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High-Power Photodiodes for Analog Applications
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SUMMARY This paper summarizes recent progress on modified uni-
traveling carrier photodiodes that have achieved RF output power levels of
1.8 Watt and 4.4 Watt in continuous wave and pulsed operation, respec-
tively. Flip-chip bonded discrete photodiodes, narrowband photodiodes,
and photodiodes integrated with antennas are described.
key words: photodiode, photodetector, microwave photonics

1. Introduction

High-power, high-speed photodiodes are being used in an
increasing number of applications including fiber optic an-
tenna links, radio frequency (RF) over fiber, and photonic
generation of low phase noise microwave signals. The fact
that the photodiode (PD) can be operated at high photocur-
rent levels provides several improvements in these systems
including high dynamic range, high link gain, and low noise
figure. In photonic wireless systems an antenna integrated
photodiode can help to increase radiated RF power without
the need for electronic amplification and hence simplify the
RF circuitry at the antenna unit.

To achieve high RF output power, various photodi-
ode structures have been developed [1]–[4] among which
the uni-traveling carrier (UTC) photodiode [3] has demon-
strated high saturation current and high bandwidth. We have
developed charge-compensated modified uni-traveling car-
rier (MUTC) photodiodes flip-chip bonded on high-thermal
conductivity substrates to address the two primary effects
that limit the RF output power of photodiodes, space-charge
and thermal.

2. Modified Uni-Traveling Carrier Photodiodes

The PD epitaxial layer structure corresponds to a charge-
compensated MUTC PD with both non-absorbing (InP) and
absorbing (InGaAs) depletion regions [4] and was presented
in Ref. [5]. The transparent electron drift layer (InP) is
lightly n-type doped to compensate the electric field reduc-
tion caused by the space charge in the

presence of high photocurrents [6]. A moderately
doped cliff layer is integrated between the drift layer and the
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absorber to enhance the electric field in the depleted por-
tion of the absorption layer (Fig. 1 (b)). Back-illuminated
double-mesa PDs were fabricated using standard dry etch-
ing processes. Stacks of Ti/AuGe/Au and Ti/Pt/Au were
used for n- and p-metal contacts, respectively. To facili-
tate flip-chip bonding Au bonding bumps with a diameter
of 6 µm and height of 2 µm were plated on the p- and n-
mesas to serve as electrical contacts and heat dissipation
paths (Fig. 2).

A SiO2 layer with a thickness of 250 nm was deposited
on the back of the wafer as an anti-reflection coating. To
improve thermal dissipation the 1 mm × 1.3 mm MUTC PD
dies were flip-chip bonded onto high-thermal conductivity
submounts using an Au-Au thermo-compression bonding
process [5]. Using AlN submounts we found that the max-
imum dissipated power density of the photodiodes at the

Fig. 1 Band diagrams of (a) UTC and (b) MUTC photodiode.

Fig. 2 Simplified schematic cross-sectional view of a photodiode flip-
chip-bonded on diamond submount.
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Fig. 3 Maximum output RF power vs. modulation frequency for single
wideband photodiodes under continuous wave operation at 1.55 µm wave-
length.

point of failure was increased by 65% to 90% when com-
pared to standard back-illuminated PDs without flip-chip
bonding. We obtained even higher values when using di-
amond submounts. Owing to the high thermal conductivity
of the chemical-vapor-deposition diamond of > 500 W/m/K,
photodiodes with diameters of 50 µm, 40 µm, 34 µm, and
28 µm reached RF output powers of 32.7 dBm at 10 GHz,
29.6 dBm at 15 GHz, 28 dBm at 20 GHz, respectively, and
26 dBm for a 28 µm device at 25 GHz, without active cool-
ing [7].

Compared with the 50 µm-diameter MUTC PD on AlN
submount reported in Ref. [8], the device bonded on dia-
mond achieved 80% greater RF output power. The dissi-
pated power in the device was as high as 2.5 W. The re-
ponsivity was 0.75 A/W at 1.55 µ m and typical dark cur-
rents were 500 nA. Recently, miniaturization of the PD ac-
tive area and optimization of the microwave coplanar wave-
guide (CPW) on chip enabled MUTC PDs with a 3-dB band-
width of 65 GHz and an RF output power of 16 dBm [20].
In this design an air bridge connected the PD to a high-
impedance (85 Ω) CPW transmission line, which served
also as the bond pad in the flip-chip-bonding process. Since
we designed the transmission line to provide slight inductive
peaking, the bandwidth was significantly expanded beyond
the conventional resistance-capacitance-limitation. Figure 3
summarizes our results together with data reported in the
literature.

Using an optical heterodyne setup with a modulation
depth close to 100% we measured a power conversion effi-
ciency (PCE) of 42%, 38%, and 37% at 10 GHz, 20 GHz
and 25 GHz, respectively, which compares favorably with
previously reported results in Ref. [21]. An even higher PCE
of 60% was obtained when using a Mach-Zehnder modula-
tor biased away from its quadrature point [22].

Recently, similar MUTC PDs were used to generate
pulsed RF signals at 10 GHz. In the experiment we used
a continuous wave (cw) fiber laser followed by two Mach-
Zehnder modulators which generated the 10 GHz carrier and
a 100-ns gate signal, respectively. Figure 4 shows the de-
tected RF peak power versus average photocurrent for 20%

Fig. 4 Peak RF power at 10 GHz for bias voltages from −6 V to −33 V.

duty cycle and bias voltages in the range between −6 V
and −33 V [23]. The peak power increases linearly as the
photocurrent increases and then saturates due to the space-
charge effect. The maximum RF peak power was 36.4 dBm
(4.4 W) when the reverse bias voltage was 33 V and the aver-
age photocurrent was 18 mA. Under these operating condi-
tions PD failure occurred at a dissipated DC power of about
1 W, which is significantly less than the dissipated power
at failure for cw illumination. While thermal failure be-
comes less an issue we believe that photodiode operation
under pulsed illumination was ultimately limited by junc-
tion breakdown. Junction breakdown under dark conditions
was observed at 36 V.

A fully packaged flip-chip bonded MUTC PD was
demonstrated in Ref. [24]. The fiber-pigtailed hermetic PD
module was equipped with a V-connector and included a
Peltier element for active temperature control. We measured
high RF output power levels reaching 25 dBm at 10 GHz and
17 dBm at 30 GHz under large-signal modulation. When il-
luminated by short optical pulses an RF power of > 21 dBm
was measured at 10 GHz using selective RF filtering. A
very low amplitude modulation (AM)-to-phase modulation
(PM) conversion factor was also measured, making the PD
module suitable for the use in photonic systems for ultralow
phase noise high-power RF signal generation as described
in Ref. [25].

A similar packaging concept was recently applied to a
high-speed MUTC PD with 10-µm active diameter. The PD
module demonstrated a 3-dB bandwidth of 50 GHz and an
output power of 13.5 dBm at 50 GHz. It should be noted that
the packaged photodiodes were operated safely at power
levels well below the failure limitation. The RF loss in the
photodiode module was estimated to be less than 2 dB up to
50 GHz.

3. MUTC PDs Integrated with Microwave Matching
Circuits and Antennas

To improve output power and RF responsivity in a narrow
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Fig. 5 Schematic (a) and micrograph (b) of PD on AlN substrate with
open stub microwave matching circuits.

Fig. 6 Micrograph of flip-chip bonded PD with integrated coplanar an-
tenna on AlN.

frequency band MUTC PDs were also integrated with mi-
crowave matching circuits [26]. Figures 5 (a) and (b) show
a layout of a PD with an open stub circuit and the fabricated
circuit on AlN substrate after flip-chip bonding the MUTC
photodiode chip, respectively [27].

By optimizing the lengths of the CPWs (l1, l2, and l3)
the impedance of the PD was matched to the 50-Ω exter-
nal load at an operating frequency of 20 GHz. Our devices
achieved RF power levels as high as 23 dBm at 6 V bias volt-
age and an average photocurrent of 140 mA. From a com-
parison with a similar PD but without matching circuit we
found a power enhancement of 6 dB.

Fig. 7 Received RF power at 60 GHz and RF compression versus aver-
age photocurrent at 5 V after 6 cm free-space transmission [28].

In order to build a photonic mm-wave transmitter we
also integrated the MUTC PD with a coplanar patch an-
tenna. In our approach a 10-µm diameter PD was coupled to
the antenna by flip-chip bonding (Fig. 6). Details about the
antenna design can be found in Ref. [28]. Figure 7 shows
the dependence of the received RF power on the average
photocurrent of the antenna integrated PD at 60 GHz. The
data was obtained for 6 cm free-space transmission using
a receive-antenna with 15 dBi gain. The saturated receive
power was −6.5 dBm at 5 V bias and the average photocur-
rent was 45 mA. Using the definition in [29] we estimated
the effective radiated power to be 20 dBm which indicates
that −50 dBm can be received with an antenna of 25-dBi
gain at a distance of 25 m from our photonic transmitter.

4. Summary

We have demonstrated that flip-chip bonded charge-
compensated MUTC photodiodes can provide record-high
output RF power levels up to 65 GHz. Integration with
passive microwave circuits can further enhance performance
and functionality in analog applications including photonic
generation of low phase noise microwave signals and fiber
optic antenna links.
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