
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013
473

PAPER Special Section on Solid-State Circuit Design—Architecture, Circuit, Device and Design Methodology

Parallel Acceleration Scheme for Monte Carlo Based SSTA Using
Generalized STA Processing Element

Hiroshi YUASA†a), Nonmember, Hiroshi TSUTSUI†, Hiroyuki OCHI†, and Takashi SATO†, Members

SUMMARY We propose a novel acceleration scheme for Monte Carlo
based statistical static timing analysis (MC-SSTA). MC-SSTA, which re-
peatedly executes ordinary STA using a set of randomly generated gate
delay samples, is widely accepted as an accuracy reference. A large num-
ber of random samples, however, should be processed to obtain accurate
delay distributions, and software implementation of MC-SSTA, therefore,
takes an impractically long processing time. In our approach, a generalized
hardware module, the STA processing element (STA-PE), is used for the
delay evaluation of a logic gate, and netlist-specific information is deliv-
ered in the form of instructions from an SRAM. Multiple STA-PEs can be
implemented for parallel processing, while a larger netlist can be handled
if only a larger SRAM area is available. The proposed scheme is success-
fully implemented on Altera’s Arria II GX EP2AGX125EF35C4 device in
which 26 STA-PEs and a 624-port Mersenne Twister-based random num-
ber generator run in parallel at a 116 MHz clock rate. A speedup of far
more than ×10 is achieved compared to conventional methods including
GPU implementation.
key words: statistical static timing analysis, delay distribution, slew rate,
field-programmable gate array, Mersenne Twister

1. Introduction

Timing analysis in modern VLSI design has never been
as important as it is today. As the clock period becomes
shorter, accuracy of the timing analysis becomes critically
important. The timing analysis that takes process variability
into account is also a pressing requirement. Static timing
analysis (STA) is widely used since its computation time is
linear to the number of gates in the design. The major draw-
back is its pessimism due to worst-case analysis employed
to consider process variations [1].

To remedy this pessimism, statistical STA (SSTA) is
becoming an extremely important tool. Circuit optimization
and yield analysis, which consider device parameter vari-
ability, depend crucially on the timing predictions obtained
from SSTA [2]–[4] since it is considered to be statistically
more correct than the conventional STA. There are two ma-
jor algorithms for SSTAs, block based [3], [5]–[7] and path
based [8]–[10], both of which basically assume normal de-
lay distributions. However, the normality assumption may
not be applicable, especially for the shortest path analysis,
in which the law of large numbers is inapplicable. Strongly
nonlinear minimum operations may also significantly distort

Manuscript received August 3, 2012.
Manuscript revised November 3, 2012.
†The authors are with the Department of Communications and

Computer Engineering, the Graduate School of Informatics, Kyoto
University, Kyoto-shi, 606-8501 Japan.

a) E-mail: paper@easter.kuee.kyoto-u.ac.jp
DOI: 10.1587/transele.E96.C.473

the timing distribution. Thus, more flexible timing model
and framework that can handle non-normal timing distribu-
tions are desired.

One promising approach is to apply a Monte Carlo
(MC) method for the timing analysis [11], [12]. In this ap-
proach, a conventional STA is repeatedly executed with ran-
domly generated logic gate delays to calculate the timing
distributions. Since MC methods use the delay samples di-
rectly, arbitrary timing distributions can be handled.

A drawback of the MC based SSTA (MC-SSTA) is its
computational intensiveness, since large number of runs are
required to obtain statistically meaningful results. How-
ever, since each MC run can be executed independently, a
dramatic acceleration is possible using a pipeline process-
ing. Motivated by this observation, we proposed a pipeline
scheme with an STA engine called the delay-sample gener-
ator and LAT calculator (DGLC) [13]. In this scheme, the
target netlist is first translated into a register-transfer level
(RTL) description of dedicated pipelined STA engine. This
RTL is then mapped into a field-programmable gate array
(FPGA), and MC-SSTA is executed on the FPGA.

This scheme successfully achieves a high throughput.
However, it requires long time to map the RTL description
into a target FPGA device. Other FPGA-based accelera-
tion methods [14] may also suffer from this problem. The
amount of hardware resources also imposes a limitation on
the applicability of MC-SSTA, since the required hardware
resources is proportional to the size of the input netlist.

In this paper, a novel scheme for accelerating MC-
SSTA is proposed. In this approach, we utilize a generalized
STA engine called an STA processing element (STA-PE),
which can calculate the latest or earliest arrival time of one
logic gate within a clock period. Unlike the previous meth-
ods, the STA-PE is circuit-topology independent, and thus
it eliminates the time-consuming FPGA remapping. Once
we implement the proposed architecture on an FPGA, only
the SRAM data that stores circuit-topology and delay distri-
bution of each gate needs to be replaced when a new target
netlist is given. In addition, the topology independence also
eliminates the circuit size limitation.

This paper is organized as follows. In Sect. 2, we
briefly review related works. We then present the proposed
acceleration scheme and architectures for two types of MC-
SSTA in Sect. 3. In Sect. 4, the proposed approach is eval-
uated in terms of throughput, hardware resources, and total
processing time. Finally, in Sect. 5, we conclude this paper.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

474
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

2. Preliminaries

In this section, we briefly review some existing timing anal-
ysis procedures and introduce some keywords used in this
paper.

2.1 Static Timing Analysis (STA)

Static timing analysis (STA) is one of the most widely used
timing analysis methods for designing synchronous digital
circuits. In STA, critical paths in a given chip design are
identified by propagating the latest arrival time (LAT) over
all logic gates in the circuit. One of the biggest advantages
of STA is its speed; computational complexity is O(N) when
the number of gates in the design is N since the STA process
consists of simple graph tracing. Conservative timing is cal-
culated without any input vectors.

Conservatism, however, is one major drawback of STA.
With modern process technologies, the delay variation of
each logic gate due to process, voltage, and temperature
variations has to be properly considered. A worst-case anal-
ysis has traditionally been employed to cope with this prob-
lem [1], but the timing report from the worst-case analysis
tends to be extremely pessimistic since it assumes full cor-
relations between the logic gate delays.

2.2 Monte Carlo Based SSTA (MC-SSTA)

MC-SSTA is realized by repetitively running STA on a tar-
get circuit netlist with randomly generated delay samples.
A target circuit is a circuit whose timing is of interest. The
MC-SSTA procedure can be summarized as follows.

1) Generate a delay sample and its related variables, such
as slew rate, for a delay arc in each logic gate. We call
a set of delay samples for all delay arcs an MC sample
or just a sample.

2) Run an STA using the MC sample.
3) Store the latest or earliest arrival times of the endpoints

and go back to 1). In this paper, we call the latest or
earliest arrival time simply the arrival time (AT).

For each STA in step 2), the AT of each node is propagated
down the circuit graph. The output of a single STA run is
the ATs of all endpoints for the MC sample. The aim of the
MC-SSTA is to obtain AT distributions at the endpoints by
repeatedly running STA.

Since each MC run in MC-SSTA can be executed inde-
pendently, it is possible to accelerate the algorithm dramat-
ically using pipelined hardware engine. In [13], a pipeline
scheme with an STA engine called the delay-sample gener-
ator and LAT calculator (DGLC) has been proposed. Its
analysis flow is shown in Fig. 1. The target netlist (e.g.,
Fig. 3) is first translated into a synthesizable RTL descrip-
tion (e.g., Fig. 4). This RTL is then mapped into an FPGA,
and MC-SSTA is executed on the FPGA.

This scheme successfully achieves a high throughput

Fig. 1 MC-SSTA flow of the prior work [13].

Fig. 2 MC-SSTA flow proposed in this paper.

Fig. 3 Example of a target circuit netlist.

Fig. 4 Transformation of the target netlist into MC-SSTA
implementation on an FPGA in the prior work [13].

of 757,000 samples/s for any input netlist when the maxi-
mum operating frequency is 100 MHz. However, it requires
long time to map the RTL description into a target FPGA
device (the shaded portion of Fig. 1). For example, in the
case of a 6-bit multiplier, the mapping requires 27 minutes,
although runtime on the FPGA after mapping requires only
1.32 seconds for one million samples.

3. Proposed Acceleration Scheme

In this section, we propose a versatile acceleration scheme
to realize MC-SSTA. Unlike the previous methods, the pro-
posed scheme uses a netlist-independent hardware accel-

YUASA et al.: PARALLEL ACCELERATION SCHEME FOR MONTE CARLO BASED SSTA USING GENERALIZED STA PROCESSING ELEMENT
475

erator, which eliminates the time-consuming FPGA map-
ping process. Instead, the proposed hardware accelerator
refers to SRAMs in which netlist-dependent information is
preloaded.

3.1 Overview

Figure 2 shows the overall flow of the proposed MC-SSTA.
The inputs include the target circuit netlist to be analyzed
and the variation parameters of each logic gate. For exam-
ple, when delay samples are represented by normal distri-
butions, the variation parameters include the mean and stan-
dard deviation of the delay distribution of each target logic
gate. From the given input data, instructions are generated
for the proposed MC-SSTA architecture, and the proposed
architecture executes the MC-SSTA using the instruction.

3.1.1 Instruction Generation

Assuming that the given gate-level netlist of a combinational
circuit (or combinational portion of a sequential circuit) is
acyclic, an instruction sequence can be generated using fol-
lowing steps.

1. Replacement of large fanin gates into two-input gates:
Since the proposed STA-PE (explained later) handles
only one- or two-input gates at a time, each logic gate
in the given netlist that has more than two inputs should
be replaced by two-input gates. For example, a three-
input gate is replaced by two-input gates connected in
series as shown in Fig. 5. In this case, the delay of an
arc in the second two-input gate is set to zero, while the
delays of the other three arcs (d1, d2, d3) are associated
with the three arcs of the original gate.

2. Deriving ordering of gate evaluation:
We then sort gates topologically to determine the eval-
uation order of gate delay so that all arrival time (AT)
at the gate inputs has been evaluated. For this purpose,
several algorithms such as level sorting [15] and data
flow sorting [16] are applicable. Figure 6 illustrates the
level sorting algorithm. At first, all gates in the netlist
are levelized so that fanins of all gates in a level de-
pends only on the lower levels or primary inputs. After
levelization, gates are numbered from lower levels. In
the case of Fig. 6, A, B and C in the level 1 comes first,
followed by D and E in the level 2, followed by F and
G in the level 3.

3. Generation of instructions:
Before generating instructions, address of scratch pad
SRAM (explained later) should be allocated. For ex-
ample, if there are k primary inputs and m gates, each
of the first k words of the scratch pad SRAM are al-
located to store the AT of every primary input, and
each of other m words are allocated to store the AT
of the output of every gate. Then, every gate in the
netlist is mapped to an instruction, and the instruc-
tions are sorted according to the evaluation order ex-

Fig. 5 Replacement of a 3-input gate into two 2-input gates.

Fig. 6 Ordering of gate evaluation based on level sorting.

Fig. 7 Overview of the proposed architecture for MC-SSTA using
generalized STA engine (STA-PE).

plained above. As illustrated in Fig. 7, each instruc-
tion consists of (a) two read addresses (Src0 Addr. and
Src1 Addr.) for the scratch pad SRAM(s), which cor-
respond to the two inputs of the gate, (b) two sets of
delay variation parameters, each of which corresponds
to the variation parameters for each input arc, and (c)
one SRAM write address (Dst Addr.) for the scratch
pad SRAM(s), which corresponds to the AT of the out-
put of the gate. Note that the number of delay variation
parameters may differ depending on the delay model.

476
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

3.1.2 Proposed Hardware Architecture

After the instructions are generated and preloaded to the in-
struction SRAM, the proposed MC-SSTA architecture exe-
cutes the MC-SSTA. The basic idea is illustrated in Fig. 7. It
consists of a random number generator (RNG), STA-PE(s),
scratch pad SRAM(s) to store AT for every wire, an SRAM
to store instructions, and a controller.

The STA-PE executes the fundamental STA operations
for a two-input logic gate, delay generation, accumulation,
and comparison. The AT at the output of the two-input logic
gate is calculated by comparing the ATs of the two inputs,
each of which is added by a random delay sample of the
gate. For each of two inputs, the arc delay between the input
to the output is generated by the RNG as random sample(s)
that follows delay distribution parameters specified in the
instruction SRAM. For example, if we assume normal dis-
tribution with mean μ and standard deviation σ, the RNG
draw a random sample x from standard normal distribution,
and the DELAY module in Fig. 7 generates a delay sample
as d = σx+μ. By adding the delay sample d to the AT of the
input, the AT of the output of the gate through the input is
obtained. Then the two ATs are compared and either max-
imum or minimum of the two is selected depending on the
required analysis, i.e., maximum and minimum operations
for the critical path analysis and the shortest path analysis,
respectively.

Figure 7 also illustrates how the STA is executed for
the sample target circuit shown in Fig. 3. Before starting the
analysis using the proposed architecture, instructions that
represent the given circuit are preloaded to the instruction
SRAM. The region of scratch pad SRAM(s) for the pri-
mary inputs are initialized to a fixed value, such as 0†. In
Fig. 7, t0, t1, t2, and t3 are preloaded to the addresses 0 to
3 of the scratch pad SRAM(s). When the controller is trig-
gered to start the analysis, it fetches the instruction one by
one from the instruction SRAM. According to the instruc-
tion at address 0, two ATs t0 and t1, determined by the two
source addresses in the scratch pad SRAM, are provided to
the STA-PE. Then the output AT of gate A, tA, is stored to
the address 4 of the scratch pad SRAM. Similarly, ATs of
the output of the gate B and C are computed. Above analy-
sis is repeated predefined times (e.g., 106 times) to obtain a
statistical delay distribution.

The instruction SRAM has one write port for transfer-
ring instructions and one read port for executing MC-SSTA,
which enables instruction load into the instruction SRAM
can be conducted simultaneously with executing delay cal-
culations. The time required for transferring instructions can
be concealed. Further, this feature also enables us to analyze
larger circuits than to fit in the instruction memory at once.

The STA-PE is implemented to analyze one logic gate
every clock cycle. To maintain throughput, we use multi-
ple STA-PEs in parallel along with the RNG that can output
multiple random numbers required by the STA-PEs.

3.1.3 Comparison with Conventional Methods

Compared with the previous architecture [13] that requires
hardware area proportional to the number of gates in the cir-
cuit, the hardware area needed in the proposed architecture
is compact and constant regardless of the size of the input
netlist. The hardware area of the proposed architecture is
determined only by the number of STA-PEs run in paral-
lel. It is also noteworthy that the proposed architecture can
be implemented on non-configurable platforms, such as on
ASIC, since the proposed hardware engine is netlist inde-
pendent, while the previous architectures [13], [14] require
configurable platform due to their netlist-dependence.

Regarding the performance, the previous architecture
[13] requires NNDRNG cycles to generate one normally dis-
tributed random number. This means that other parts of the
architecture, excluding RNG, operate once every NNDRNG =

132 cycles. Thus, the previous architecture is inefficient in
terms of temporal hardware utilization. In contrast, the RNG
and all the STA-PEs of the proposed architecture operate ev-
ery cycle. In terms of effective hardware utilization, the pro-
posed architecture becomes more efficient than the previous
one, and the throughput of the proposed scheme is given by

FMAX × NPE/NInstruction [sample/s], (1)

where FMAX, NPE, and NInstruction are the maximum operat-
ing frequency, number of STA-PEs in the proposed archi-
tecture, and number of instructions for the target netlist, re-
spectively. Since analysis of n-input gate (if n > 2) requires
(n− 1) instructions as illustrated in Fig. 5, NInstruction is given
by

N1−input gates+N2−input gates+Σn≥3(n−1)Nn−input gates, (2)

where Nn−input gates is the number of n-input gates in the
netlist. Note also that scratch pad SRAMs, in order to real-
ize this throughput, should be three-port SRAMs that have
two read ports and one write port as depicted in Fig. 7.

In the following subsections, two implementation ex-
amples of the proposed architecture are presented. The first
one considers statistical gate delay variations only, and the
second one additionally considers statistical variations of the
output capacitance and input slew rates for more practical
timing analysis.

3.2 Timing Analysis for Gate Delay

In the existing studies [13], [14], [17], it is assumed that
the delay samples are represented by normal distributions.
To compare the proposed scheme with these studies, we
use normally distributed delay variations in applying MC-
SSTA.

An example realization of our scheme is shown in
†If distributions of ATs of the primary inputs also need to be

considered, we can put a dummy buffer with desired delay distri-
bution to each primary input.

YUASA et al.: PARALLEL ACCELERATION SCHEME FOR MONTE CARLO BASED SSTA USING GENERALIZED STA PROCESSING ELEMENT
477

Fig. 8 Block diagram of the proposed architecture for MC-SSTA
considering only delay variation.

Fig. 8 in which the normal distribution random number gen-
erator (NDRNG) has 52 output ports, and the number of
STA-PEs is 26. In this figure, the instruction format is also
depicted. The flow of MC-SSTA execution is same as de-
scribed or exemplified in the previous section.

3.2.1 STA-PE

The STA-PE consists of (1) two delay generators, (2) two
adders, and (3) one comparator. The delay generators are
used to generate normally distributed random delay values.

Let μ and σ be the mean and standard deviation of the
delay distribution of a target logic gate; a random delay sam-
ple dsample is generated from Xnorm ∼ N(6, 1), an output of
our NDRNG, as follows,

dsample = (Xnorm − 6) × σ + μ. (3)

By using the adders, ATs propagated from the preceding
logic gates and the delay samples are added to calculate the
ATs. The latest or earliest AT is selected by the comparator
and then stored on the SRAM for the ATs.

3.2.2 NDRNG

The NDRNG should be very efficient in terms of hardware
cost and throughput since it limits the generation speed of
the delay samples in MC-SSTA. In order to generate nor-
mal distribution random numbers, the central limit theorem
(CLT) is utilized because it includes only simple arithmetic
operations. Normally distributed random numbers from uni-
form random numbers Xi ∈ (0, 1] are generated by

N(μ, σ) ∼ 2
√

3√
N

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

Xi − N
2

⎞⎟⎟⎟⎟⎟⎠ × σ + μ, (4)

where μ, σ, and N are the mean, standard deviation, and an
integer constant, respectively.

Fig. 9 MT-based normal distribution random number generator for
MC-SSTA considering only delay variation.

A uniform RNG requires NRNG cycles to generate a
uniform random number, and the NDRNG requires NNDRNG

(= N × NRNG) cycles to generate a normal distribution ran-
dom number. Following the result in [13], N = 12 is se-
lected to balance efficiency, accuracy, and implementation
simplicity. In this case, N(6, 1) can be generated by simply
accumulating 12 uniform random numbers as follows,

N(6, 1) ∼
12∑

i=1

Xi. (5)

Therefore, we useN(6, 1) as the outputs of our NDRNG.
In the proposed architecture, we utilize the multi-port

Mersenne Twister (MT) implementation [18] as the uniform
RNG since it is highly efficient in terms of both hardware
cost and throughput. We utilize a 624-port MT since this
is the most efficient number of output ports. This MT can
output 624 32-bit uniform random numbers every cycle.

The RNG for the proposed MC-SSTA is shown in
Fig. 9: 624 accumulators for each output of the 624-port MT
are divided into 52 groups, each of which has 12 accumu-
lators. By interleaving the 12 accumulators through multi-
plexers (MUXs), our NDRNG generates 52 normal distribu-
tion random numbers every cycle.

3.3 Timing Analysis Considering Statistical Load Varia-
tions

The proposed MC-SSTA scheme can be extended to realize
statistical delay changes due to the statistical load capaci-
tance and input slew rate variations. In a similar manner to
the previous realization example, the ATs themselves can be
computed while propagating slew rates as well as ATs. As
an example, let us consider the following basic sensitivity-
based model:

do = a + bCL + cS i, (6)

S o = x + yCL + zS i, (7)

where do, S o, S i, and CL are the delay, output slew rate,
input slew rate, and output capacitance of the target logic
gate, respectively. The sensitivity parameters a, b, c, x, y,
and z are specific to the target logic gate. Assuming that a, x,
and CL fluctuated because of process variations that follow
normal distributions, do and S o can be computed using a
variation of the STA-PE described in Sect. 3.2 and shown in
Fig. 10. In this figure, the instruction format and data format

478
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

Fig. 10 Block diagram of the proposed architecture for MC-SSTA
considering output capacitance and input slew rates.

are also depicted. Each instruction includes a set of delay
parameters to calculate do and S o for each arc. Note that the
AT and slew rate for each logic gate can be packed into one
word.

In this case, the NDRNG has 130 output ports, but 26
STA-PEs are still used. Each scratch pad SRAM stores the
temporal ATs and slew rates to be propagated.

3.3.1 STA-PE

The modified STA-PE now consists of (1) two arrival time
calculators, (2) two slew rate calculators, and (3) two com-
parators.

The STA-PE generates samples of a0, a1, x0, x1, and
CL following their respective distributions to analyze two
logic arcs every cycle. These samples are generated in the
same way as Eq. (3) by using five normal distribution ran-
dom numbers following N(6, 1).

The output ATs and slew rates are calculated using
those of the preceding logic gates and the five generated
samples. The latest or earliest AT and the slew rates are
selected by the two comparators and stored on the scratch
pad SRAM.

3.3.2 NDRNG

In this application, we again utilize the 624-port MT. The
NDRNG for this application is shown in Fig. 11 and gener-
ates 5× 26 normal distribution random numbers every cycle
to fully utilize the 26 STA-PEs, each of which requires five
normal distribution random numbers every cycle.

To generate 5×26 normal distribution random numbers
every cycle using the CLT (N = 12) of Eq. (5), 5 × 26 ×
12 = 1,560 uniform random numbers must be generated
every cycle. Therefore, in this NDRNG, the 624-port 32-
bit MT is used as a 1,560-port 11-bit MT; every two output
ports of the 624-port 32-bit MT are bundled to construct a

Fig. 11 MT-based normal distribution random number generator for
MC-SSTA considering output capacitance and input slew rates.

312-port 64-bit MT, and each 64-bit output port is divided
into five output ports. Theoretically, this MT should be a
624/2 × 5 = 1,560-port �64/5� = 12-bit MT. However, to
successfully map the proposed architecture into the target
FPGA device, we use this MT as a 1,560-port 11-bit MT.
As shown in Fig. 11, we implement 1,560 accumulators for
each output of the MT and divide them into 26 groups each
of which has 5 × 12 accumulators. By interleaving the 12
accumulators through MUXs, our NDRNG generates 5×26
normal distribution random numbers every cycle.

3.4 Extension of the Proposed Scheme

The proposed scheme can be extended further to analyze the
clock path delay by considering delay variations of the clock
buffers in a similar manner to the data paths with which we
can consider clock skew. Subtracting the AT of each data
path from the result of the clock-delay analysis, slack distri-
butions are also obtained. Furthermore, the extension of the
NDRNG to support arbitrary delay distributions by utilizing
an arbitrarily distributed RNG, such as the existing study
[19], will also be possible.

4. Experimental Results and Comparisons

In Sect. 4.1, we show the experimental results of the pro-
posed scheme, and in Sect. 4.2, we compare the proposed
scheme with existing works.

4.1 Experimental Results

4.1.1 Implementation

In the following experiments, we use a mid-range FPGA,
Altera’s Arria II GX EP2AGX125EF35C4 for implement-
ing the architectures presented in Sect. 3.2 and Sect. 3.3.
The number of STA-PEs (NPE) for parallel MC operations,
resource usage of the target FPGA device, and maximum
operating frequencies (FMAX) are shown in Table 1.

Although the latter architecture executes more compli-
cated operations than the former one (and indeed the lat-
ter needs more FPGA resources), the latter achieved higher
FMAX. This is due to the following reasons:

• In the latter architecture, the number of bits to represent

YUASA et al.: PARALLEL ACCELERATION SCHEME FOR MONTE CARLO BASED SSTA USING GENERALIZED STA PROCESSING ELEMENT
479

Table 1 Implementation of the proposed architectures on Altera’s
Arria II GX EP2AGX125EF35C4.

Statistical Number of Resource Maximum
parameters STA-PEs (NPE) utilization Frequency (FMAX)

Gate delay only
(Sect. 3.2)

26 78% 116 MHz

Load capacitance
and slew rates as
well (Sect. 3.3)

26 97% 126 MHz

Table 2 Throughput of the architecture presented in Sect. 3.2.

Target NGates NInstructions Throughput
circuit [×103 samples/s]

C432 145 213 141,596
C499 207 231 130,563
C880 228 327 92,232
C1355 207 231 130,563
C1908 239 289 104,360
C2670 396 594 50,774
C3540 599 1,001 30,130
C5315 794 1,330 22,677
C6288 1,897 1,957 15,411
C7552 997 1,366 22,079

Table 3 Required time breakdown of the flows of the prior work and the
proposed scheme (6-bit multiplier).

Process Prior work Proposed
[13]

Netlist file read 1.28 ms
Delay parameter file read 8.45 ms

RTL description generation 92.2 ms -
Mapping of RTL description

27 min -
into target FPGA device

Generation of instructions
for STA-PEs - 60.4 ms

MC-SSTA with one million
1,320 ms 78.9 ms

samples on FPGA

Total 27 min 159 ms

the ATs is smaller in order to consider both the ATs and
input slew rates under a hardware resource limitation.
• STA-PEs in the latter architecture are implemented

with more pipeline stages than those of the former ar-
chitecture since the analysis operation is more compli-
cated.

Note that there is a resource margin of about 20% for the
former architecture on the target FPGA device. This means
that a higher throughput can be expected by utilizing this re-
source margin — if more number of STA-PEs with a higher
throughput NDRNG were implemented.

4.1.2 Performance

Table 2 shows the throughput of the architecture presented
in Sect. 3.2 for ISCAS’85 benchmark circuits. We used
mapped netlists for these benchmark circuits that are taken
from [20].

Table 3 shows the overall processing time and its break-
down of our scheme (Fig. 2) using the architecture presented

Table 4 Comparison of the preprocessing time.

Approach Preprocessing Time
Proposed (fixed

hardware engine)
Netlist
scan

Very fast
(≈10 ms)

Compiled software
(CPU or GPU [17])

Netlist
scan

Very fast
(≈10 ms)

Dedicated hardware
engine on FPGA [13], [14]

FPGA
mapping

Very slow
(≈10min)

Fig. 12 Comparison of performance.

in Sect. 3.2. For comparison, the result of the prior work
[13] (Fig. 1) is also shown in this table. As can be seen from
this table, the proposed flow eliminates the mapping pro-
cess, which requires 27 minutes in the prior work. The pro-
posed flow instead requires an instruction generation pro-
cess, which requires only 70.0 ms including file I/O. In
addition, a process for transferring the generated instruc-
tions into the instruction SRAM is required for the proposed
flow. However, as mentioned in Sect. 3, since this process
and MC-SSTA on FPGA can be performed concurrently, the
time required for this process can be concealed. Therefore,
the proposed scheme can achieve significant acceleration in
the entire MC-SSTA flow.

4.2 Comparisons with Existing Works

4.2.1 Overall Processing Time

Although our goal is to derive the analysis result as fast as
possible from the given circuit, most of the previous works
only presents the throughput of the core part of the anal-
ysis, and little descriptions can be seen on the preprocess-
ing phase. Necessary preprocessing and qualitative time re-
quired can be summarized as Table 4. Those methods which
use dedicated hardware engine mapped on an FPGA device
should suffer from long mapping time. On the other hand,
the proposed method and possibly GPU implementation re-
quire very short time for preprocessing.

We then focus on the throughput of the core part of
analysis in more detail.

4.2.2 Throughput

Figure 12 shows the comparison of performance. FPGA
[13] is the result on 6-bit multiplier circuit, and all the other
results are on the ISCAS’85 benchmark circuits. The hor-
izontal axis is the number of gates of the given netlist in
log scale. Proposed method uses the mapped netlist for IS-
CAS’85 benchmark circuits that are taken from [20], while

480
IEICE TRANS. ELECTRON., VOL.E96–C, NO.4 APRIL 2013

GPU [17] and CPU [17] use mapped netlist using SIS[21],
and thus the gate counts are not equal. FPGA [14] and
CPU [14] also use mapped netlist using SIS, but the gate
counts are not clarified in [14], hence we assume that the
gate count of [17] and [14] are equal. The vertical axis is
the throughput in samples/s in log scale. As seen from the
figure, throughput of the analysis by each method is approx-
imately inversely proportional to the gate count. We can
also observe that the proposed method is far more than ×10
faster than the conventional methods. This can be explained
by the throughput of the random number generator. While
our implementation generates 624 × 116 MHz=72 × 109/s
uniform random numbers utilizing the multi-port MT im-
plementation [18], GPU implementation [17], for example,
generates only 2.23 × 109/s uniform random numbers.

4.2.3 Accuracy

When software algorithms are implemented on hardware,
there can be accuracy deterioration due to (1) implementa-
tion of floating-point numbers using fixed-point representa-
tion, and (2) finite number of digits of the fixed-point rep-
resentation. According to [13], MC-SSTA hardware im-
plementation using linear feedback shift register (LFSR)
based RNG, CLT based NDRNG, and fixed-point represen-
tation achieves only 0.005% error in yield analysis com-
pared with an MC-SSTA software implementation using
Mersenne Twister based RNG, Box Muller (BM) based
NDRNG, and floating-point representation, when the dig-
its of uniform random numbers are at least 11 bits. Hence,
the hardware engine proposed in Sect. 3.2 and Sect. 3.3 uses
Mersenne Twister instead of LFSR, and the digits of uni-
form random numbers are given 11 bits, the analysis error
of the proposed method is guessed to be sufficiently small,
e.g., 0.005%.

5. Conclusions

In this paper, we have proposed an acceleration scheme for
MC-SSTA by utilizing a generalized STA engine called an
STA-PE, which efficiently calculates the latest or earliest
ATs of one logic gate for one sample. In order to exe-
cute MC-SSTA, a target netlist is converted into instructions
to execute the timing calculation using the STA-PEs. Un-
like other hardware implementations on FPGAs, the time-
consuming mapping process is not required in the proposed
scheme. Once we implement the proposed architecture on
FPGAs, only the contents of the instruction SRAM is re-
placed when the target netlist changes. In the case of a
6-bit MUL, generating instructions requires only 70.0 ms,
which is considerably faster than the 27 minutes of the ex-
isting scheme. The proposed architecture was successfully
implemented on a mid-range FPGA device with a 116 MHz
clock in which 26 STA-PEs and a 52-port NDRNG utiliz-
ing a 624-port MT-based RNG run in parallel. The scheme
achieves far more than ×10 speed-up compared with con-
ventional methods including GPU implementation [17].

Acknowledgment

This work has been partly supported by Semiconduc-
tor Technology Academic Research Center (STARC), and
by KAKENHI Grant-in-Aid for Scientific Research (B)
22360143 from JSPS. This work has been also partly sup-
ported by VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Mentor Graphics,
Inc. and Synopsys, Inc.

References

[1] S.R. Nassif, A.J. Strojwas, and S.W. Director, “A methodology for
worst-case analysis of integrated circuits,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.5, no.1, pp.104–113, Jan. 1986.

[2] Y. Zhan, A.J. Strojwas, M. Sharma, and D. Newmark, “Statistical
critical path analysis considering correlations,” Proc. IEEE/ACM
International Conference on Computer-Aided Design, pp.699–704,
Nov. 2005.

[3] X. Li, J. Le, M. Celik, and L.T. Pileggi, “Defining statistical sensitiv-
ity for timing optimization of logic circuits with large-scale process
and environmental variations,” Proc. IEEE/ACM International Con-
ference on Computer-Aided Design, pp.844–851, Nov. 2005.

[4] M. Pan, C.C.N. Chu, and H. Zhou, “Timing yield estimation using
statistical static timing analysis,” Proc. IEEE International Sympo-
sium on Circuits and Systems, pp.2461–2464, May 2005.

[5] H. Chang and S.S. Sapatnekar, “Statistical timing analysis consid-
ering spatial correlations using a single PERT-like traversal,” Proc.
IEEE/ACM International Conference on Computer-Aided Design,
pp.621–625, Nov. 2003.

[6] J. Le, X. Li, and L.T. Pileggi, “STAC: Statistical timing analysis
with correlation,” Proc. IEEE/ACM Design Automation Conference,
pp.343–348, June 2004.

[7] C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, and
S. Narayan, “First-order incremental block-based statistical tim-
ing analysis,” Proc. IEEE/ACM Design Automation Conference,
pp.331–336, June 2004.

[8] A. Agarwal, V. Zolotov, and D.T. Blaauw, “Statistical timing analy-
sis using bounds and selective enumeration,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.22, no.9, pp.1243–1260, Sept.
2003.

[9] L. Lee, L.C. Wang, T.M. Mak, and K.T. Cheng, “A path-based
methodology for post-silicon timing validation,” Proc. IEEE/ACM
International Conference on Computer-Aided Design, pp.713–720,
Nov. 2004.

[10] M. Orshansky and A. Bandyopadhyay, “Fast statistical timing anal-
ysis handling arbitrary delay correlations,” Proc. IEEE/ACM Design
Automation Conference, pp.337–342, June 2004.

[11] M. Imai, T. Sato, N. Nakayama, and K. Masu, “Non-parametric
statistical static timing analysis: An SSTA framework for arbi-
trary distribution,” Proc. IEEE/ACM Design Automation Confer-
ence, pp.698–701, June 2008.

[12] V. Veetil, D. Sylvester, and D. Blaauw, “Efficient Monte Carlo based
incremental statistical static timing analysis,” Proc. IEEE/ACM De-
sign Automation Conference, pp.676–681, June 2008.

[13] H. Yuasa, H. Tsutsui, H. Ochi, and T. Sato, “A fully pipelined imple-
mentation of Monte Carlo based SSTA on FPGAs,” Proc. IEEE In-
ternational Symposium on Quality Electronic Design, pp.785–790,
March 2011.

[14] J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan, and
Y. Zou, “Accelerating Monte Carlo based SSTA using FPGA,” Proc.
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp.111–114, Feb. 2010.

[15] M.A. Breuer and A.D. Friedman, Diagnosis & reliable design of

YUASA et al.: PARALLEL ACCELERATION SCHEME FOR MONTE CARLO BASED SSTA USING GENERALIZED STA PROCESSING ELEMENT
481

digital systems, Computer Science Press, 1976.
[16] N. Ishiura, H. Yasuura, and S. Yajima, “High-speed logic simula-

tion on vector processors,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol.6, no.3, pp.305–321, May 1987.

[17] K. Gulati and S.P. Khatri, “Accelerating statistical static timing anal-
ysis using graphics processing units,” Proc. IEEE/ACM Asia and
South Pacific Design Automation Conference, pp.260–265, Jan.
2009.

[18] V. Sriram and D. Kearney, “An FPGA implementation of a paral-
lelized MT19937 uniform random number generator,” EURASIP J.
Embedded Systems, pp.7:1–7:6, Jan. 2009.

[19] D.B. Thomas and W. Luk, “Non-uniform random number generation
through piecewise linear approximations,” IET Computers & Digital
Techniques, vol.1, no.4, pp.312–321, 2007.

[20] “PATMOS’2011 timing analysis contest.” http://patmos-tac.insec-
id.pt/ (accessed on Nov. 1, 2012).

[21] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. Stephan, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli, “SIS: A system for sequential circuit syn-
thesis,” Tech. Rep. UCB/ERL M92/41, EECS Department, Univer-
sity of California, Berkeley, 1992.

Hiroshi Yuasa received his B.E. degree
in Electrical and Electronic Engineering and his
M.E. degrees in Communications and Computer
Engineering from Kyoto University in 2009 and
2011, respectively. Presently, he is with Sony
Corporation.

Hiroshi Tsutsui received his B.E. degree
in Electrical and Electronic Engineering and his
master and Ph.D. degrees in Communications
and Computer Engineering from Kyoto Univer-
sity in 2000, 2002, and 2005, respectively. He
is currently an assistant professor in the Depart-
ment of Communications and Computer Engi-
neering, Kyoto University. His research inter-
ests include circuits and systems for image pro-
cessing and VLSI design methodology. He is a
member of IEEE, ACM, IPSJ, IEEJ, and IIEEJ.

Hiroyuki Ochi received the B.E., M.E.,
and Ph.D. degrees in Engineering from Kyoto
University in 1989, 1991, and 1994, respec-
tively. In 1994, he joined Department of Com-
puter Engineering, Hiroshima City University as
an associate professor. Since 2004, he has been
an associate professor of Department of Com-
munications and Computer Engineering, Kyoto
University. His research interests include low-
power/reliability-aware VLSI design and recon-
figurable architectures. He is a member of IPSJ,

IEEE, and ACM.

Takashi Sato received B.E. and M.E. de-
grees from Waseda University, Tokyo, Japan,
and a Ph.D. degree from Kyoto University,
Kyoto, Japan. He was with Hitachi, Ltd., To-
kyo, Japan, from 1991 to 2003, with Renesas
Technology Corp., Tokyo, Japan, from 2003 to
2006, and with the Tokyo Institute of Technol-
ogy, Yokohama, Japan. In 2009, he joined the
Graduate School of Informatics, Kyoto Univer-
sity, Kyoto, Japan, where he is currently a pro-
fessor. He was a visiting industrial fellow at the

University of California, Berkeley, from 1998 to 1999. His research in-
terests include CAD for nanometer-scale LSI design, fabrication-aware de-
sign methodology, and performance optimization for variation tolerance.
Dr. Sato is a member of the IEEE. He received the Beatrice Winner Award
at ISSCC 2000 and the Best Paper Award at ISQED 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

