IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Special Section on Solid-State Circuit Design—Architecture, Circuit, Device and Design Methodology
A Circuit Technique for Enhancing Gain of Complementary Input Operational Amplifier with High Power Efficiency
Tohru KANEKOMasaya MIYAHARAAkira MATSUZAWA
Author information
JOURNAL RESTRICTED ACCESS

2015 Volume E98.C Issue 4 Pages 315-321

Details
Abstract

Negative feedback technique employing high DC gain operational amplifier (op-amp) is one of the most important techniques in analog circuit design. However, high DC gain op-amp is difficult to realize in scaled technology due to a decrease of intrinsic gain. In this paper, high DC gain op-amp using common-gate topology with high power efficiency is proposed. To achieve high DC gain, large output impedance is required but input transistors' drain conductance decreases output impedance of conventional topology such as folded cascode topology with complementary input. This is because bias current of the output side transistors is not separated from the bias current of the input transistors. On the other hand, proposed circuit can suppress a degradation of output impedance by inserting common-gate topology between input and output side. This architecture separates bias current of the input transistors from that of the output side, and hence the effect of the drain conductance of input transistors is reduced. As the result, proposed circuit can increase DC gain about 10 dB compared with the folded cascode topology with complementary input in 65 nm CMOS process. Moreover, power consumption can be reduced because input NMOS and PMOS share bias current. According to the simulation results, for the same power consumption, in the proposed circuit gain-bandwidth product (GBW) is improved by approximately 30% and noise is also reduced in comparison to the conventional topology.

Content from these authors
© 2015 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top