lower
by 48.5%, 42.5%, and 50%, respectively, than the number
of cycle counts of our previsou architecture. In the proposed
two-core architecture, the overall process requires 1.43×106

cycles per frame. Therefore, it is inferred that the proposed
architecture can accommodate HDTV resolution video at
30 fps with 42.9 MHz.

4. VLSI Implementation

A test chip of HOG feature extraction has been designed
as presented in Fig. 15. The design includes the VLSI-

oriented algorithm and the dual core architecture. This chip,
which was fabricated in 65nm CMOS technology, occupies
4.2× 2.1 mm2 containing 502 Kgates and 1.22 Mbit on-chip
SRAMs. The static timing analysis after back annotation
shows that 110 MHz operation is attained at nominal sup-
ply voltage of 1.1 V. The chip specifications are presented in
Table 2.

Gate-level power estimation was conducted to clarify
effects of our implementation. Here a commercial power es-
timation tool was used for the whole processor core circuit
with physical parameters after place and routing. Figure 16
shows estimated data of power consumption in several op-
eration modes. The data of our earlier FPGA implementa-
tion [10] are displayed for comparison. The FPGA imple-
mentation can process SVGA resolution video (800 × 600
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Fig. 13 Block diagram of SVM classification module with early rejection and early detection.

Fig. 14 Reduction of cycle count.

Fig. 15 Chip layout.

pixels) at 72 fps. On the other hand, the VLSI implemen-
tation targets HDTV resolution video (1920 × 1080 pixels)
at 30 fps. The power consumption of the proposed architec-
ture is estimated in several conditions, combinations of the
number of cores, early classification described in Sect. 3.5,
and feature sharing described in Sect. 3.3. To prevent miss-
rate degradation, 4σ is adopted for the standard deviation in
early classification. In general, supply voltage at 42.9 MHz

Table 2 Chip specifications.

can be lowered than supply voltage at 83.4 MHz. According
to past implementation result in same process technology
[14], minimum supply voltages at 42.9 MHz and 83.4 MHz
are 0.7 V and 0.9 V, respectively. Consequently, two-core
configuration shows less power consumption than one-core
configuration at minimum supply voltage. Two-core con-
figuration with early classification and feature sharing con-
sumes 99.52 mW at 42.9 MHz when a nominal supply volt-
age is 1.1 V, which attains real-time processing for HDTV
resolution video with 30 fps frame rate.

Figure 17 portrays an example of real-time object de-
tection by the proposed accelerator.

5. Conclusion

This paper presents a proposal of a novel architecture of
real-time HOG feature extraction for parallel feature pro-
cessing. The proposed method includes a simplified HOG
algorithm with early classification, dual core architecture
with a cell-based pipeline, and detection-window-size scal-
able architecture. The early classification method reduces
the amount of computations in SVM classification from 6.34
GOPS to 4.92 GOPS with no accuracy degradation. The
dual core architecture provides several modes of parallel
processing for required cycle count reduction and power
consumption reduction. In addition, the proposed architec-
ture has high functionality for simultaneous multiple-object
detection and detection-window-size scalability. Conse-
quently, the proposed architecture is adaptable to recent ad-
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Fig. 16 Power consumption in several modes.

Fig. 17 Object detection by the proposed accelerator.

vanced applications such as on-vehicle application and in-
telligent robots. The VLSI implementation shows 49.5%
power reduction with that of the conventional processor
[10]. The design techniques described herein are antici-
pated for application to several image recognition applica-
tions. They are anticipated specifically for their great impact
on mobile applications under limited battery conditions.
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