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Model-Based Compressive Sensing Applied to Landmine Detection
by GPR

Riafeni KARLINA†a), Nonmember and Motoyuki SATO††, Member

SUMMARY We propose an effective technique for estimation of tar-
gets by ground penetrating radar (GPR) using model-based compressive
sensing (CS). We demonstrate the technique’s performance by applying
it to detection of buried landmines. The conventional CS algorithm en-
ables the reconstruction of sparse subsurface images using much reduced
measurement by exploiting its sparsity. However, for landmine detection
purposes, CS faces some challenges because the landmine is not exactly
a point target and also faces high level clutter from the propagation in the
medium. By exploiting the physical characteristics of the landmine using
model-based CS, the probability of landmine detection can be increased.
Using a small pixel size, the landmine reflection in the image is represented
by several pixels grouped in a three dimensional plane. This block structure
can be used in the model based CS processing for imaging the buried land-
mine. The evaluation using laboratory data and datasets obtained from an
actual mine field in Cambodia shows that the model-based CS gives better
reconstruction of landmine images than conventional CS.
key words: compressive sensing (CS), stepped frequency continuous wave
(SFCW), ground penetrating radar (GPR), Nyquist theorem, model based
CS

1. Introduction

Landmine clearing remains an important issue in several
places around the world. Ground penetrating radar (GPR)
is one of the techniques that have been developed to facili-
tate the mine clearing process. GPR works by transmitting
an electromagnetic wave and analyzing the reflected wave to
acquire information about subsurface features. Such infor-
mation may include the distance, material, size, shape and
other parameters of the reflecting feature, which can be used
to distinguish a landmine signal from the reflections of other
objects.

To achieve good landmine detection performance with
GPR, the GPR measurement has to satisfy several require-
ments given by the Nyquist sampling theorem. The GPR
data has to be acquired at equally spaced observation points
with spacing less than or equal to one half of the minimum
wavelength of the GPR signal. To achieve high range res-
olution, the GPR signal needs a large bandwidth resulting
in a large amount of data that must be collected and ana-
lyzed. If the measurement violates these requirements, the
GPR image will have poor resolution and may generate arti-
facts in the image. The poor resolution will make it difficult
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to differentiate the landmine reflection from that generated
by another object in the subsurface.

In this study, we analyze the utility of applying an
emerging technology; compressive sensing (CS) to land-
mine detection. Compressive sensing is an advanced sig-
nal processing technique which enables sparse signal recon-
struction from a very small set of measurement data in the
transform domain. In the case of landmine detection, the
landmines are usually spread over a very large area. There-
fore, a smaller GPR measurement area will contain a small
number of landmines, which makes it a sparse problem that
should be able to be solved by CS.

The theory behind CS has been presented in a num-
ber of papers [1]–[4] and has been applied to several ap-
plications, including through-wall radar imaging [5], [6],
synthetic aperture radar (SAR) systems [7], and GPR sys-
tems [8]–[12]. The implementation of CS for a stepped
frequency continuous wave (SFCW) GPR system has been
demonstrated by Gurbuz et al [8] and Suksmono et al [9].
These studies demonstrated through simulation and experi-
ment that using much reduced measurement, CS can recover
a radar image with higher resolution and less clutter than the
conventional image reconstruction method. Several inter-
esting approaches to further increasing the performance of a
CS-based system have also been published, such as the use
of a radon transform for line structure detection in a GPR
system [10] and a method to remove ground reflection in
GPR system [11].

The previous work on GPR referenced above has
shown that CS can be used to successfully reconstruct GPR
images, even though GPR has some problems such as the
strong reflection from the ground surface, high level clutter
from the propagation in the medium, poorly known param-
eters (e.g. wave velocity), and off-grid targets.

Unfortunately, in landmine detection, there is an addi-
tional problem with CS image reconstruction caused by the
size of the landmine which is usually much larger than the
resolution of the system. Thus, landmine detection is not a
truly sparse problem. As will be discussed in Sect. 5 below,
CS processing may reconstruct artifacts in the GPR image
where no target exists. It is also found that CS cannot ac-
curately reconstruct the shape of the landmine, which can
cause difficulty in recognizing the reflection of a landmine
in a real application. Therefore, we present a study with a
motivation to increase the accuracy of CS-based imaging for
landmine detection by GPR, using a model-based CS tech-
nique which works by exploiting the known shape and size
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of the landmine.
Model-based CS is originally proposed by Baraniuk et

al [13]. This technique works by exploiting the special char-
acteristics of a sparse signal. Model-based CS can improve
the performance of CS by allowing only some configuration
of non-zero components of the signal, and rejecting solu-
tions which violate the signal model that has been defined.
The processing of the landmine data shows that the proposed
model-based CS can give better visualization of the land-
mine and remove artifacts from the CS solution.

This study also evaluates landmine detection by CS
using data sets acquired at a real landmine field in Cam-
bodia. The data was acquired by using ALIS (Advanced
Landmine Imaging System) developed by Tohoku Univer-
sity, Japan [14]–[19]. ALIS is a dual sensor system, con-
sisting of a metal detector and handheld GPR system. The
handheld GPR sensor system collects data at random loca-
tions, controlled by the human operator. The collected data
is usually sparse in the spatial domain. We consider this
handheld GPR system a suitable data acquisition method for
landmine detection by CS, since it is easy to control the data
distribution in the two dimensional measurement area. The
processed results using these data sets confirm the superior-
ity of model-based CS over conventional CS processing.

2. Conventional CS-GPR System

The 3D subsurface images from GPR measurements can be
reconstructed by dividing the observed area into a set of pix-
els with desired resolution. The value of each pixel can be
calculated by processing the data received at all antenna po-
sitions and all frequency bands, using Fourier-based SAR
processing as shown in (1).

p(xp, yp, zp) =
1

Na
y Na

x M

Na
y−1∑

ya=0

Na
x−1∑

xa=0

M−1∑
m=0(

sr(xa, ya,m) exp(− j2π fmra,p/v)
)

(1)

Here p(xp, yp, zp) is the estimation of electromagnetic re-
flectivity of an object located at pixel (xp, yp, zp) in the GPR
image, where the spatial coordinates are 0 ≤ xp ≤ N p

x − 1,
0 ≤ yp ≤ N p

y − 1, and 0 ≤ zp ≤ N p
z − 1. In Eq. (1),

sr(xa, ya,m) is the signal received at the (xa, ya) position of
the antenna and the m-th frequency point, Na

x is the number
of observation points along the x axis; Na

y is the number of
observation points along the y axis; M is the number of fre-
quency points; ra,p is the propagation distance between the
transmitter antenna at position (xa, ya) to the pixel at posi-
tion (xp, yp, zp) and from the pixel to the receiver antenna at
position (xa+d, ya); and d is the separation distance between
the transmitter and receiver antenna.

If there is an object located at a pixel, the p value at that
pixel will be high, otherwise p will be zero. If the size of the
subsurface object is very small compared to the whole area,
then only small number of p values will be high. In this
case, p is a sparse variable, and we can apply CS to this

Fig. 1 Coordinate definition of the antennas and the buried target in GPR
imaging

image reconstruction problem.
The CS problem can be formulated from the SAR pro-

cessing given by (1). In a GPR system, the data is sparse in
the spatial domain, as represented with a three-dimensional
p matrix. The measurement is performed in the space-
frequency domain, given by the three dimensional sr ma-
trix. To define the representation basis, sr and p should be
modified to be 1-column vectors by concatenating columns.
From the relation between sr and p, the representation basis
Ψ can be derived as shown in (5).

sr = Ψp (2)

ψk,l = exp(2π fk rk,l/v) (3)

for 0 ≤ k ≤ K − 1 and 0 ≤ l ≤ L − 1, with K = Na
y Na

x M
being the number of full measurement data in the spatial-
frequency domain, and L = N p

y N p
x N p

z the total number of
pixels in the image. In the equation, fk is the frequency of
the signal corresponding to the k-th row of the vector sr,
and rk,l is the two way travel time between the Tx antenna at
(xa

k , y
a
k) to the pixel located at (xp

l , y
p
l , z

p
l ) and from the pixel

to the Rx antenna at (xa
k + d, ya

k), as shown in Fig. 1.
In the foregoing, (xa

k , y
a
k) is the position of the Tx an-

tenna corresponding to the k-th row of the vector sr, and
(xp

l , y
p
l , z

p
l ) is the position of the pixel corresponding to the

l-th row of the vector p.
The sampling process is performed by applying the

sampling matrix Φ to the sr matrix, resulting in the vector
y, as shown in (4).

y = Φsr = ΦΨp = Ap (4)

The CS algorithm finds the solution of the equation by ex-
ploiting the sparsity of vector p. Beside the signal sparsity,
the incoherency between Φ and Ψ is a fundamental princi-
ple in CS theory [1]–[4]. However, it has been shown that
the random matrices are incoherent with any fixed basis Ψ
with high probability. This theory leads to easy implemen-
tation of CS in real applications, because we only need to do
random sampling during the measurement.

3. Model-Based CS-GPR for Landmine Detection

Baraniuk et al proposed model-based compressive sensing
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Fig. 2 Blocking process in GPR imaging by model-based CS algorithm.
(a) Some pixels in a GPR image. (b). Blocking process in original al-
gorithm. (c). Example of target position in GPR image, which can not
be perfectly defined by the blocks in the original algorithm. (d) Proposed
overlapped blocking process; the target in Fig. 2 (c) can be represented by
the second block.

which exploits the special characteristics of the signal to fur-
ther increase the performance of a CS system; this is done
by reducing the number of degrees of freedom of a sparse
signal by permitting only certain configurations of the large
and zero/small coefficients [13]. It is shown in this study that
model-based CS can reduce the number of measurements re-
quired to stably recover a signal and better differentiate true
signal information from recovery artifacts, which leads to a
more robust recovery.

3.1 Original Block Sparse Model

This study focuses on the implementation of CS for land-
mine detection using a GPR system. Since landmines are
typically much larger than the resolution of a GPR system,
the landmine will be represented by several pixels grouped
together in the GPR image. For this case, the model-based
CS for a block sparse signal is implemented.

The Baraniuk et al study defined a block sparse signal
as a signal vector x ∈ �JN , with J and N integers. This
signal can be reshaped into a J × N matrix X. Signal X in
a block sparse model has entire columns as zeros or nonze-
ros. The measure of sparsity for X is its number of nonzero
columns, which defines the block sparsity level (K) of the
signal. Mathematically, Baraniuk et al [13] defined the set
of K-block sparse signals as

S K = {X = [x1 . . . xN] ∈ �J×N such that
xn = 0 for n � Ω,Ω ⊆ {1, . . . ,N}, |Ω| = K} (5)

Using this definition of block sparse signal, it is important
to know how to divide the sparse signal so that the non-zero
components will be grouped correctly and do not mix with
the zero components. However, in the case of GPR imaging,
the exact location of the target is unknown. Therefore, it is
difficult to divide the imaging area into blocks that would
put the target exactly inside one block, even though the tar-
get size and the pixel size are known. Figure 2 shows an
illustration of the blocking process in GPR imaging. Fig-
ure 2 (a) shows a portion of the two dimensional GPR im-
age showing 18 pixels. Suppose a target is modeled by a 3x3

pixel cube. The model-based algorithm requires that these
18 pixels are divided into 2 blocks of 3x3 pixels as shown in
Fig. 2 (b), then the block sparse set is defined in (7), with xn

as the pixel value at the n-th pixel:

x = {x1, x2, . . . , x18} (6)

XT =

{
x1, x2, x3, x4, x5, x6, x7, x8, x9

x10, x11, x12, x13, x14, x15, x16, x17, x18

}
(7)

3.2 Proposed Block Sparse Model

According to the definition of the block sparse signal given
in (9), the target should be located either in the first block
given by the first column of X or in the second block given
by the second column of X. Therefore, if the target is located
in the middle of these two blocks, as shown in Fig. 2 (c), the
target cannot be perfectly represented by any block, which
will be a problem during the model-based CS processing.

In this study, we propose a blocking process where the
imaging area will be divided into several overlapped blocks.
Therefore we do not need to know the exact location of the
target in the image. The blocks which contain the target will
have highest signal proxy, and the blocks which partially
contain object can have lower signal proxy and can be elim-
inated from the CS solution using the known sparsity level
during the subsequent processing. This blocking process is
shown in Fig. 2 (d), which shows four overlapped blocks in
the imaging area. In this case, the block sparse set is given
by (8).

XT =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1, x2, x3, x4, x5, x6, x7, x8, x9

x4, x5, x6, x7, x8, x9, x10, x11, x12

x7, x8, x9, x10, x11, x12, x13, x14, x15

x10, x11, x12, x13, x14, x15, x16, x17, x18

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(8)

By using this configuration, the target illustrated in Fig. 2 (c)
can be perfectly defined by the third column of the block set
X.

In this study on landmine detection, the purpose is to
reconstruct a three dimensional GPR image. Ideally, the
model should be the same size with the real size of the land-
mine, but in this study we will simplify the model to reduce
the computation complexity. The landmine is modeled as a
cube represented by a 3x3x3 group of pixels, as shown in
Fig. 3, with n0 being the index of the center pixel, and n1 to
n26 giving the index of the surrounding pixels in three di-
mensional planes. Therefore, the member of each block can
be written as

Index = {n0, n1, n2, . . . , n26} (9)

3.3 Model-Based CoSaMP Algorithm

To find the CS solution, we use a model-based version of
compressed sampling matching pursuit (CoSaMP) as pro-
posed in [13]. This algorithm is modified from the CoSaMP
algorithm developed by Needell et al [20], [21]. The struc-
ture shown in Fig. 3 is used in step 3 of the algorithm. The
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Fig. 3 Landmine and the landmine model used for model-based CS pro-
cessing. (a) PMN-2 landmine buried in the experiment site. (b) The 3x3x3
model of landmine. (c) The index of each pixel in the 3x3x3 landmine
model

algorithm works via iteration as follows:

1) Initialize residual r = y, t = 0, and supp = ∅, with
supp (or support) shows the location of nonzero com-
ponents of p.

2) Set t = t + 1 and calculate signal proxy for each pixel.

xp = ATrt−1 (10)

3) Calculate signal proxy for each block structure, and de-
rive the new supports by selecting 2K largest signal
proxies, with K as a predefined block sparsity level.

xpBlock(n) =
∑

Index
xp(n|Index)

xpBlock(n) = xp(n0) + xp(n1) + . . . + xp(n26)
(11)

λt = supp (xpBlock(2K)) (12)

4) Merge the support with the previously estimated sup-
port from last iteration.

suppt = suppt−1 ∪ λt (13)

5) Form signal estimate b

b(suppt ) = Asuppt

+y (14)

b(suppt )C = 0 (15)

6) Prune signal estimate by selecting the K largest com-
ponent of b

p′t = b(K) (16)

7) Calculate the new residual

rt = y − Ap′t (17)

8) If the new residual satisfies the halting crriterion, the
algorithm terminates. Otherwise, goback to step 2.

It is important to note that in the model-based CS algorithm,
the block sparsity level K is required. In GPR imaging, the
block sparsity level provides an estimation of the number of
targets that exist in the imaging area.

4. Laboratory Experiment

4.1 Experimental Setup

A laboratory experiment was conducted to acquire regular
grid data to detect a PMN-2 landmine buried in dry sand.
The experiment was conducted by performing data acquisi-
tion in a two dimensional plane. Two spiral antennas, sepa-
rated by 9 cm, were used. The antenna movement was con-
trolled by a mechanical positioner to acquire data along a
perfectly regular grid.

A vector network analyzer (VNA by Anritsu) was used
to generate the step frequency signal and record the re-
flected signal. The SFCW signal uses a frequency range
from 10 MHz to 6 GHz, with 137 frequency points and a
43.72 MHz frequency step. The data was collected on a flat
ground surface at 61 observation points in the x and y di-
rections, with a 1 cm separation between two consecutive
observation points. The total number of observation points
in the two dimensional area was 3721 points.

Before performing sampling for CS processing, the
Nyquist criterion of spatial sampling for this experiment is
calculated as λmin/2 which is 1 cm. This result shows that
the measurement setup is the same with the Nyquist crite-
rion. To acquire a high quality GPR image, this requirement
should be satisfied.

Before CS processing, the measurement data in the
spatial and frequency domain were sampled. In this study,
10% sampling was performed on the observation points, and
50% sampling on the frequency data. The total sample used
was 5% of the full measurement dataset, with 372 random
observation points and 69 random frequency data for each
observation point.

A pixel size of 1x1x1 cm was used for the GPR imag-
ing. The diameter of a PMN-2 landmine is 12 cm and the
height is 5 cm. Considering these two parameters, the land-
mine should be represented by about 12x12x5 pixels. Ide-
ally, the model for model-based CS should be the same as
the size of the object. However, in this work we use a sim-
plified landmine model of a cube of 3x3x3 pixels.

4.2 Imaging Results

In order to show the quality of the image reconstruction,
two images are used. The correlation between them is il-
lustrated in Fig. 4. To show the location of the buried target
in the observation area, a 3D image as shown in Fig. 4 (b)
is needed. A pixel with magnitude larger than the defined
imaging threshold will be imaged as a small cube at the cor-
responding location of the pixel. However, this figure can-
not include the magnitude information of each pixel in the
imaging area. Therefore, information of the sidelobe level
and the clutter level of the image, which is important to com-
pare the quality of image reconstruction, will be lost.

Therefore, we use a 2D image as shown in Fig. 4 (a).
This figure shows the normalized magnitude of each pixel
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Fig. 4 Two images used to evaluate the image reconstruction results. (a). Magnitude plot to show
the normalized magnitude of each pixel in each vertical slice. (b) 3D image showing only the pixels for
which normalized magnitudes exceeded the threshold value

Fig. 5 The reconstructed landmine image using 100% data by Fourier Based SAR processing. (a)
The magnitude of each pixel. (b) 3D image showing the location of the landmine in the imaging area,
imaging threshold = 0.5.

Fig. 6 The reconstructed landmine image using 10% of the spatial data by conventional CS processing
(Bayesian RVM algorithm). (a) The magnitude of each pixel. (b) 3D image showing the location of the
landmine in the imaging area. This figure contains some high peaks in the wrong locations.

in each vertical slice of Fig. 4 (b), which is marked with dif-
ferent colors. Each vertical slice contains 671 pixels located
in a 2D vertical plane (61 pixels by 11 pixels). The magni-
tude of these pixels is shown on the z axis in Fig. 4 (a).

An imaging threshold is needed only for conventional
SAR imaging, because this method produces an image
which contains clutter all over the imaging area. The 3D
image is reconstructed by placing a cube at the location of
a pixel with a value higher than the defined threshold. In
this paper, the imaging threshold is defined to be 0.5, which
means that only pixels with magnitude larger than half of the
maximum magnitude will be shown in the 3D image. As for
CS imaging, most of the pixels have zero values. Therefore,
all the non-zero pixels can be imaged in the 3D image.

Figure 5 shows the reconstructed GPR image using
conventional full measurement with SAR processing. The
landmine reflection is visible at a depth of 12 cm, repre-
sented by several pixels grouped together in the three di-
mensional planes.

Figure 6 shows the CS reconstruction of the GPR im-
age using a 2% sample of the data and the Bayesian RVM

algorithm [22]–[24]. This algorithm does not require knowl-
edge of the sparsity of the signal, but it does need a rough
estimation of the noise level in the measurement. The figure
shows weak reflection around the location of the landmine,
and there are several high magnitude peaks in other regions
where no target exists. These false detected peaks may yield
an incorrect interpretation during the real measurement.

Figure 7 shows the reconstructed GPR image using
model-based CS with the proposed model, in which. the
block sparsity level K is assumed. Since only one landmine
exists in the imaging area, then K = 1. Figure 7 shows that
even though the landmine model is much smaller than the
size of the real PMN-2 landmine, the landmine reflection is
reconstructed at the correct position, with no false detected
peaks at other locations. Compared to conventional SAR
imaging shown by Fig. 4, the GPR image reconstructed by
model-based CS contains less clutter and has better resolu-
tion. More importantly, this image is generated using only
10% of the spatial sample, which will reduce the data ac-
quisition time significantly in a real measurement. Using
handheld GPR sensor system as proposed in Sect. 5, the data
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Fig. 7 The reconstructed landmine image using 10% of the spatial data by model based CS process-
ing. (a) the magnitude of each pixel. (b) 3D image showing the location of the landmine in the imaging
area.

acquisition time can be reduced from 8 hours to less than 5
minutes.

Another advantage of using CS processing is the
shorter processing time as a result of the reduction of spatial
and frequency data to process. CPU time needed to generate
Fig. 5 is about 7 hours, while Fig. 6 needs about 3 minutes
and Fig. 7 needs less than 1 minutes.

5. Evaluation Using Data Sets from a Real Landmine
Field in Cambodia

5.1 Handheld GPR Sensor System

Tohoku University, Japan has been developing a dual sensor
system, the Advanced Landmine Imaging System (ALIS)
since 2002 [14]–[19]. An impulse GPR sensor system is
part of ALIS. The antenna is scanned manually by the op-
erator, as shown in Fig. 8 (a). As a result, the scanning po-
sition is located randomly in the two dimensional plane. In
one scanning position, the GPR system records the reflected
wave and the CCD camera captures the image of the current
scanning position. The procedure of landmine detection us-
ing ALIS can be explained in the following steps. First, the
deminar tries to find a single MD response by the sound.
Then, the deminer scans the area using the handheld GPR
system and performs signal processing. By following this
procedure, the GPR image produced by ALIS system al-
ways has K = 1. Therefore, by using ALIS system, the
problem of estimating the value of K can be solved.

5.2 Measurement Setup and Pre-Processing

The data used in this evaluation are from an actual ALIS
dataset acquired in a landmine field in Cambodia where a
PMN-2 landmine is buried in sand. ALIS used frequency
range of 1-3 GHz, with data acquisition rate was 30 Hz. A
cavity-backed spiral antenna was used to transmit and re-
ceive circular polarized waves. The GPR system acquired
data from a total of 723 observation points, the scanning po-
sitions of which are shown in Fig. 8 (b). The GPR system
recorded time domain signals at each position in 512 sam-
ples. CS works with frequency domain data, so that the raw
time domain data from GPR system need to be transformed
into frequency domain by FFT. The time delay of the system
is estimated to be 9.31 ns and was corrected before FFT. To

Fig. 8 (a) ALIS in operation in Cambodia [16], (b) Recorded scanning
position in a field data acquisition using ALIS

avoid ringing in the resulting frequency domain data, the
start and end of the time domain signal was truncated us-
ing time domain windowing. After this step, FFT was per-
formed using 1024 point FFT, with a frequency range from
8.4 MHz to 4.3 GHz.

5.3 Imaging Results

The SAR processing using 100% of the frequency data
yielded the reconstructed 3D image as shown in Fig. 9.
Compared to the previous experiment which used dense and
regular gridded datasets, the imaging result using conven-
tional SAR processing gave a wider sidelobe and higher
level of clutter.

The application of CS begins by performing a sampling
process in the spatial and frequency domains. To provide
conditions consistent with the previous experiments, the
sampling process was performed to keep the final amount
of data nearly the same. A total of 361 spatial positions
(50% of the full spatial data) and 69 frequency points were
randomly selected to be used in CS processing. Figure 10
shows the reconstructed image using Bayesian Fast RVM.
The result shows several reconstructed high magnitude pix-
els scattered in the three dimensional imaging area. Even
though some of the pixels are located where the landmine
is, the separated pixels can cause confusion as to whether
they are due to an object as large as a landmine, or to three
small targets scattered in that positions.

Figure 11 shows the imaging result using model-based
CS. In this GPR measurement, there is only one landmine
buried in the sand, hence K = 1 is used. This result shows
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Fig. 9 The reconstructed landmine image from the ALIS datasets using 100% of the data by Fourier-
based SAR processing. (a) The magnitude of each pixel. (b) A 3D image which shows the location of
the landmine in the imaging area, imaging threshold = 0.5.

Fig. 10 The reconstructed landmine image from the ALIS datasets using 50% of the spatial data by
conventional CS processing (Bayesian RVM algorithm). (a) The magnitude of each pixel. (b) 3D image
showing the location of the landmine in the imaging area.

Fig. 11 The reconstructed landmine image from the ALIS datasets using 50% spatial data by model
based CS processing. (a) The magnitude of each pixel. (b) 3D image showing the location of the
landmine in the imaging area.

the reconstructed landmine reflection at the correct location.
Compared to the conventional CS processing, the model-
based CS resulted in a compact reconstructed image of the
landmine, which gives better perception about the buried
target.

6. Conclusion

We proposed model-based CS processing which exploits the
block sparse structure in the GPR image for landmine detec-
tion. The landmine was modeled according to a block sparse
structure where the high magnitude peaks are grouped to-
gether in the three dimensional image. The solution was
found by defining some overlapping blocks in the three-
dimensional imaging area. The model-based CoSaMP al-
gorithm was used to determine the block from which the
landmine reflection had come. From the data processing
results, the model-based CS was observed to reconstruct a
more accurate landmine reflection then the conventional CS
processing.

The implementation of CS processing to a handheld

GPR sensor system has also been presented. The hand-
held system is considered suitable to provide the sparse and
random spatial data for a CS-based GPR system. Another
advantage in using this system is that the problem of esti-
mating the block sparsity level can be eliminated, since it
is likely that the GPR system will image only one landmine
at a time. The experiment in the real landmine field con-
firms that by exploiting the physical characteristics of the
landmine through the model-based CS, the quality of the
CS imaging can be improved.
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