2020 Volume E103.A Issue 1 Pages 356-360
In order to improve the noise robustness of automatic speaker recognition, many techniques on speech/feature enhancement have been explored by using deep neural networks (DNN). In this work, a DNN multi-level enhancement (DNN-ME), which consists of the stages of signal enhancement, cepstrum enhancement and i-vector enhancement, is proposed for text-independent speaker recognition. Given the fact that these enhancement methods are applied in different stages of the speaker recognition pipeline, it is worth exploring the complementary role of these methods, which benefits the understanding of the pros and cons of the enhancements of different stages. In order to use the capabilities of DNN-ME as much as possible, two kinds of methods called Cascaded DNN-ME and joint input of DNNs are studied. Weighted Gaussian mixture models (WGMMs) proposed in our previous work is also applied to further improve the model's performance. Experiments conducted on the Speakers in the Wild (SITW) database have shown that DNN-ME demonstrated significant superiority over the systems with only a single enhancement for noise robust speaker recognition. Compared with the i-vector baseline, the equal error rate (EER) was reduced from 5.75 to 4.01.