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Secrecy Rate Optimization for RF Powered Two-Hop Untrusted
Relay Networks with Non-Linear EH Model
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SUMMARY In this letter, we investigate the secure transmission in
radio frequency (RF) powered two-hop untrusted relay networks, where
the source node and untrusted relay are both wireless powered by an RF
power supplier. Specifically, considering the non-linear energy-harvesting
(EH) model, the two-process communication protocol is proposed. The
secrecy rate is maximized by jointly designing the beamforming vector at
source and beamforming matrix at relay, under the constraints of transmit
power at RF power supplier and destination. The secrecy rate maximization
(SRM) is non-convex, hence we propose an alternative optimization (AO)
based iterative algorithm. Numerical results demonstrate that the proposed
scheme can significantly increase the secrecy rate compared to the baseline
schemes.
key words: RF powered networks, non-linear EH model, untrusted relay,
secrecy rate, physical layer security

1. Introduction

Radio frequency (RF) energy-harvesting (EH) paradigms
are promising in energy-constraint networks, which contain
nodes with finite-capacity battery to maintain operation [1].
Under the RF-EH scheme, the lifetime of wireless nodes can
be prolonged by converting the RF transmission into avail-
able power supply [2].

On the other hand, due to the limited transmit range of
wireless communication or the blocking of obstacles, coop-
erative relay technology is widely employed [3], [4]. How-
ever, the introduction of cooperative relay results in weak
anti-eavesdropping capability, because the relay willing to
forward the information-bearing signal may be also curious
about the secret information. To prevent information leak-
age, the physical layer security (PLS) has been widely stud-
ied [5], [6].

For the RF powered relay networks, the external jam-
mer was introduced to interfere the untrusted relay and the
optimal power allocation was studied to maximize the se-
crecy rate in [7]. A destination-assisted-jamming-based
transmit scheme was proposed in [8], where the destination
node not only generates the jamming but also provides the
RF energy for the relay. Reference [9] studied the two-hop
secure simultaneous wireless information and power trans-
fer (SWIPT) transmission, where the source and relay are
both RF powered.

Manuscript received January 15, 2019.
Manuscript revised June 14, 2019.
†The author is with Graduate School, Army Engineering Uni-

versity of PLA, China.
††The authors are with College of Communication Engineering,

Army Engineering University of PLA, China.
a) E-mail: liuxiaochenyt@163.com

DOI: 10.1587/transfun.2019CIL0001

However, most current works concentrate on linear EH
model. Actually, the practical power conversion circuit re-
sults in a non-linear end-to-end power transfer [10]. Hence,
the non-linear EH model was proposed recently [11]. The
secure beamforming was designed for cognitive radio net-
works in [10], while the energy efficiency was maximized
for the SWIPT networks based on non-linear EH model in
[12].

In this letter, we study the destination-assisted-
jamming-based secure transmit scheme for the RF pow-
ered two-hop untrusted relay networks with non-linear EH
model. Supposing the source and relay are both RF pow-
ered, an RF power supplier is employed, which can avoid
the path loss during RF energy transmission from the des-
tination to the relay and source in [9]. Reference [5] also
studied the joint secure beamforming scheme, but the RH-
EH paradigm was not considered therein.

Notations: Boldface lowercase and uppercase letters
are used to denote vectors and matrices, respectively. I and
0 denote the identity matrix and zero matrix, respectively.
X � 0 means that X is a Hermitian positive semidefinite
matrix. The operators (·)T , (·)†, (·)H , and Tr(·) represent the
transpose, conjugate, conjugate transpose, and trace opera-
tions, respectively. The symbol E{·} represents the statisti-
cal expectation of the argument and [x]+ = max(0, x). ⊗
and vec(·) denote the Kronecker product and vectorization
operation, respectively.

2. System Model and Problem Formulation

Consider a two-hop untrusted relay network which is com-
prised of a source (S), an untrusted relay (R), a destination
(D) and an RF power supplier (P). The antenna numbers
of S and R are Ns and Nr, respectively. The node D and P
are both single-antenna. Each node operates in a half-duplex
mode. Since there is no direct link from S toD, the commu-
nication is established through the relay R. Meanwhile, R
which conducts amplify-and-forward (AF) protocol, is un-
trusted and may wiretap the secret information in passive
way.

As shown in Fig. 1, we design a two-process commu-
nication protocol for a transmission slot (of duration T0). In
the first process lasting for T0/2, the wireless power transfer
is conducted from P to S and R. The signals received at S
and R can be represented as
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Fig. 1 System model.

yps = hps
√

Ppxp + ns

ypr = hpr
√

Ppxp + npr
(1)

where hps ∈ C
Ns×1 and hpr ∈ C

Nr×1 represent the channel
gains from P to S and R, respectively. ns ∼ CN(0, σs

2I)
and npr ∼ CN(0, σpr

2I) denote the independent and identi-
cal distributed (i.i.d.) circular symmetric complex additive
white Gaussian (AWGN) noises. xp is the unit RF power
signal and Pp is the transmit power at P. Hence, the re-
ceived RF power at S and R can be represented as

Prec_s = ηs(Pp||hps||
2 + Nsσs

2)

Prec_r = ηr(Pp||hpr ||
2 + Nrσpr

2)
(2)

where 0 < ηs < 1 and 0 < ηr < 1 are the energy transfer
efficiency, respectively.

In this letter, we employ a recently proposed non-linear
EH model [11]. Thus, the harvesting power at S(R) is

Phst_i =
ΨE − MEΩE

1 −ΩE

ΨE =
ME

1 + e−aE (Prec_i−bE )

ΩE =
1

1 + eaEbE

(3)

where i ∈ {s, r} and e denotes the base of natural logarithms.
In this model, ME is a constant denoting the maximum har-
vested power when the EH circuit is saturated, aE and bE are
parameters related to the detailed circuit specifications.

In the second process lasting for T0/2, S transmits
information-bearing signal to D through R using the en-
ergy harvested. This process is divided into two phases
with equal duration of T0/4. In the first phase, S sends
information-bearing signal to R. Meanwhile, to prevent in-
formation leakage,D generates jamming to interfere R. The
signal received at R is represented as

ysr = Hsrwsxs + nr + hdr
√

Pd xd (4)

where Hsr ∈ C
Nr×Ns is the channel gain from S to R and

hdr ∈ C
Nr×1 is the channel gain from D to R. xs ∈ C de-

notes the secret information and ws ∈ C
Ns×1 denotes the

corresponding beamforming vector. Without loss of gen-
erality, we assume that E{|xs|

2} = 1. xd ∼ CN(0, 1) de-
notes the jamming signal and Pd is the transmit power atD.

nr ∼ CN(0, σr
2I) denotes the i.i.d. AWGN noise at R.

In the next phase, R transmits information to D. The
signal atD is

yrd =hrd
HWrHsrwsxs + hrd

HWrnr

+ hrd
HWrhdr

√
Pd xd + nd

(5)

where hrd ∈ C
Nr×1 is the channel gain from R to D,

Wr ∈ C
Nr×Nr denotes the beamforming matrix at R and

nd ∼ CN(0, σd
2) denotes the i.i.d. AWGN noise. Due to

xd is the jamming signal generated by D, the third item on
the right hand of (5) can be eliminated for decoding.

In this way, the secrecy rate of this network can be cal-
culated as [13]

Rs =
1
4

[Rd − Rr]+ (6)

where Rd denotes the achievable rate of main channel with

Rd= log(1+
hrd

HWrHsrwsws
HHsr

HWr
Hhrd

σr
2hrd

HWrWr
Hhrd + σd

2
) (7)

and Rr denotes the achievable rate of wiretap channel with

Rr = log |I + Hsrwsws
HHsr

HG−1|

G = Pdhdrhdr
H + σr

2I
(8)

The energy consumed byS andR in the information transfer
process can be represented as

Es=
T0

4
Tr(wsws

H)

Er=
T0

4
[Tr(WrHsrwsws

HHsr
HWr

H)

+σr
2Tr(WrWr

H)+PdTr(Wrhdrhdr
HWr

H)]

(9)

In this letter, with given transmit power Pp at P and Pd
atD, we jointly design the beamforming vector ws at S and
beamforming matrix Wr at R for the secrecy rate maximiza-
tion (SRM), i.e.,

max
ws,Wr

Rs (10a)

s.t. Es ≤
T0

2
Phst_s, Er ≤

T0

2
Phst_r (10b)

As S and R are both RF powered byP, the energy constraint
should be satisfied in (10b).

3. Joint Beamforming Design

In this section, we derive the suboptimal solution of the
SRM problem (10). The original problem is non-convex,
hence we propose an alternative optimization (AO) based it-
erative algorithm by dividing the original problem into two
sub-problems.

3.1 Optimizing ws with Given Wr

When the beamforming matrix at R is given as Wr = W̃r,
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the SRM can be expressed as

max
Qs

Rs =
1
4
{ log(1+

hrd
HW̃rHsrQsHsr

HW̃H
r hrd

σr
2hrd

HW̃rW̃H
r hrd + σd

2
)

− log |I + HsrQsHsr
HG−1|} (11a)

s.t. Tr(Qs) ≤ 2Phst_s (11b)

Tr(W̃rHsrQsHsr
HW̃H

r )+σr
2Tr(W̃rW̃H

r )

+ PdTr(W̃rhdrhdr
HW̃H

r ) ≤ 2Phst_r (11c)
Qs � 0, rank(Qs) = 1 (11d)

where Qs=wsws
H . (11) is still non-convex mainly for

(11a), hence the sequential parametric convex approxima-
tion (SPCA) method [14] is employed. By employing the
first order Taylor series approximation [15], the low bound
of (11a) can be expressed as

R̃s =
1
4
{ log(1+

hrd
HW̃rHsrQsHsr

HW̃H
r hrd

σr
2hrd

HW̃rW̃H
r hrd + σd

2
)−log |M0|

−Tr[
Hsr(Qs−Qs0)Hsr

H

M0
]+log |Pdhdrhdr

H +σr
2I|}

(12)

where M0 = Pdhdrhdr
H + σr

2I + HsrQs0Hsr
H and Qs0 is a

constant matrix. With semidefinite relaxation (SDR) tech-
nique by neglecting the rank constraint in (11d), (11) can be
approximated as a semidefinite programming (SDP)

max
Qs

Rs

s.t. (11b), (11c)
Qs � 0

(13)

(13) is convex and can be solved efficiently [16]. Although
employing the SDR, the following proposition implies that
the solution of (13) is tight.

Proposition 1: Given the SDR problem (13), we can
always get the optimal solution Qs

∗ which satisfies
rank(Qs

∗) = 1.

The proof is in Appendix A.
The algorithm of solving (11) by SPCA method is sum-

marized in Algorithm 1.

Algorithm 1 SPCA procedure for (11)
1: Initialize the constant matrix Qs0 = 0.5I.
2: repeat
3: Solve (13), get the optimal solution Qs

∗ and R̃s.
4: Set Qs0=Qs

∗.
5: until R̃s converges.

Output:
6: The optimal solution Qs

∗ and corresponding secrecy rate R̃∗s .

3.2 Optimizing Wr with Given ws

When the beamforming vector at S is given as ws = w̃s,

the secrecy rate only depends on the signal-to-interference-
and-noise ratio (SINR) at D. Hence, this SRM problem is
equivalent to

max
Wr

hrd
HWrHsrQ̃sHsr

HWr
Hhrd

σr
2hrd

HWrWr
Hhrd + σd

2
(14a)

s.t. Tr(WrHsrQ̃sHsr
HWr

H)+σr
2Tr(WrWr

H)

+ PdTr(Wrhdrhdr
HWr

H) ≤ 2Phst_r (14b)

where Q̃s = w̃sw̃H
s .

With the fact [17],

Tr(ABT ) = vecT (A)vec(B)

vec(ABC) = (CT ⊗ A)vec(B)

(A ⊗ B)T = AT ⊗ BT

(15)

it follows that

hrd
HWrHsrQ̃sHsr

HWr
Hhrd

=vecT (Wr)F1vec(Wr
†)

(16)

σr
2hrd

HWrWr
Hhrd

=σr
2vecT (Wr)F2vec(Wr

†)
(17)

with F1 =HsrQ̃sHsr
H ⊗ hrd

†hrd
T , F2 = I ⊗ hrd

†hrd
T . For the

constraint (14b), it can be obtained that

Tr(WrHsrQ̃sHsr
HWr

H) + σr
2Tr(WrWr

H)

+ PdTr(Wrhdrhdr
HWr

H)

=Tr[Wr(HsrQ̃sHsr
H + σr

2I + Pdhdrhdr
H)Wr

H]

=vecT (Wr)F3vec(Wr
†)

(18)

with F3 = (HsrQ̃sHsr
H + σr

2I + Pdhdrhdr
H) ⊗ I.

Defining ξr = vec(Wr
†) and Qr = ξrξr

H , combined
with (16), (17) and (18), (14) can be re-expressed as

max
Qr

Tr(QrF1)
σr

2Tr(QrF2) + σd
2 (19a)

s.t. Tr(QrF3) ≤ 2Phst_r (19b)
Qr � 0, rank(Qr) = 1 (19c)

Neglecting the rank constraint in (19c), (19) is a quasi-
convex problem, which can be equivalently reformulated via
Charnes-Cooper transformation [17], i.e.,

max
Q̄r ,t

Tr(Q̄rF1) (20a)

s.t. σr
2Tr(Q̄rF2) + tσd

2 = 1 (20b)

Tr(Q̄rF3) − 2tPhst_r ≤ 0 (20c)

Q̄r � 0, t ≥ 0 (20d)

where Q̄r = tQr. (20) is a SDP and can be solved. Still the
following proposition implies that the SDR solution of (20)
is tight for the original problem (14).
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Proposition 2: Given the SDR problem (20), we can al-
ways get the optimal solution Q̄∗r which satisfies rank(Q̄∗r ) =

1.

The proof is in Appendix B.
Overall, combining the procedure in the two sub-

problems above, the iterative optimization algorithm for the
SRM can be summarized as follows.

Algorithm 2 AO based iterative algorithm for SRM
Initialize the beamforming matrix W̃r = 0.5I.

2: repeat
Calculate the optimal Qs

∗ using Algorithm 1, set Q̃s=Qs
∗.

4: Calculate the optimal Q̄∗r using (20), obtain ξr
∗ and Wr

∗, set W̃r =

Wr
∗.

Obtain the secrecy rate R̃s using (6) with Q̃s, W̃r .
6: until R̃s converges.

Output:
The optimal solution Qs

∗,Wr
∗ and corresponding secrecy rate R̃∗s .

Complex analysis: Problem (13) and (20) are SDP
and can be solved using interior-point method. Thus,
the computational complexity of Algorithm 1 is about
O(N1Ns

7 log(1/ε)), where ε is the given solution accuracy
and N1 is the average iteration number for the convergence
of Algorithm 1. The total complexity of Algorithm 2 is
O(N2[N1Ns

7 + (Nr
4 + 1)3.5] log(1/ε)), where N2 is the av-

erage iteration number of Algorithm 2.

4. Simulation Results

In this section, we provide the numerical simulation results
to validate our proposed AO based iterative algorithm (AO
scheme). The distances from P to S, from P to R, from
S to R and from R to D are denoted as d1, d2, d3 and d4,
respectively. They are set d1 = d2 = 2m, d3 = 3m. Every
entry of the channels is assumed as i.i.d. complex Gaussian
random variable with zero mean and variance d−2, where
d denotes the distance between the two nodes. We set the
noise power as σs

2 = σpr
2 = σr

2 = σd
2 = −30dBm and

transmission slot as T0 = 1. The parameters of the non-
linear EH model are aE = 150, bE = 0.0014,ME = 24mW
and ηs = ηr = 0.5 [10]. For comparison, we introduce the
destination-powered scheme (D-powered scheme) [9], the
non-cooperative scheme [5], and the transmit scheme with
linear EH model (linear model). For the linear model, we
set that Phst_i = ρPrec_i, i ∈ {s, r}, where ρ = 0.5 denotes the
power conversion efficiency [6].

Figure 2 demonstrates the average secrecy rate Rs ver-
sus transmit power Pp at P for different transmit schemes.
Compared with the D-powered scheme, the performance
improvement of the proposed AO scheme reaches about
1.7bps/Hz at most, as S and R can harvest more RF en-
ergy using this scheme. The AO scheme also outperforms
the non-cooperative scheme especially for high Pp and the
gap is about 0.3bps/Hz when Pp ≥ 16dBm, which verifies
the advantages in beamforming design of the AO scheme.

Fig. 2 Comparison of different transmit schemes with Pd =

100 mW,Ns = Nr = 4 and d4 = 10 m.

Fig. 3 Comparison of different transmit schemes with Pp = 50 mW,Ns =

Nr = 4 and d4 = 10 m.

Besides, we also compare the secrecy performance with the
linear model. According to (3), the harvesting power of non-
linear model is higher for low Pp, hence it shows better per-
formance compared with linear model. But with (3), it can
be obtained that lim

Prec_i→∞
Phst_i = ME . Hence, the secrecy

rate of non-linear model tends to be saturated as Pp goes to
20dBm, and it shows worse performance compared with lin-
ear model for high Pp. This implies the existence of optimal
power supply for P with practical non-linear model.

Figure 3 demonstrates the average secrecy rate Rs ver-
sus transmit power Pd at D for different transmit schemes.
It shows that Rs increases with Pd at first, because the en-
hanced interfere degrades the wiretap channel. When Pd
continues to increase, the secrecy performance decreases
dramatically, because R has to forward the jamming sig-
nal using more harvesting energy in the information transfer
process. It can also be found that the AO scheme outper-
forms the D-powered scheme and non-cooperative scheme.
For the linear model, when Pp is low the nodes S and R
harvest less energy than the non-linear model, hence the se-
crecy performance is shown worse. When Pd ≥ 25dBm,
most harvesting energy of R is used for forwarding jamming
signal, which leads to the near performance of AO scheme,
non-cooperative scheme and linear scheme.

Figure 4 investigates the average secrecy rate Rs ver-
sus the distance d4 between R and D with Pp = 50mW, Pd =

100mW. It can be found that for the AO and non-cooperative
schemes, the Rs decreases with d4 slowly at first, as R allo-
cates less energy for forwarding jamming signal although
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Fig. 4 Secrecy rate versus distance d4 for different antenna numbers with
different transmit schemes.

the path loss between R and D gets enhanced. But the
path loss of D-powered scheme is more severe, hence the
Rs decreases with d4 rapidly. The AO scheme outperforms
the non-cooperative scheme with performance gain about
0.5bps/Hz at most for Ns = Nr = 4. The performance
gap between the AO scheme and the D-powered scheme in-
creases with d4 at first, because the larger d4 leads to more
severe path loss for the D-powered scheme. With d4 fur-
ther increasing, the performance gap decreases as both the
two schemes tend toward Rs = 0. In addition, it also can be
found that increasing the antenna number will lead to better
secrecy performance as more spatial diversity is provided.

5. Conclusion

In this letter, we have addressed joint beamforming design
for the RF powered two-hop untrusted relay networks with
non-linear EH model. The original SRM problem is non-
convex, hence an AO based iterative algorithm was pro-
posed to make it tractable. Finally, simulation results ver-
ified the effectiveness of the proposed algorithm in secrecy
performance improvement.
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Appendix A: Proof of Proposition 1

The Lagrangian function of (13) can be expressed as

l1 = log(1+
Tr(QsA)

b
)−log|M0|

−Tr[
Hsr(Qs−Qs0)Hsr

H

M0
]+log|Pdhdrhdr

H + σr
2I|

−ν1[Tr(W̃rHsrQsHsr
HW̃H

r )+σr
2Tr(W̃rW̃H

r )

+PdTr(W̃rhdrhdr
HW̃H

r )−2Phst_r]
−µ1[Tr(Qs)−2Phst_s]+Tr(Z1Qs)

(A· 1)

where A = Hsr
HW̃H

r hrdhrd
HW̃rHsr, b = σd

2 +

σr
2hrd

HW̃rW̃H
r hrd and µ1, ν1,Z1 are the associated dual

variables. Besides,

∂l1
∂Qs

=
A

b + Tr(QsA)
−HsrM0

−1Hsr
H

− ν1Hsr
HW̃H

r W̃rHsr − µ1I + Z1

(A· 2)

According to the KKT conditions, it is satisfied that

∂l1
∂Qs

∗ = 0 (A· 3a)

Z1Qs
∗ = 0 (A· 3b)

Hence, it can be obtained
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Z1 =HsrM0
−1Hsr

H + ν1Hsr
HW̃H

r W̃rHsr

+ µ1I −
A

b + Tr(Qs
∗A)

(A· 4)

Due to rank(A)=1, we have rank(Z1) ≥ Ns−1. According to
(A.3b), it can be obtained rank(Qs

∗) = Ns−rank(Z1), which
implies rank(Qs

∗) ≤ 1. Since rank(Qs
∗) = 0 is not a feasible

solution to (13), we can conclude that rank(Qs
∗) = 1. The

proof is completed.

Appendix B: Proof of Proposition 2

The Lagrangian function of (20) can be expressed as

l2 =Tr(Q̄rF1)−µ2[1−σr
2Tr(Q̄rF2)−tσd

2]

−ν2[Tr(Q̄rF3)−2tPhst_r]+Tr(Z2Q̄r)+λt
(A· 5)

where µ2, ν2,Z2, λ are associated dual variables. We have

∂l2
∂Q̄r

=F1−µ2σr
2F2−ν2F3+Z2 (A· 6)

According to the KKT conditions, it is satisfied

Z2 =µ2σr
2F2+ν2F3−F1 (A· 7)

Based on the fact rank(A⊗B) = rank(A)·rank(B) [17],
it can be obtained

rank(F1)=rank(HsrQ̃sHsr
H) · rank(hrd

†hrd
T )=1

rank(F3)=rank(F4) · rank(I)= Nr
2

(A· 8)

with F4 = HsrQ̃sHsr
H +σr

2I+Pdhdrhdr
H . As F2 � 0, it is

satisfied rank(Z2) ≥ Nr
2 − 1. Using the similar method in

Appendix A, it can be verified that rank(Q̄∗r ) = 1. Hence,
Proposition 2 is proved.


