
Kobe University Repository : Kernel

PDF issue: 2024-04-27

A Sub-100 mW Dual-Core HOG Accelerator VLSI for
Parallel Feature Extraction Processing for HDTV
Resolution Video

(Citation)
IEICE Transactions on Electronics,96(4):433-443

(Issue Date)
2013-04-01

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
copyright©2013 IEICE

(URL)
https://hdl.handle.net/20.500.14094/90002978

Mizuno, Kosuke ; Takagi, Kenta ; Terachi, Yosuke ; Izumi, Shintaro ;
Kawaguchi, Hiroshi ; Yoshimoto, Masahiko



IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013
433

PAPER Special Section on Solid-State Circuit Design—Architecture, Circuit, Device and Design Methodology

A Sub-100 mW Dual-Core HOG Accelerator VLSI for Parallel
Feature Extraction Processing for HDTV Resolution Video

Kosuke MIZUNO†a), Student Member, Kenta TAKAGI†, Yosuke TERACHI†, Nonmembers, Shintaro IZUMI†,
Hiroshi KAWAGUCHI†, and Masahiko YOSHIMOTO†, Members

SUMMARY This paper describes a Histogram of Oriented Gradients
(HOG) feature extraction accelerator that features a VLSI-oriented HOG
algorithm with early classification in Support Vector Machine (SVM) clas-
sification, dual core architecture for parallel feature extraction and multi-
ple object detection, and detection-window-size scalable architecture with
reconfigurable MAC array for processing objects of several shapes. To
achieve low-power consumption for mobile applications, early classifica-
tion reduces the amount of computations in SVM classification efficiently
with no accuracy degradation. The dual core architecture enables parallel
feature extraction in one frame for high-speed or low-power computing and
detection of multiple objects simultaneously with low power consumption
by HOG feature sharing. Objects of several shapes, a vertically long object,
a horizontally long object, and a square object, can be detected because of
cooperation between the two cores. The proposed methods provide pro-
cessing capability for HDTV resolution video (1920 × 1080 pixels) at 30
frames per second (fps). The test chip, which has been fabricated using
65 nm CMOS technology, occupies 4.2 × 2.1 mm2 containing 502 Kgates
and 1.22 Mbit on-chip SRAMs. The simulated data show 99.5 mW power
consumption at 42.9 MHz and 1.1 V.
key words: HOG, object detection, low-power, HDTV

1. Introduction

Object detection from visual images is an important task for
many computer vision applications such as surveillance, en-
tertainment, automotive systems, and robotics. An impor-
tant algorithm used in object detection systems, Histogram
of Oriented Gradients (HOG) [1], has robustness to change
of illumination and attains high computational accuracy in
detection of variously textured objects.

Recent high-performance general-purpose processors
can achieve real-time object detection, but at a heavy com-
putational cost. The processor requires high power con-
sumption and is therefore unsuitable for mobile systems un-
der limited battery conditions. Consequently, a low-power
and high-performance HOG feature extraction processor is
necessary to widen the range of applications.

Figure 1 presents the image resolution versus frame
rate for several published descriptions of HOG hardware.
In the figure, a mark for each work denotes target applica-
tion. A single circle signifies single-object detection. The
double circle represents multiple object detection. Zhang
et al. [2] proposed efficient object detection using GPGPU.

Manuscript received August 7, 2012.
Manuscript revised November 3, 2012.
†The authors are with Kobe University, Kobe-shi, 657-8501

Japan.
a) E-mail: mi-no@cs28.cs.kobe-u.ac.jp

DOI: 10.1587/transele.E96.C.433

Fig. 1 Previous works of HOG feature extraction processor.

Some FPGA implementations [3]–[8] and an FPGA-GPU
architecture [9] have been proposed for real-time applica-
tions. Yazawa et al. proposed a target-reconfigurable ob-
ject detector for multiple object detection. However, classi-
fication data must be reloaded in other object detection so
that multiple objects cannot be detected at the same time.
Our previous work [10] realized an FPGA implementation
with superior performance compared with that of other im-
plementations. However, that study particularly targeted
pedestrian detection. HOG features are adaptable to widely
various applications. Consequently, next-generation HOG
feature extraction processors must provide higher expand-
ability and higher performance. Therefore, our goal is to
develop design techniques for a real-time HOG feature ex-
traction processor for use in multiple object detection from
HDTV-resolution video.

Most conventional processors use a window-based ap-
proach, for which an amount of computations of 447.7
GOPS and memory bandwidth of 55 Gbps are necessary for
HDTV resolution because of repetitive computations. Our
previous work demonstrated that the amount of computa-
tions and memory bandwidth are greatly reduced by the
reuse of calculated data or by adoption of efficient computa-
tion [10]. However, the power consumption is still high for
mobile applications. Figure 2 shows the power consump-
tion rate in our previous FPGA implementation. The most
dominant part is cell histogram generation. The second is
SVM classification. To achieve low-power object detection,

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



434
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Fig. 2 Power consumption in the previous FPGA implementation.

the dominant two parts are necessary to improve power effi-
ciency.

To achieve real-time and low-power HOG feature ex-
traction for HDTV resolution video, we propose the follow-
ing three techniques.

• Simplified HOG algorithm with early rejection and early
detection in SVM classification.
• Dual core architecture for parallel feature extraction and

multiple object detection with HOG feature sharing.
• Detection-window-size scalable architecture with recon-

figurable MAC array for processing objects of several
shapes.

As described in this paper, details of the simplified
HOG algorithm are described in Sect. 2. The proposed ar-
chitecture is addressed in Sect. 3. Then, these are followed
by VLSI implementation in Sect. 4. Section 5 concludes this
paper.

2. Algorithm

2.1 Algorithm Overview

Figure 3 portrays a flow diagram of object detection using
the original HOG algorithm [1]. Scanning on the input im-
age is based on the detection window. The window is di-
vided into cells, for each cell accumulating a histogram of
gradient orientations over the pixels of the cell. For better
invariance to illumination, histogram normalization can be
accomplished by accumulating a measure of the local his-
togram energy over blocks and using the results to normal-
ize all cells in the block. The normalized histograms (HOG
features) are collected over the detection window. The col-
lected features are fed to a linear SVM for object/non-object
classification.

2.2 Simplified HOG Algorithm for Hardware Implemen-
tation

A simplified HOG algorithm for hardware implementation
is introduced in this subsection. This algorithm is based on
our previous work [10]. Figure 4 portrays a flow diagram of
object detection using the simplified HOG algorithm. This

Fig. 3 Original HOG algorithm flow.

flow is modified from the original algorithm using the fol-
lowing seven techniques.

1. Cell-based scanning
Figure 4 shows cell-based scanning approach. HOG fea-
tures are extracted from cell-based calculations. No cell
overlaps with other cells. Sharing and reuse of a cell
strongly affect memory bandwidth reduction.

2. Gradient calculation using CORDIC [11]
3. Approximation of weighted voting for spatial and orien-

tation anti-aliasing
4. Newton method with approximated initial value
5. Simultaneous SVM calculation

Figure 4 presents simultaneous SVM calculations for
cell-based processing. Partial HOG features belong to
105 windows maximally and are located at different po-
sitions in each window. Partial HOG features are multi-
plied and accumulated by the SVM coefficients of each
window. The accumulation result is stored and reused
in the subsequent SVM calculation. Simultaneous SVM
calculation is suitable for parallel computing in hard-
ware.

6. Early rejection and early detection
This technique is newly added in this paper. A partial
sum of products is compared with early classification
threshold. A target object is detected or rejected in early
stage if the comparison condition is true. This technique
is detailed in Sect. 2.3.

7. Parameter optimization

2.3 SVM Classification with Early Rejection and Early
Detection

In Linear SVM classification, extracted features and SVM
coefficients are simply multiplied and accumulated until the
operations reach window level. Consequently, this is suit-
able for parallel computing in hardware. Sufficient paral-
lelism reduces the required cycle count by 99%. However,



MIZUNO et al.: A SUB-100 mW DUAL-CORE HOG ACCELERATOR VLSI FOR PARALLEL FEATURE EXTRACTION PROCESSING
435

Fig. 4 Simplified HOG algorithm flow.

the amount of computations is 6.34 GOPS and large when
compared to the other calculations in an HOG processor.

As described above, a summation of products of the
entire HOG feature and its paired SVM coefficients are nec-
essary for classification. However, by classification with a
partial sum of products obtained sequentially by cell-based
processing, subsequent calculations can be skipped. Conse-
quently, both the amount of computations and power con-
sumption on classification are reduced. Figure 5 shows a
distribution of summations and of partial sums (2/3 of en-
tire feature) of positive (human) and negative (non-human)
sample images in the training dataset.

Figure 5 shows that positive and negative classes are
separated sufficiently on the distribution of partial sums,
compared to the distribution of summations of the entire
feature. This permits early classification using a partial sum
instead of the entire feature and summations.

Early classification with a single threshold degrades the
classification performance, because the classes on an early
stage are less separated than those on a later stage. Within

Fig. 5 Early rejection and early detection.

Fig. 6 Trade-off between the amount of computations and area under
curve.

an overlapping area of the two classes, a misclassification
occurs. To avoid performance degradation, we adopted a
classification using two thresholds representing the interval
causing misclassification. Estimating the interval approxi-
mating the distributions as a normal distribution, the incom-
ing data are classified according to whether they are outside
the interval. Data within the interval on the early stage are
sent to the later stage and calculations are continued using
subsequent partial features. Early classifications are evalu-
ated 14 times per detection-window on every time after the
partial HOG on a last row in the window is obtained.

The interval is learned preliminarily with training
dataset. Then the early classification is applied to incom-
ing image data. Classifying presumed data in the early stage
permits skipping of subsequent calculations while avoid-
ing classification performance degradation. However the
amount-of-computations reductions and the performance
degradation tradeoffs depend on the misclassification inter-
val size.

Figure 6 shows a simulation result of the tradeoff be-
tween the amount of computations and area under curve



436
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Table 1 Algorithm parameters.

Fig. 7 Accuracy degradation using the employed algorithm.

(AUC) of trade-off curve between miss rate and false pos-
itives per window. The lower AUC represents better classi-
fication performance. Presuming that a positive class and
negative class are both distributed normally, standard de-
viations σpos, σneg and means μpos, μneg are estimated.
The misclassification intervals are set from [μpos-nσpos,
μneg+nσneg] as n varied from 3, 3.5, and 4. Simulation
results show that the interval of [μpos-4σpos, μneg+4σneg]
reduced amount of computations to 22.3% with no degrada-
tion from the original classification method. Consequently,
the early classification method reduces the amount of com-
putations in SVM classification from 6.34 GOPS to 4.92
GOPS.

2.4 Simulation Results

Performance and accuracy degradation were confirmed by
using software implementation for the simplified algorithm
with early classification. The simplified algorithm is com-
pared with original linear rectangular HOG (Lin. R-HOG)
[1]. The algorithm parameters for the simulation are shown
in Table 1. The development environment is Microsoft Vi-
sual C++ 2008 Express Edition (Microsoft Corp.) with the
INRIA Person Dataset [12], which includes several people
in various backgrounds. Figure 7 presents a graph of false
positives per window (FPPW) versus the miss rate. The
original algorithm shows worse results from original paper

[1] because our test condition is different from original one.
The simulation results with the simplified algorithm and the
optimized bit width show that no miss rate degradation oc-
curs at 0.0001 FPPW. The algorithm that was used provides
sufficient performance for general-purpose applications.

3. Architecture

3.1 Dual Core Architecture with Cell-Based Pipeline

Figure 8 depicts a block diagram of the dual core archi-
tecture and external peripherals. The proposed architecture
comprises two HOG feature extraction cores, a CPU inter-
face, and a memory interface. The HOG feature extraction
core comprises a controller, address generators, cell his-
togram generation module, histogram normalization mod-
ule, SVM classification module, and working SRAMs. The
HOG feature extraction processor is controlled by an exter-
nal CPU, and the input grayscale image is loaded to an inter-
nal SRAM from an external SRAM via a memory interface.
The internal datapath modules process the input image and
output a detection result. The CPU receives the detection
result from HOG feature extraction processor; then it draws
the result on a display.

Each core exchanges HOG feature and intermedi-
ate classification result with another core. This structure
enables the HOG feature sharing described in Sect. 3.3
and detection-window-size scalable processing described in
Sect. 3.4.

For cell histogram generation module and histogram
normalization module, we used the same architecture as pre-
viously proposed in [10]. In cell histogram generation, four-
way architecture is adopted because one cell is commonly
used for four blocks maximally. Histogram normalization is
two-stage architecture to implement L2-Hys normalization
[13].

Our architecture adopts a cell-based pipeline flow, as
presented in Fig. 9. The upper portion shows a relation be-
tween cells, blocks, windows, and a frame and the lower
potion depicts a cell-based pipeline flow. The numbers in
the left side are corresponding to the process explained be-
low. C, B, H, and W are abbreviations of Cell, Block, HOG,
and Window, respectively. Cell-based pipeline processing is
conducted as follows:

1. A cell histogram is generated with cell-based scanning.
2. When the process described above reaches the block

level, a block-level cell histogram is normalized; then the
block-level HOG feature is extracted.

3. Block-level HOG features and SVM coefficients corre-
sponding to each window are multiplied and accumu-
lated.

4. A partial sum of products is compared with early classifi-
cation threshold. The corresponding window is classified
in early stage if the comparison condition is true.

5. An accumulation result of the window level is compared
with the SVM threshold. Then the detection result is ob-
tained.



MIZUNO et al.: A SUB-100 mW DUAL-CORE HOG ACCELERATOR VLSI FOR PARALLEL FEATURE EXTRACTION PROCESSING
437

Fig. 8 Dual core architecture for parallel feature extraction.

The cell-based pipeline architecture greatly reduces the
memory bandwidth because it prevents the reloading of in-
put pixels in different detection windows. The window-
based approach for HDTV resolution requires memory
bandwidth of 55 Gbps. Our architecture reduces the mem-
ory bandwidth to 0.499 Gbps with circuit area overhead for
extra SRAMs to store intermediate cell histograms and clas-
sification results.

3.2 Parallel Processing in One Frame

This subsection describes parallel processing methods for
single object detection to reduce the required cycle count. In
our architecture, two methods, horizontal division and ver-
tical division, are adopted as presented in Fig. 10.

The HDTV resolution frame is divided into two frames
of 1920 × 600 pixels in the horizontal division. Each frame

overlaps by 120 pixels for calculating HOG features in the
border between the two frames. Horizontal division is a
well-balanced method because each core manages the same
number of pixels. The vertical division divides the frame
into two frames of 992× 1080 pixels and 984× 1080 pixels.
Each frame overlaps by 56 pixels. Each core can efficiently
calculate HOG features because the pixel overlap between
each frame is less than that of horizontal division. There-
fore, the vertical division can provide more cycle reduction
than the horizontal division. In the following section, two-
core processing means the method using vertical division.

3.3 Parallel Processing for Multiple Object Detection

To detect multiple objects, conventional architecture re-
quires independent processors corresponding to the number
of target objects. However it dissipates power wastefully



438
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Fig. 9 Cell-based pipeline flow.

for extraction of the same HOG feature. HOG feature ex-
traction is the dominant part of the object detection task, as
described in Sect. 1. Consequently, calculation of the same
features must be avoided if low power operation is to be
achieved.

Our architecture can provide low-power operation in
multiple object detection. Figure 11 shows the block dia-
gram in multiple object detection. One SVM classification
module is used for processing a single object. Each core
contains an independent SRAM for SVM coefficients corre-
sponding to a single object. In case of that different SVM

coefficients are loaded into the SRAM of each core, two dif-
ferent objects can be concurrently detected. Each core se-
lects an internal HOG feature or external one. The HOG fea-
ture can be shared if the two cores process the same frame.
Therefore, in one core, HOG feature extraction module, in-
put image buffer, and working memory for HOG feature ex-
traction are completely turned off to reduce power consump-
tion.



MIZUNO et al.: A SUB-100 mW DUAL-CORE HOG ACCELERATOR VLSI FOR PARALLEL FEATURE EXTRACTION PROCESSING
439

Fig. 10 Frame division methods for parallel processing.

Fig. 11 Block diagram in multiple object detection.

3.4 Detection-Window-Size Scalable Architecture

Object detection for a single target is insufficient for recent
advanced applications. For example, on-vehicle applica-
tions target pedestrian, cars, and traffic sign. Objects have
various shapes such as vertically long, horizontally long,
and square. Consequently, it is demanded that an object de-
tection processor manages several target objects.

Our architecture provides object detection for the three
shapes shown above. Figure 12 shows a block diagram of
a reconfigurable SVM classification module for a vertically
long object, a horizontally long one, and a square one. This
module comprises a reconfigurable MAC array, which is re-
configured according to the shape of target objects. A verti-
cally long object is processed if the MAC array is connected
horizontally as presented in Fig. 12(b). It corresponds to the
detection window of 64 × 128 pixels. A horizontally long
object is detected if the MAC array is connected vertically
as displayed in Fig. 12(c). The detection of a square ob-
ject is conducted with cooperation of two processor cores as
presented in Fig. 12(d). The classification core 0 in core 1
loads an intermediate result in classification core 7 in core 0
as the initial value. It enables classification with a detection

window of 128 × 128 pixels.

3.5 SVM Classification Module with Early Rejection and
Early Detection

Figure 13 shows an SVM classification module with an early
classification function described in Sect. 2.3. Early classifi-
cation is conducted in the end of each classification core.
A classification flag is enabled if an intermediate result is
greater than an early detection threshold or less than an early
rejection threshold. To reduce wasteful power for classifi-
cation of non-target object, the classification flag controls
whether each classification core runs. If a classification flag
of a detection window is activated, the controller enables a
clock gating of the MAC module corresponding to the de-
tection window. The classification flag is stored to SRAM
with an intermediate classification result.

3.6 Performance Evaluation

The number of cycle counts was estimated using a Verilog-
HDL simulator. The proposed architecture was compared
with our previous architecture [10] and architecture without
parallelization. Estimation results are presented in Fig. 14,



440
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Fig. 12 Block diagrams of reconfigurable MAC array (a) and SVM classification module for (b) a
vertically long object, (c) a horizontally long object, and (d) a square object.

which demonstrates the superiority of the proposed archi-
tecture for HDTV resolution. Results show that the number
of cycle counts with two cores in cell histogram generation,
histogram normalization, and SVM classification are lower
by 48.5%, 42.5%, and 50%, respectively, than the number
of cycle counts of our previsou architecture. In the proposed
two-core architecture, the overall process requires 1.43×106

cycles per frame. Therefore, it is inferred that the proposed
architecture can accommodate HDTV resolution video at
30 fps with 42.9 MHz.

4. VLSI Implementation

A test chip of HOG feature extraction has been designed
as presented in Fig. 15. The design includes the VLSI-

oriented algorithm and the dual core architecture. This chip,
which was fabricated in 65nm CMOS technology, occupies
4.2× 2.1 mm2 containing 502 Kgates and 1.22 Mbit on-chip
SRAMs. The static timing analysis after back annotation
shows that 110 MHz operation is attained at nominal sup-
ply voltage of 1.1 V. The chip specifications are presented in
Table 2.

Gate-level power estimation was conducted to clarify
effects of our implementation. Here a commercial power es-
timation tool was used for the whole processor core circuit
with physical parameters after place and routing. Figure 16
shows estimated data of power consumption in several op-
eration modes. The data of our earlier FPGA implementa-
tion [10] are displayed for comparison. The FPGA imple-
mentation can process SVGA resolution video (800 × 600



MIZUNO et al.: A SUB-100 mW DUAL-CORE HOG ACCELERATOR VLSI FOR PARALLEL FEATURE EXTRACTION PROCESSING
441

Fig. 13 Block diagram of SVM classification module with early rejection and early detection.

Fig. 14 Reduction of cycle count.

Fig. 15 Chip layout.

pixels) at 72 fps. On the other hand, the VLSI implemen-
tation targets HDTV resolution video (1920 × 1080 pixels)
at 30 fps. The power consumption of the proposed architec-
ture is estimated in several conditions, combinations of the
number of cores, early classification described in Sect. 3.5,
and feature sharing described in Sect. 3.3. To prevent miss-
rate degradation, 4σ is adopted for the standard deviation in
early classification. In general, supply voltage at 42.9 MHz

Table 2 Chip specifications.

can be lowered than supply voltage at 83.4 MHz. According
to past implementation result in same process technology
[14], minimum supply voltages at 42.9 MHz and 83.4 MHz
are 0.7 V and 0.9 V, respectively. Consequently, two-core
configuration shows less power consumption than one-core
configuration at minimum supply voltage. Two-core con-
figuration with early classification and feature sharing con-
sumes 99.52 mW at 42.9 MHz when a nominal supply volt-
age is 1.1 V, which attains real-time processing for HDTV
resolution video with 30 fps frame rate.

Figure 17 portrays an example of real-time object de-
tection by the proposed accelerator.

5. Conclusion

This paper presents a proposal of a novel architecture of
real-time HOG feature extraction for parallel feature pro-
cessing. The proposed method includes a simplified HOG
algorithm with early classification, dual core architecture
with a cell-based pipeline, and detection-window-size scal-
able architecture. The early classification method reduces
the amount of computations in SVM classification from 6.34
GOPS to 4.92 GOPS with no accuracy degradation. The
dual core architecture provides several modes of parallel
processing for required cycle count reduction and power
consumption reduction. In addition, the proposed architec-
ture has high functionality for simultaneous multiple-object
detection and detection-window-size scalability. Conse-
quently, the proposed architecture is adaptable to recent ad-



442
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Fig. 16 Power consumption in several modes.

Fig. 17 Object detection by the proposed accelerator.

vanced applications such as on-vehicle application and in-
telligent robots. The VLSI implementation shows 49.5%
power reduction with that of the conventional processor
[10]. The design techniques described herein are antici-
pated for application to several image recognition applica-
tions. They are anticipated specifically for their great impact
on mobile applications under limited battery conditions.

Acknowledgments

The VLSI chip in this study has been fabricated in the chip
fabrication program of VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
STARC, e-Shuttle, Inc., and Fujitsu Ltd. This research
has been supported by the Semiconductor Technology Aca-
demic Research Center (STARC). This development was
performed by the author for STARC as part of the Japanese

Ministry of Economy, Trade and Industry sponsored “Sili-
con Implementation Support Program for Next Generation
Semiconductor Circuit Architectures”.

References

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for hu-
man detection,” Proc. 2005 International Conference on Computer
Vision and Pattern Recognition, vol.2, pp.886–893, IEEE Computer
Society, Washington, DC, USA, 2005.

[2] L. Zhang and R. Nevatia, “Efficient scan-window based object de-
tection using GPGPU,” IEEE, CVPRW, 2008.

[3] S. Bauer, U. Brusmann, and S. Schlotterbeck-Macht, “FPGA imple-
mentation of a HOG-based pedestrian recognition system,” MPC-
Workshop, July 2009.

[4] M. Hiromoto and R. Miyamoto, “Hardware architecture for high-
accuracy real-time pedestrian detection with CoHOG features,”
IEEE ICCVW 2009.

[5] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and
Y. Nakamura, “Hardware architecture for HOG feature extraction,”
Proc. 2009 International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing, pp.1330–1333, IEEE Com-
puter Society, Washington, DC, USA, 2009.

[6] Y. Yazawa, T. Yoshimi, T. Tsuzuki, T. Dohi, and H. Fujiyoshi,
“FPGA hardware with target-reconfigurable object detector by joint-
HOG,” Proc. SSII, Yokohama, Japan, 2011.

[7] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, “Deep pipelined one-
chip FPGA implementation of a real-time image-based human de-
tection algorithm,” IEEE FPT 2011.

[8] T.P. Cao and G. Deng, “Real-time vision-based stop sign detection
system on FPGA,” Proc. Digital Image Computing: Techniques and
Applications, pp.465–471, IEEE Computer Society, Los Alamitos,
CA, USA, 2008.

[9] S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, “FPGA-GPU archi-
tecture for kernel SVM pedestrian detection,” IEEE CVPRW 2010.

[10] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M.
Yoshimoto, “Architectural study of HOG feature extraction proces-



MIZUNO et al.: A SUB-100 mW DUAL-CORE HOG ACCELERATOR VLSI FOR PARALLEL FEATURE EXTRACTION PROCESSING
443

sor for real-time object detection,” IEEE SiPS, Oct. 2012.
[11] J.E. Volder, “The CORDIC trigonometric computing technique,”

IRE Trans. Electron. Comput., vol.EC-8, pp.330–334, 1959.
[12] INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/
[13] D.G. Lowe, “Distinctive image features from scale invariant key-

points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, 2004.
[14] H. Noguchi, J. Tani, Y. Shimai, M. Nishino, S. Izumi, H. Kawaguchi,

and M. Yoshimoto, “A 34.7-mW quad-core MIQP solver processor
for robot control,” Proc. IEEE Custom Integrated Circuits Confer-
ence (CICC), Sept. 2010.

Kosuke Mizuno received the B.S. and M.S.
degrees in Computer Science and Systems En-
gineering from Kobe University, Kobe, Japan in
2008 and 2010, respectively, where he is cur-
rently pursuing the Ph.D. degree in engineer-
ing. His current research interests include high-
performance and low-power multimedia VLSI
designs. He is a student member of IEEE.

Kenta Takagi received the B.E. degree
in Computer Science and Systems Engineering
from Kobe University, Kobe, Japan in 2012. He
is currently on the master course at Kobe Uni-
versity. Since 2011, he has been involved in the
research and development of low-power image
recognition VLSI designs.

Yosuke Terachi received the B.S. and M.S.
degrees in Computer Science and Systems En-
gineering from Kobe University, Kobe, Japan in
2010 and 2012. His research interestincludes
development of low-power image recognition
VLSI designs.

Shintaro Izumi received his B.Eng. and
M.Eng. degrees in Computer Science and Sys-
tems Engineering from Kobe University, Hyogo,
Japan, in 2007 and 2008, respectively. He re-
ceived his Ph.D. degree in Engineering from
Kobe University in 2011. He was a JSPS re-
search fellow at Kobe University from 2009 to
2011. Since 2011, he has been an Assistant Pro-
fessor in the Organization of Advanced Science
and Technology at Kobe University. His cur-
rent research interests include biomedical signal

processing, communication protocols, low-power VLSI design, and sensor
networks. He is a member of the IEEE and IPSJ.

Hiroshi Kawaguchi received B.Eng. and
M.Eng. degrees in electronic engineering from
Chiba University, Chiba, Japan, in 1991 and
1993, respectively, and earned a Ph.D. degree in
electronic engineering from The University of
Tokyo, Tokyo, Japan, in 2006. He joined Kon-
ami Corporation, Kobe, Japan, in 1993, where
he developed arcade entertainment systems. He
moved to The Institute of Industrial Science,
The University of Tokyo, as a Technical Asso-
ciate in 1996, and was appointed as a Research

Associate in 2003. In 2005, he moved to Kobe University, Kobe, Japan.
Since 2007, he has been an Associate Professor with The Department of In-
formation Science at that university. He is also a Collaborative Researcher
with The Institute of Industrial Science, The University of Tokyo. His cur-
rent research interests include low-voltage SRAM, RF circuits, and ubiqui-
tous sensor networks. Dr. Kawaguchi was a recipient of the IEEE ISSCC
2004 Takuo Sugano Outstanding Paper Award and the IEEE Kansai Section
2006 Gold Award. He has served as a Design and Implementation of Sig-
nal Processing Systems (DISPS) Technical Committee Member for IEEE
Signal Processing Society, as a Program Committee Member for IEEE Cus-
tom Integrated Circuits Conference (CICC) and IEEE Symposium on Low-
Power and High-Speed Chips (COOL Chips), and as an Associate Editor of
IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences and IPSJ Transactions on System LSI Design Method-
ology (TSLDM). He is a member of the IEEE, ACM, and IPSJ.

Masahiko Yoshimoto joined the LSI Lab-
oratory, Mitsubishi Electric Corporation, Itami,
Japan, in 1977. From 1978 to1983 he had been
engaged in the design of NMOS and CMOS
static RAM. Since 1984 he had been involved
in the research and development of multime-
dia ULSI systems. He earned a Ph.D. degree
in Electrical Engineering from Nagoya Univer-
sity, Nagoya, Japan in 1998. Since 2000, he had
been a professor of Dept. of Electrical & Elec-
tronic System Engineering in Kanazawa Univer-

sity, Japan. Since 2004, he has been a professor of Dept. of Computer and
Systems Engineering in Kobe University, Japan. His current activity is fo-
cused on the research and development of an ultra-low power multimedia
and ubiquitous media VLSI systems and a dependable SRAM circuit. He
holds on 70 registered patents. He has served on the program committee of
the IEEE International Solid State Circuit Conference from 1991 to 1993.
Also he served as Guest Editor for special issues on Low-Power System
LSI, IP and Related Technologies of IEICE Transactions in 2004. He was
a chair of IEEE SSCS (Solid State Circuits Society) Kansai Chapter from
2009 to 2010. He is also a chair of The IEICE Electronics Society Tech-
nical Committee on Integrated Circuits and Devices from 2011–2012. He
received the R&D100 awards from the R&D magazine for the development
of the DISP and the development of the real-time MPEG2 video encoder
chipset in 1990 and 1996, respectively. He also received 21th TELECOM
System Technology Award in 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


