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Abstract. This paper introduces the maximum version of the k-path
vertex cover problem, called the Maximum k-Path Vertex Cover
problem (MaxPkVC for short): A path consisting of k vertices, i.e., a
path of length k − 1 is called a k-path. If a k-path Pk includes a vertex
v in a vertex set S, then we say that S or v covers Pk. Given a graph
G = (V,E) and an integer s, the goal of MaxPkVC is to find a vertex
subset S ⊆ V of at most s vertices such that the number of k-paths cov-
ered by S is maximized. MaxPkVC is generally NP-hard. In this paper
we consider the tractability/intractability of MaxPkVC on subclasses of
graphs: We prove that MaxP3VC and MaxP4VC remain NP-hard even
for split graphs and for chordal graphs, respectively. Furthermore, if the
input graph is restricted to graphs with constant bounded treewidth,
then MaxP3VC can be solved in polynomial time.

1 Introduction

One of the most important and most fundamental computational problems in
graph theory, combinatorial optimization, and theoretical computer science is
the Minimum Vertex Cover problem (MinVC). Indeed, as one of the seminal
results in computational complexity theory, the decision version of MinVC was
listed in Karp’s original 21 NP-complete problems in [10].

Very recently, Brešar, Kardoš, Katrenič, and Semanǐsin introduced a gener-
alized variant of MinVC, called the Minimum k-Path Vertex Cover problem
(MinPkVC), motivated by the need to secure the data integrity of wireless sensor
networks from attackers [5]: Let G = (V,E) be a simple undirected graph, where
V and E denote the set of vertices and the set of edges, respectively. V (G) and
E(G) also denote the vertex set and the edge set of G, respectively. A path
consisting of k vertices, i.e., a path of length k − 1 is called a k-path. If a k-path
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Pk contains a vertex v in a vertex set S, then we say that the set S or the vertex
v covers Pk. Given a graph G, the goal of MinPkVC is to find a vertex subset
S ⊆ V (G) of minimum cardinality such that S covers all the k-paths in G. In the
same paper, Brešar et al. proved the NP-hardness of MinPkVC and designed a
linear-time algorithm for MinPkVC on trees for k ≥ 3. Furthermore, the authors
proved that MinPkVC can be expressed by Extended Monadic Second Order
Logic, which implies that MinPkVC can be solved in linear time on graphs with
bounded treewidth by Courcelle’s theorem [8]. Subsequently, due to its wide
applicability to many practical problems, MinPkVC has been studied intensively.
Indeed, for example, a large number of results on approximation [6,12,15,16,19],
fixed-parameter tractability [11,14] and exact algorithms [17] for MinP3VC and
MinP4VC have been reported.

The classical/original MinVC has several variants; one of the most popular
variants is the Maximum Vertex Cover problem (MaxVC), which is often
called the Partial Vertex Cover problem: Given a graph G and an integer
s, the goal of MaxVC is to find a vertex subset S ⊆ V (G) of s vertices such that
the number of edges covered by S is maximized. It is known that MaxVC also
has many applications in real life (see, e.g., [7]). It is known [1,7] that MaxVC
is NP-hard even on bipartite graphs, though the minimization version MinVC is
solvable in polynomial time on them.

For the general version MinPkVC, therefore, it would be natural to consider
the maximization problem; this paper introduces the Maximum k-Path Cover
problem (MaxPkVC): Given a graph G and an integer s, the goal of MaxPkVC
is to find a vertex subset S ⊆ V (G) of size at most s such that the number
of k-paths covered by S is maximized. One can see that MaxP2VC is generally
NP-hard since it is identical to MaxVC. Therefore, we focus on the case where
k ≥ 3. For any fixed integer k ≥ 3, MaxPkVC is NP-hard in the general case since
MinPkVC can be considered as a special case of MaxPkVC. In this paper, we are
interested in the tractability and the intractability of MaxPkVC on subclasses of
graphs.

Our main results are summarized as follows:

(i) MaxP3VC remains NP-hard for the class of split graphs.
(ii) MaxP4VC remains NP-hard for the class of chordal graphs.
(iii) MaxP3VC can be solved in polynomial time if the input graph is

restricted to graphs with constant bounded treewidth.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

Let G = (V,E) be a simple undirected graph, where V and E denote the set of
vertices and the set of edges, respectively. V (G) and E(G) also denote the vertex
set and the edge set of G, respectively. We denote an edge with endpoints u and
v by {u, v}. A path of length k −1 from a vertex v1 to a vertex vk is represented
as a sequence of vertices such that Pk = 〈v1, v2, . . . , vk〉, which is called a k-path.
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For a vertex v, the set of vertices adjacent to v, i.e., the open neighborhood of v
is denoted by N(v). Let deg(v) = |N(v)| be the degree of v. Let G[S] denote the
subgraph of G induced by a vertex subset S ⊆ V (G).

A graph G is chordal if each cycle in G of length at least four has at least
one chord, where the chord of a cycle is an edge between two vertices of the
cycle that is not an edge of the cycle. A graph G is split if there is a partition of
V (G) into a clique set V1 and an independent set V2 such that V1 ∩ V2 = ∅ and
V1 ∪ V2 = V (G). A treewidth of a graph is defined in Sect. 5.

The problem MaxPkVC that we study in this paper is defined as follows for
any fixed integer k:

Maximum k-Path Vertex Cover (MaxPkVC)
Given a graph G and an integer s, the goal of MaxPkVC is to find
a vertex subset S ⊆ V (G) of size at most s such that the number
of k-paths covered by S is maximized.

As mentioned in Sect. 1, it is known [5] that the minimum variant MinPkVC
of our problem is NP-hard for any fixed integer k ≥ 2. It is important here to
note that MinPkVC can be considered as a special case of MaxPkVC, i.e., the
essentially equivalent goal of MinPkVC is to find a vertex subset S of size at
most s such that S covers all the k-paths in the input graph. Therefore, the
NP-hardness of MaxPkVC is straightforward:

Theorem 1. [5] For any fixed integer k ≥ 2, MaxPkVC is NP-hard.

Moreover, it is known that MinP3VC is a dual problem of the Maximum
Dissociation Set problem, which was introduced in [18]. Yannakakis [18], and
Papadimitriou and Yannakakis [13] proved that the problem is NP-hard even on
bipartite graphs, and on planar graphs, respectively. Similarly to the above, we
can obtain the following theorem:

Theorem 2. [13,18] MaxP3VC is NP-hard on (i) bipartite graphs and (ii)
planar graphs.

3 NP-Hardness of MaxP3VC on Split Graphs
and MaxP4VC on Chordal Graphs

In this section, we prove the NP-hardness of MaxP3VC on split graphs and
MaxP4VC on chordal graphs. Let us define a decision version of MaxP3VC,
denoted by MaxP3VC(t): Given a graph G, and two integers s and t, deter-
mine if the graph G has a vertex subset S ⊆ V (G) of size at most s such that
the total number of 3-paths covered by S is at least t. The first result of this
section is:

Theorem 3. MaxP3VC(t) is NP-complete, even on split graphs.
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Proof. First, we prove that MaxP3VC(t) is in NP. Every path of three vertices in
the graph G can be enumerated in O(|V |3) time, thus if we nondeterministically
guess a set S of s vertices, we can check whether at least t 3-paths are covered
by those s vertices in polynomial time.

Next, we show that there exists a polynomial-time reduction from the
Restricted Exact Cover by Three Sets (RX3C) problem to MaxP3VC(t).
The input is a finite set X = {x1, x2, . . . , x3q} of 3q elements and a collection C
of 3q 3-element subsets of X, where each element of X appears in exactly three
subsets of C. RX3C asks if C contains an exact cover for X, that is, a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′. RX3C
is shown to be NP-complete by Gonzalez [9]. We give the reduction such that
the original instance of RX3C is a yes-instance if and only if the MaxP3VC(t)
instance is also a yes-instance. Let n = 3q for a while. As an input of RX3C,
let X = {x1, x2, . . . , xn} be a set of n elements. Also, let C = {C1, C2, . . . , Cn}
be a collection of n 3-element sets. Then, we construct a graph G = (V,E)
corresponding to an instance (X, C) of RX3C as follows: The constructed graph
G consists of the following vertices: (i) n vertices, vC1 through vCn

, called the
set vertices, corresponding to the n sets, C1 through Cn, respectively, (ii) n
vertices, vx1 through vxn

, called the element vertices, corresponding to the n
elements, x1 through xn, respectively, and (iii) corresponding to each set Ci

(i ∈ {1, 2, . . . , n}), n2 vertices, vCi,1 through vCi,n2 , i.e., n3 vertices in total,
called pendant vertices. Let C = {vC1 , vC2 , . . . , vCn

}, EL = {vx1 , vx2 , . . . , vxn
},

and P = {vC1,1, . . . , vC1,n2 , vC2,1, . . . , vCn,n2}. The edge set E(G) is as follows:
(iv) The subgraph induced by the set C of n vertices forms a clique Kn of size
n, i.e., we add all possible edges between any pair of vertices in C into E(G).
(v) If xi ∈ Cj for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, then we add an edge
{vxi

, vCj
} into E(G). Note that each set vertex vCi

is adjacent to exactly three
element vertices and furthermore each element vertex vxj

is adjacent to exactly
three set vertices. (vi) For each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2, . . . , n2}, the
pendant vertex vCi,j is connected to vCi

by adding an edge {vCi,j , vCi
}. Finally,

we set s = q and t = 81q5/2 + 45q4 + 23q3 + 15q2/2 + 7q. This completes the
reduction, which clearly can be done in polynomial time. One can verify that
the constructed graph G is split since the set vertices form a clique, and the
remaining vertices form an independent set.

As an example, if we are given X = {1, 2, 3, 4, 5, 6} and a collection C =
{C1, C2, . . . , C6} = {{1, 3, 5}, {1, 4, 5}, {3, 4, 6}, {2, 4, 6}, {1, 2, 6}, {2, 3, 5}} as an
RX3C instance, the graph constructed above is illustrated in Fig. 1. One can see
that C′ = {C1, C4} is a possible solution.

Before showing the correctness of our reduction, we make important obser-
vations: (1) Each set vertex vCi

can cover at least
(
n2

2

)
= Ω(n4) 3-paths, i.e.,

〈vCi,j , vCi
, vCi,k〉 for 1 ≤ j, k ≤ n2 and j �= k. (2) On the other hand, every

element or pendant vertex can cover at most O(n2) 3-paths. Therefore, in order
to cover as many 3-paths as possible, it would be the most effective to select set
vertices into a solution of MaxP3VC(t).
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Fig. 1. Constructed graph G

The following lemma shows the correctness of the reduction:

Lemma 1. RX3C is yes if and only if MaxP3VC(t) is yes, i.e., there is a vertex
subset S of size at most q such that S can cover at least 81q5/2 + 45q4 + 23q3 +
15q2/2 + 7q 3-paths.

This completes the proof of Theorem 3. �

By using a very similar reduction with small modification, we can obtain the

following theorem:

Theorem 4. MaxP4VC(t) is NP-complete, even on chordal graphs.

4 Algorithm for MaxP3VC on Trees

In the next section we present a polynomial-time algorithm for MaxP3VC on
graphs with bounded treewidth, but, in order to make our basic ideas clear,
this section provides a simpler algorithm running in polynomial time only for
MaxP3VC on trees. In the following, let T denote the given tree, and especially,
let Tvroot

denote the subtree of T whose root is vroot.
Intuitively, our algorithm is based on dynamic-programming, keeping the

minimum number of uncovered 3-paths from the bottom to the top of the
tree. For every vertex, the following two steps are considered in our algorithm:
[I] Introduce Step and [II] Join Step, and in each step, the table in which the
minimum number of uncovered 3-paths is stored is updated. After computing
the minimum number of uncovered 3-paths of a certain subtree, our algorithm
proceeds to the parent vertex u of the root of the subtree. Then, we say that
u is in Introduce Step (see Fig. 2). Also, there may exist some subtrees whose
parent of the root of each subtree is u. In such case, our algorithm merges those
subtrees one by one, by joining the same parent u, and computes the minimum
number of uncovered 3-paths. In this joining step, we say u is in Join Step (see
Fig. 3).

Now, we are going to show the recursive formulas with precise notation. Let
c[v; b, �, r] denote the number of uncovered 3-paths, where v denotes the vertex
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Fig. 2. Vertex u is in Introduce Step; u is in the cover (Left), or not (Right)

Fig. 3. Vertex u is in Join Step

Table 1. Table when the root is in the cover

Solution size -

0 ∞
1 in 1

2 in 2

...
...

s in s

we are currently looking at, b ∈ {1, 0} denotes whether the vertex is selected
in the cover (b = 1) or not (b = 0) as a root, � ∈ {0, 1, 2, . . . , s} denotes the
size of the solution, and r ∈ {0, . . . , n − 1} denotes the number of unselected
children. Note that, when a vertex is in Introduce Step and chosen in the cover,
we do not need to consider the fourth argument r. This is because the 3-paths
including the vertex in Introduce Step and its children are already covered by
the vertex in Introduce Step. We show the tables in Tables 1 and 2, where each
entry denotes the minimum number of uncovered 3-paths under a set of some
arguments. When a vertex v is in Introduce Step, first we consider two cases;
b = 1 or b = 0, that is, whether we put v in the cover or not. If b = 1, then we
only consider the solution size �, ranging it from 1 to s. For example, in Table 1,
in 1 stands for c[v; 1, 1, ∗], and there is stored the minimum number of uncovered
3-paths under these conditions. Similarly, if b = 0, then there are s + 1 and n
options for the solution size and the number of unselected children of the root.
Each of the entry, such as out 00, out 01 and so on, stores the minimum number
of the 3-paths with each argument. Utilizing this table, the algorithm proceeds
from the bottom to the top.

Leaf: If the vertex u is a leaf, then there are no uncovered 3-paths, thus we have
c[u; 0, 0,−] = c[u; 1, 1,−] = 0.
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Table 2. Table when the root is NOT in the cover

Solution size The number of children of the root NOT chosen in cover

0 1 . . . n − 1

0 out 00 out 01 . . . out 0(n − 1)

1 out 10 out 11 . . . out 1(n − 1)

2 out 20 out 21 out 2(n − 1)

...
...

...
. . .

...

s out s0 out s1 out s(n − 1)

Introduce Step: If the vertex u is in Introduce Step, assuming v, the child
vertex of u, has d children, we consider two cases: u is in the cover or not.

(i) u is in the cover: As mentioned before, we do not need to consider the
fourth argument, so we have only to take care of the size of the solution
which ranges from 1 to s. If the size of the solution is 1, then we refer to
out d of v, c[v; 0, 0, d]. This is because the root v is in the cover and the
solution size we assume now is 1, v is not in the cover and the size of the
solution for v is 0, and also v has d unselected children. If the solution size
is 2, then it becomes little complicated. We have to take the minimum of
{in 1, out 1d, out 1(d − 1)} of v. This is because if the solution size is 2, from
the assumption that we put u into the cover set, then we have to consider
where one more vertex in the cover is in the subtree Tu. There are following
three options in this case: (i) v is also in the cover set, (ii) even the children
of v do not have the selected vertex, in other words, all of the d children of
v are all unselected vertices, and (iii) one of the d children is in the cover
set. Thus we refer three entries, and take the minimum of them. In the same
manner, c[u; 1, ∗,−] is calculated as follows, and also the table for u when the
root is in (see Table 1) is updated with the following values:

c[u; 1, i,−] =

⎧
⎪⎨

⎪⎩

∞ if i = 0
c[v; 0, 0, d] if i = 1
min0≤j≤i−1{c[v; 1, i − 1, ∗], c[v; 0, i − 1, d − j]} if 2 ≤ i ≤ s

(ii) u is not in the cover: Since G is tree, we do not have to consider the case
where the number of unselected children is 2, · · · , n − 1. Thus we can set all
the entries of Table 2 whose number of unselected children is 2, · · · , n − 1
with ∞. In other words, we have only to consider the case where the number
of unselected children is 0 or 1. Furthermore, if u has 0 unselected children
(which means v is in the cover) and the solution size is 1, · · · , s, it is clear
that we refer to the root-in table of v, corresponding to the solution size. If u
has 1 uncovered child (which similarly means v is not in the cover), then we
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have to take the minimum depending on the solution size. Thus c[u; 0, ∗, ∗] is
calculated as follows:

c[u; 0, i, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if i = 0 and j = 0
c[v; 1, i,−] if 1 ≤ i ≤ s and j = 0
c[v; 0, 0, d] if i = 0 and j = 1
min0≤d′≤i{c[v; 0, i, d − d′] + d − d′} if 1 ≤ i ≤ s and j = 1

Join Step: If the vertex u is in Join Step, then we update the table of u. As
with Introduce Step, we consider two cases: the root is in the cover or not.
Let us assume that u is in Join Step, and let vL and vR be the left and right
child of u, respectively. Also, for clarity, we specially introduce uL and uR such
that u = uL = uR, whose child is vL and vR respectively.

(i) u is in the cover: We do not have to consider the fourth argument, as we
mentioned. We update the table ranging the size of the solution from 0 to
s. If the size of the solution is 0, we set the entry as ∞. If the size of the
solution is 1, then we just add the number of uncovered 3-paths c[uL; ∗, ∗, ∗]
and c[uR; ∗, ∗, ∗]. Note that u is selected in the cover, therefore the solution
S has only u in this case. If the size of the solution is 2, then we have to take
the minimum from two choices: one more solution is in the left subtree or the
right subtree, say TvL

or TvR
. Thus c[u; 1, ∗,−] is calculated as follows:

c[u; 1, i,−] =

{
∞ if i = 0
min1≤j≤i{c[uL; 1, i − j + 1,−] + c[uR; 1, j,−]} if 1 ≤ i ≤ s

(ii) u is not in the cover: If the vertex which is not selected in the cover is in
Join Step, then uncovered 3-paths whose central vertex is u, in other words,
the uncovered 3-paths going through from the left subtree TuL

to the right
subtree TuR

may exist. Thus we have to take them into consideration in
updating the table of u. There are two tables for subtrees TuL

and TuR
, so

we have to take the minimum among all the possible combinations of the
size of the solution and the number of unselected children of those subtrees,
considering newly appearing uncovered 3-paths going from TuL

to TuR
. Note

that these newly appearing uncovered 3-paths can be calculated by multi-
plying the two numbers of unselected children, the number of the unselected
children in TuL

and TuR
. Let i, iL, and iR be the variables which respectively

denotes the size of the solution in the subtree Tu, TuL
, and TuR

. Note that
iR = i − iL holds. Also, let j, jL, and jR be the variables which respectively
denotes the number of the unselected children in the subtree Tu, TuL

, and
TuR

. Note that jR = j − jL also holds. c[u; 0, ∗, ∗] is calculated as follows:

c[u; 0, i, j] = min
0≤i≤s

min
0≤j≤n−1

{c[uL; 0, iL, jL] + c[uR; 0, iR, jR] + jL · jR}

Note that, since we can assume that for any vertex v, the number of unse-
lected children r is always at least deg(v) − s − 1, the number of cases in the
dynamic programming table is O(s2). The running time for the algorithm is
dominated for that of Join Step, which (using this observation) is O(s4).
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Theorem 5. MaxP3VC on trees of n vertices can be solved in O(s4 · n) time,
where s is the prescribed size of the 3-path vertex cover.

5 Algorithm for MaxP3VC on Graphs with Bounded
Treewidth

In this section, we show that MaxP3VC admits a polynomial-time algorithm
for graphs with bounded treewidth. In particular, we show that there exists an
O((s + 1)2tw+4 ·4tw ·n)-time algorithm, where tw denotes the treewidth, which is
defined later. Thus, MaxP3VC is in XP with respect to the parameter treewidth
(and FPT with respect to the combined parameter s + tw).

Our algorithm uses dynamic programming on a nice tree decomposition [2]
of the input graph G. Given a graph G, a tree decomposition of G is a tree T
with for each node vT ∈ V (T ) a subset XvT

⊆ V (G) (called bag) such that

– for every (u, v) ∈ E(G), there is a vT ∈ V (T ) such that {u, v} ⊆ XvT
, and

– for every v ∈ V (G), the subset {vT ∈ V (T ) | v ∈ XvT
} induces a connected

subtree of T .

The width of a tree decomposition is maxvT ∈T |XvT
| − 1, and the treewidth

of a graph G is the minimum width taken over all tree decompositions of G. To
avoid confusion, from now on we shall refer to the vertices of T as “nodes”, and
“vertex” shall refer exclusively to vertices of G.

We designate an arbitrary node of T as root of the tree decomposition. Given
a node vT ∈ T , we denote by G[vT ] the subgraph of G induced by XvT

and the
vertices in bags of nodes which are descendants of vT in T . We moreover assume
that our (rooted) decomposition is nice, that is, each of the nodes vT ∈ T is one
of the four types:

– Leaf: vT is a leaf of T , and |XvT
| = 1.

– Introduce: vT has a single child node uT , and XvT
differs from XuT

only by
the inclusion of one additional vertex w. We say that w is introduced in vT .

– Forget: vT has a single child node uT . XvT
differs from XuT

only by the
removal of one vertex w. We say that vertex w is forgotten in vT .

– Join: vT has two children uT and u′
T . Moreover, XuT

= Xu′
T

= XvT
.

We note that a tree decomposition can be converted into a nice tree decom-
position of the same width. Moreover, we can assume that the size of a tree
decomposition (i.e. the number of bags) is linear in |V (G)| [2].

Given a node vT of a tree decomposition of G, a partial solution is a subset
S ⊆ V (G[vT ]) of size at most s. Since the number of 3-paths in G is equal to

∑

v∈V

1
2
deg(v)(deg(v) − 1),
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we define the cost of a partial solution (relative to a node vT ) S to be
∑

v∈V (G[vT ])\(S∪XvT
)

1
2
degvT ,S(v)(degvT ,S(v) − 1),

where degvT ,S(v) is taken to be the degree of v in the subgraph of G induced by
V (G[vT ])\S. This definition, which does not take into account the degrees of the
vertices in XvT

, is convenient because the degrees of the vertices in XvT
are not

yet fixed, and may change as new vertices are introduced. However, if we assume
the root bag of the tree decomposition is empty (which may be accomplished
by introducing a series of forget bags after the root bag), then a partial solution
with minimum cost corresponds to an optimal solution to the MaxP3VC instance.

As is usual for dynamic programming on tree decompositions, we group par-
tial solution by characteristics. Given a partial solution S for node vT of the nice
tree decomposition (with associated bag XvT

and subgraph G[vT ]), its charac-
teristic (�, S′, f) consists of the size of the solution � = |S|, its intersection with
the bag S′ = XvT

∩ S, together with a function f : XvT
→ {0, 1, . . . , s} such

that f(v) = |{u ∈ S | u ∈ N(v)}|, which, for each vertex v in the bag XvT
, tells

us how many of its neighbors are in the partial solution.
For each characteristic, we store the minimum cost of a partial solution with

that characteristic, which we denote by c(�, S′, f). Next, we show how to recur-
sively compute for each type of node in a nice tree decomposition the set of char-
acteristics of a partial solutions, and for each such characteristic, the minimum
number of 3-paths not covered by a partial solution with that characteristic.

Leaf: If vT ∈ V (T ) is a leaf node, then XvT
= {v} for some v ∈ V (G). Then

there are exactly two partial solutions for G[vT ]: the empty partial solution,
which has characteristic (0, ∅, f) where f(v) = 0 and the partial solution that
includes v, which has characteristic (1, {v}, f), where f(v) = 0. In both cases,
c(0, ∅, f) = c(1, {v}, f) = 0.

Introduce: Suppose that vT ∈ V (T ) is an introduce node, and v is the vertex
being introduced. Let (�, S′, f) be a characteristic for the child node of vT . In
the partial solutions (for the child node) with this characteristic, we may (if
� < s) choose to either add the vertex v or not. In the case where we add v,
the corresponding partial solutions have characteristic (�+1, S′ ∪{v}, f ′), where
f ′(v) = |{u ∈ S′ | u ∈ N(v)}|, and, if u �= v and u �∈ N(v), f ′(u) = f(u), and, if
u �= v and u ∈ N(v), f ′(u) = f(u) + 1. In the case where we do not add v, the
corresponding partial solutions will have characteristic (�, S′, f ′), where f ′(v) =
|{u ∈ S′ | u ∈ N(v)}|, and, if u �= v , f ′(u) = f(u). Since v is not adjacent to
any vertex in G[vT ]\XvT

, the cost of these partial solutions remains unchanged.
Note, however, that taking two partial solutions with distinct characteristics may
end up having the same characteristic after vertex v is introduced. In this case,
we should take the cost (for the new characteristic) to be the minimum of the
costs for the original partial solutions.

Forget: Suppose that vT ∈ V (T ) is a forget node, and v is the vertex being
forgotten. Let (�, S′, f) be a characteristic for the child node of vT . If S is a
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partial solution with this characteristic, then, viewed as a partial solution with
respect to node vT , it will have characteristic (�, S′ \ {v}, f ′), where f ′ is the
restriction of f to the domain S′ \ {v}. If v /∈ S′ and f(v) < deg(v), then the
cost of this partial solution increases by 1

2 (deg(v) − f(v))(deg(v) − f(v) − 1),
otherwise it remains unchanged. As before, since multiple characteristics for the
child node may end up having the same characteristic in vT , and we should take
the new cost of the characteristic to be the minimum of the updated costs.

Join: Suppose that vT ∈ V (T ) is a join node, and v1
T and v2

T are its children. Let
(�1, S′

1, f1) (resp., (�2, S′
2, f2)) be a characteristic for v1

T (resp., v2
T ). Assume that

S′
1 = S′

2, which we henceforth denote simply by S′, and that �1 + �2 − |S| ≤ s.
If we take the union of partial solutions, S1 relative to v1

T with characteristic
(�1, S′, f1) and S2 relative to v2

T with characteristic (�2, S′, f2), then we obtain
a new partial solution (relative to vT ) with characteristic (�1 + �2 − |S′|, S′, f ′),
where f ′(v) = f1(v)+f2(v)−|{u ∈ S′ | u ∈ N(v)}|. Since V (G[v1

T ])∩V (G[v2
T ]) =

XvT
, in G[vT ], the degree of a vertex v ∈ V (G[vT ])\(XvT

∪S) is equal to its degree
in (the subgraph of G induced by) G[v1

T ]\S (resp., G[v2
T ]\S) if v ∈ V (G[v1

T ])\S
(resp., v ∈ V (G[v2

T ]) \ S). Therefore, the cost of this new partial solution is
equal to the sum of the costs of the partial solutions S1 and S2. Since once
again, multiple (combinations of) characteristics for the child nodes may give
rise to the same characteristic for vT , we can find the minimum cost of a partial
solution for a given characteristic by taking the minimum over all (combinations
of) characteristics for the child nodes.

For any node, there are at most (s+1)tw+22tw+1 characteristics. The running
time is dominated by the time taken for a join node, which is O((s + 1)2tw+4 ·
4tw+1). Since we can assume that our tree decomposition has at most O(n)
nodes, we obtain a O((s + 1)2tw+4 · 4tw · n)-time algorithm. This assumes a
tree decomposition is given as part of the input. A tree decomposition can be
computed in 2O(tw3)n time [3], or a 5-approximate tree decomposition can be
computed in time O(1)twn [4].

Theorem 6. MaxP3VC on n-vertex graphs of treewidth tw can be solved in
O((s + 1)2tw+4 · 4tw · n) time, where s is the prescribe size of the 3-path ver-
tex cover.
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