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A 40-nm Resilient Cache Memory for Dynamic Variation Tolerance
Delivering ×91 Failure Rate Improvement under 35% Supply
Voltage Fluctuation
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SUMMARY This paper presents a resilient cache memory for dynamic
variation tolerance in a 40-nm CMOS. The cache can perform sustained
operations under a large-amplitude voltage droop. To realize sustained op-
eration, the resilient cache exploits 7T/14T bit-enhancing SRAM and on-
chip voltage/temperature monitoring circuit. 7T/14T bit-enhancing SRAM
can reconfigure itself dynamically to a reliable bit-enhancing mode. The
on-chip voltage/temperature monitoring circuit can sense a precise supply
voltage level of a power rail of the cache. The proposed cache can dynam-
ically change its operation mode using the voltage/temperature monitoring
result and can operate reliably under a large-amplitude voltage droop. Ex-
perimental result shows that it does not fail with 25% and 30% droop of
Vdd and it provides 91 times better failure rate with a 35% droop of Vdd
compared with the conventional design.
key words: design for robustness, cache, variation tolerance, 7T/14T
SRAM

1. Introduction

Technology scaling increases the threshold-voltage (Vth)
variation of MOS transistors mainly because of random
dopant fluctuation, NBTI and RTN. The minimum operat-
ing voltage (Vmin) of SRAM cell increases as the Vth varia-
tion increases with technology scaling, which degrades op-
erating margin of a processor. A processor with a shrink-
ing operating margin is more susceptible to power supply
noise, IR drops, and temperature fluctuations. Especially,
electric control units in electric vehicles suffer large temper-
ature fluctuation and large voltage fluctuation/droop caused
by motor noise, EMIs, voltage surges, and sudden interrup-
tions in wiring harness connections. A sudden interruption,
for example, can cause disconnection of the ECU to the
power supply for several milliseconds. Power supply cir-
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cuits implemented in the ECU have large capacitors to im-
prove tolerance against sudden interruptions. If the capac-
itance is hundreds of microfarads, then the voltage droops
caused by the sudden interruptions are reduced to less than
20% droop, with droop duration in the milliseconds. But the
use of a large capacitor for the ECU should be avoided for
reason of reliability, cost, and size. Consequently, voltage-
variation (the voltage droops of 20% Vdd) and temperature-
variation tolerant processors are needed for ECUs in electric
vehicles.

Earlier designs [1]–[3] have addressed timing errors
caused by a high-frequency (ca. 100 MHz) voltage droop.
A tunable replica scheme [4] can reduce Vmin of SRAM by
9% under 13% voltage droop. However, they cannot miti-
gate embedded SRAM margin failures caused by large am-
plitude (ca. 20% of Vdd) voltage droops. An SRAM block in
a processor with high integration and minimum-size transis-
tors determine the Vmin of the entire processor. For dynamic
variation tolerant processors, a fault-tolerance cache is nec-
essary.

A common fault-tolerant cache architecture uses re-
dundant columns/rows [5]. The architecture requires many
redundant columns/rows to accommodate the large number
of faults. The columns/rows are inefficient in low failure
rate situations. The PADed cache proposed in [6] uses a
programmable decoder to remap faulty cache lines to non-
faulty ones. As another solution, the error correction code
(ECC) has been applied to caches [7]–[9]. Two-dimensional
ECC proposed in [8] combines vertical and horizontal er-
ror coding. In [9], 1-bit ECC is applied to cache blocks
uniformly. Blocks containing two or more defective cells
are protected selectively with multi-bit ECC. The Multi-bit
ECC check bits and the block locations are stored in a small
dedicated cache. These techniques are not effective for large
amplitude voltage droops that cause many faults.

Herein, we present a resilient cache memory that can
perform sustained operations under a large-amplitude volt-
age droop. To realize sustainable operation, the resilient
cache exploits 7T/14T bit-enhancing SRAM, which has a
more reliable operation mode and on-chip voltage monitor-
ing circuit.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Block diagram of the resilient cache.

2. Proposed Resilient Cache

The resilient cache (Fig. 1) is a 256 KB 8-way cache mem-
ory array with 7T/14T bit-enhancing (BE) SRAM bitcell
structure [10], voltage and temperature monitoring circuits
[11], and an autonomous resilient cache controller. Each
memory block can be switched individually its power sup-
ply to the power supply for runtime operation (Vdd rt) or the
power supply for testing (Vdd test). The power supply of the
monitoring circuits and the power supply of the controller
are separated from the power supply of the memory blocks.
The local power rails of the memory blocks are monitored
by voltage monitoring circuits, which can obtain a precise
supply voltage level at a testing time and monitor a volt-
age fluctuation during runtime. Furthermore, a temperature
monitoring circuit can sense the on-chip temperature. The
temperature information recorded at a testing time is used
in a temperature correction of the Vmin. The autonomous re-
silient cache controller comprises an autonomous controller
and an online testing controller with a test module and data
transfer unit. The online testing controller can execute mem-
ory testing that is completely transparent to user accesses.
The controller obtains an operating margin and Vmin of the
memory block. The autonomous controller controls a prob-
ing point of the voltage monitor and reference voltage (Vref)
using the external DAC. It receives results from the moni-
toring circuits. The results are used for voltage droop de-
tection and block-basis voltage droop control, as described
reminder of the paper.

2.1 7T/14T bit-Enhancing SRAM Bitcell

Each SRAM cell in the proposed resilient cache comprises
7T/14T BE SRAM cell structure [10]. The 7T/14T BE
SRAM cell has a pair of conventional 6T SRAM bitcells.
The internal nodes of the pair are connected directly by two
additional PMOS transistors as presented in Fig. 2. This
structure of 7T/14T BE SRAM provides an additional oper-

Fig. 2 Schematics showing a conventional 6T SRAM bitcell pair and
7T/14T SRAM bitcell.

Table 1 Two operation modes of 7T/14T bit-enhancing bitcell.

ation mode designated as the enhancing mode along with the
normal mode. The two modes of 7T/14T BE SRAM are pre-
sented in Table 1. Figure 3 shows bit error rates in 7T/14T
BE SRAM and in the other scheme. In enhancing mode, the
added transistors are activated and BE SRAM features reli-
able operations especially at low voltages by combining two
bitcells.

2.2 On-Chip Monitoring Circuits

On-chip monitoring circuits, presented in Fig. 4, comprise a
source follower (SF) and a latch comparator (LC) [11]. Sup-
ply voltage monitoring circuits measure the supply voltage
fluctuation on power rails of each SRAM array. Temper-
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ature monitoring circuits sense thermal diodes placed near
the center of the cache macro.

Voltages on the probing point and thermal diode are
level-shifted by the SFs. The level-shifted voltage (Vsfo) is
compared with the reference voltage (Vref) by the LC in syn-
chronization with a sampling clock. The LC outputs “1” or
“0” corresponding to the comparison result.

The on-chip monitoring circuits are area efficient and
sense accurate voltage level of the SRAM array, in addition
to the cache temperature. Therefore, they are suitable for
use in online built-in self-tests (BISTs) and voltage droop
detection.

2.3 Block Basis Online Testing

Figure 5 shows the block basis online testing scheme for the
proposed resilient cache. The online test controller conducts

Fig. 3 Bit error rates (BERs): “6T”, “1-bit ECC” and “7T normal” and
“14T enhancing” using 7T/14T Bit-enhancing SRAM.

Fig. 4 Supply voltage/temperature monitoring circuit.

Fig. 5 Online testing architecture.

memory testing on each memory block in order of the phys-
ical block address. The supply voltage of the testing block is
decreasing gradually during the testing time. The controller
records the testing voltage and temperature from the on-chip
monitoring circuits with respect to each operation mode of
BE SRAM at which the first failure is detected. The resilient
cache still has cache lines to which data can be allocated
even if memory testing is working because it is block-basis
testing. The memory blocks, except the current memory un-
der test (MUT) block, are still accessible. Thereby they can
operate as runtime (RT) blocks.

The testing controller uses the test bus separated from
the user bus. The proposed testing scheme is transparent to
the processor operation. Although one cache way cannot be
used during the testing, the IPC performance degradation in
the SPEC 2006 [12] benchmarks is less than 1%. The test is
conducted periodically. The testing cycle can be regulated
outside the cache (e.g. a cycle responding to a control pe-
riod of the software). The IPC degradation is 1% at most,
although it depends on the testing cycle.

The flowchart in Fig. 6 depicts the online testing flow.
At the beginning of memory testing on each block, the data
transfer unit transfers data from the MUT block to the previ-
ous MUT block. The MUT block power supply is switched
to testing voltage (Vdd test). After switching, a testing is exe-
cuted to evaluate whether the failure is detected or not. If not
detected, then Vdd test is decreased by one step and the test-
ing is executed again. If detected, then the voltage at that
time is recorded with temperature. Having completed the
testing on one block, the online test controller sets Vdd test to
a nominal Vdd and changes next block into MUT. This flow
continues until all blocks have been tested.

Operation of the data transfer unit is depicted in Fig. 7.
First, physical block 0 is tested. Physical blocks of 1–7 op-
erate as runtime blocks. Next, the data transfer unit transfer
data from physical block 1 (next MUT block) to physical
block 0 (previous MUT block). After the transfer, physical
block 1 is tested. Physical block 0 and physical blocks 2–
7 operate as runtime blocks. In this way, the MUT block
moves among 8 blocks without losing the memory contents.

An example of test results is presented in Fig. 8. The
online testing controller has a test result table to record Vmin

corresponding to temperature. The recorded testing volt-
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Fig. 6 Flowchart of the online testing.

Fig. 7 Block basis online testing scheme.

Fig. 8 Block basis actual Vmin and temperature recording.

age is actual Vmin of the memory array because the on-chip
voltage monitor probes the local power rail of the memory
blocks. The voltage monitor traces the bottom level of the

Fig. 9 (a) Example of voltage waveform. (b) Voltage droop detection
scheme.

Fig. 10 (a) Block basis voltage droop control. (b) Cache configuration
during voltage droop.

testing voltage (Vbottom) during the testing time to record an
actual Vmin. The test result table is used as a reference for
the voltage-temperature variation adaptive control described
later.

2.4 Voltage and Temperature Variation Adaptive Control

Figures 9, 10, and 11 present a voltage-temperature varia-
tion adaptive control scheme. The autonomous controller
detects degradation of the operating margin caused by the
voltage and temperature fluctuation. If the margin is insuf-
ficient for stable operation, the controller changes the oper-
ation mode of 7T/14T bit-enhancing SRAM to the 14T en-
hancing mode. This adaptive control enables maintenance
of the required voltage margin in the current operating con-
dition.

To detect the voltage droop, reference voltages “high”
(Vref high) and “low” (Vref low) are set to the proper level, as
shown in Fig. 9. Vdd is monitored by the monitoring circuit
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Fig. 11 Vmin correction responding to temperature variation.

using Vref high and Vref low. When Vdd falls below Vref high,
a timer starts to count. Then, as Vdd falls below Vref low,
the timer stops to count and a gradient of the voltage droop
is calculated. The autonomous controller estimates whether
the Vdd drops below Vmin normal or not using the gradient.
If the gradient is greater than the threshold value, the con-
troller estimates that the Vdd crosses Vmin normal. If not, the
controller estimates that the Vdd does not cross Vmin normal

(shown in Fig. 9(b)). The resilient cache changes the opera-
tion mode to the 14T enhancing mode at the voltage below
Vmin normal. The controller may miss detecting very steep
droops and very slow droops. The very steep droops are
caused by high frequency noises. SRAM cell is less suscep-
tible for the high frequency noises [14]. The reconfigura-
tion of the cache is accomplished even in case that the volt-
age droop is very slow because the autonomous controller
changes operation mode to 14T enhancing mode when the
supply voltage falls below specified level.

This voltage variation adaptive control scheme is per-
formed in a block-basis manner. Only blocks for which the
Vdd drops below its Vmin normal change the operation mode to
the 14T enhancing mode as presented in Fig. 10. The other
blocks keep the operation mode as the 7T normal mode.
Dirty lines in the proposed cache can be written back to
main memory even if the Vdd drops by 35% in 100 µs.

To reconfigure the blocks, the tag array of the resilient
cache must be modified. One bit is added to the tag bits in
each cache line. The comparators for the tag comparison
must be extended for the additional bit. The additional bit
holds MSB of the index and is compared as the LSB of tag
bits. Moreover, the decoder must be designed so as not to
choose the half index. The LSB of the decoder input is fixed
to “0” in the bit-enhancing mode.

The Vmin at runtime is corrected in response to the run-
time temperature to compensate the temperature fluctuation
(shown in Fig. 11). The autonomous controller obtains the
current temperature using the on-chip temperature monitor
and looks up Vmin in the test result table. The Vmin corre-
sponding to the current temperature is calculated using these
data. The coefficient data to compensate temperature differ-
ence between the testing time and current time are recorded

Fig. 12 Migration process for dirty cache lines in the mode transition
target way.

in coefficient tables. The calculated Vmin are collected in
Vmin tables. The Vmin tables are used to determine the thresh-
old of the gradient in the droop detection.

When the autonomous controller changes operation
modes of the blocks into bit-enhancing mode, the dirty
cache lines in the blocks must be migrated. The migration
process is shown in Fig. 12. In this example, a target block
of the mode transition is block 7. The controller searches
dirty cache lines in the odd index of block 7. Dirty lines in
the even index do not need to migrate because these lines
are used after the mode transition. If the dirty cache line is
detected, then the cache line migrates into the LRU cache
line in the same set. If the LRU cache line is also dirty, then
the LRU line is written back to main memory before the de-
tected dirty line is migrated. If the detected dirty line is LRU
line, then the line is written back to main memory.

If the Vdd is over Vref high again, then the autonomous
controller changes the operation mode of the blocks from
bit-enhancing mode to normal mode. In such cases, it is
unnecessary to migrate cache lines. The controller simply
inactivates the control signal of the 7T/14T bit-enhancing
SRAM (CL depicted in Fig. 2) and sets the cache state of
the cache lines in the odd index to invalid.

3. Measurement Results

3.1 On-Chip Voltage Droop Waveform and Vmin of Mem-
ory Blocks

Measurement results obtained using a test chip fabricated
in 40-nm CMOS (Fig. 13) are presented in Figs. 14–16.
The voltage monitoring circuit measures the on-chip voltage
droop waveform (Fig. 14). An upper waveform in Fig. 14 is
the injected waveform from outside the chip. This wave-
form is measured at off-chip probing point on the global
power rail. A lower waveform is acquired by measurement
with the on-chip monitoring circuit, which probes the local
power rail of each memory block. The on-chip measurement
waveform presents a different shape from that of the injected
waveform because of parasitic elements of the chip. The re-
sult shows that the on-chip monitoring circuit is necessary
to obtain a precise voltage level.
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Fig. 13 Micrograph and features of test chips.

Fig. 14 Measured off-chip/on-chip voltage droop waveforms.

Measured Vmin characteristics of the memory blocks
are shown in Fig. 15. The Vmins are acquired for 8 blocks
of 11 chips at each operation mode of BE SRAM. The
temperature at the measurement is normal (25◦C) and high
(100◦C). The averages of the Vmin of the worst block (i.e.
Vmin of the entire cache) for 11 chips are 1015 mV in nor-
mal mode and 806 mV in bit-enhancing mode at 25◦C. At
100◦C, the average Vmin in normal and bit-enhancing modes
are 1050 mV and 827 mV respectively. Results show that
changing the operation mode of BE SRAM to bit-enhancing
mode improves the operating margin by 205 mV at 25◦C and
223 mV at 100◦C, on average.

3.2 Voltage Variation Tolerance

The voltage variation tolerance of the resilient cache is eval-
uated using a voltage droop injection to the external power
supply rail. During voltage droop injection, the trace of
cache access is input to the resilient cache. Then the ac-
cesses to fail bits are counted. Five cache traces were taken
from SPEC2006 [12]. The evaluation shows that the re-

Fig. 15 Vmins of eight memory blocks of 11 chips (measured).

silient cache does not fail irrespective of the droop duration
length when the voltage droop amplitude is 20%. Therefore,
it is seen that the resilient cache can be applied to the ECUs
in electronic vehicles.

To investigate the voltage variation tolerance of the re-
silient cache, we conducted evaluations under voltage droop
conditions with amplitude higher than 20%. The amplitudes
are assumed to be 25%, 30%, and 35% of Vdd as shown
in Fig. 16(a). The droop durations are 50 µs, 500 µs, 5 ms
and 50 ms. Evaluation results under 25%, 30% and 35%
droop condition are depicted respectively in Figs. 16(b)–
16(d). Under 25% and 30% droop conditions, the failures
increase linearly with droop duration length without the pro-
posed scheme (no variation adaptive control and always nor-
mal mode). Using the proposed scheme (variation adap-
tive control and adopt switching to enhancing mode), the
resilient cache does not fail irrespective of the droop dura-
tion length. Under a severe 35% droop condition, failures
without the proposed scheme increased numerically to about
ten times of those under a 25% droop condition. Using the
proposed scheme, the failure rate improved by ×91 of that
without the proposed scheme under 50 ms droop duration
length.

3.3 Processor Performance

The cache reconfiguration affects processor performance.
The cache capacity decreases by 16 KB when one block
changes its operation mode into bit-enhancing mode. The
capacity decrease degrades processor performance since
cache misses occur more frequently. Figure 17 shows nor-
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Fig. 16 Voltage droop tolerance and failure count evaluation: (a) droop
waveform example, (b) 25% Vdd droop, (c) 30% Vdd droop, and (d) 35%
Vdd droop.

Fig. 17 Normalized IPCs with respect to the number of bit-enhancing
mode blocks.

malized instruction per cycles (IPCs) with respect to the
number of bit-enhancing mode blocks. The evaluation is
conducted using gem5 simulator [13], with benchmarks se-
lected from SPEC 2006 [12]. The average IPC loss is 2.88%

when all blocks are bit-enhancing mode (128 KB cache ca-
pacity). The resilient cache operates in bit-enhancing mode
only if the operating margin is insufficient, and continues
stable operation though processor performance degrades.

4. Conclusion

As described in this report, we proposed a resilient cache
with bit-enhancing memory and on-chip diagnosis struc-
tures in 40-nm CMOS. The resilient cache has a bit-
enhancing memory that can dynamically change itself to en-
hancing mode and on-chip voltage/temperature monitoring
circuit. It dynamically reconfigures its operation mode using
the voltage/temperature monitoring result. It achieves a 91
times better failure rate under 35% droop of Vdd compared
with that of the conventional design.
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