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[LETTER

Improvement of Luminance Isotropy for Convolutional Neural
Networks-Based Image Super-Resolution

Kazuya URAZOE', Nonmember, Nobutaka KUROKI'®, Member, Yu KATO'*,
Shinya OHTANI'**, Nonmembers, Tetsuya HIROSE"***, and Masahiro NUMA ', Members

SUMMARY  Convolutional neural network (CNN)-based image super-
resolutions are widely used as a high-quality image-enhancement technique.
However, in general, they show little to no luminance isotropy. Thus, we
propose two methods, “Luminance Inversion Training (LIT)” and “Lumi-
nance Inversion Averaging (LIA),” to improve the luminance isotropy of
CNN-based image super-resolutions. Experimental results of 2x image
magnification show that the average peak signal-to-noise ratio (PSNR) us-
ing Luminance Inversion Averaging is about 0.15-0.20 dB higher than that
for the conventional super-resolution.

keywords: super-resolution, resolution enhancement, convolutional neural
network, isotropy, deep learning

1. Introduction

Image upsampling techniques are used in a number of appli-
cations and devices such as digital cameras, smart phones,
and televisions. Recently, many image super-resolution tech-
niques based on convolutional neural networks (CNNs) have
achieved state-of-the-art results [ 1]-[4]. However, the CNNs
do not necessarily show the same characteristics for all lumi-
nance ranges because the CNN itself is a nonlinear function
and its parameters are initialized with random values. We
discovered that conventional super-resolution CNN outputs
different responses from positive and negative impulse sig-
nals as proved later in Sect. 3.3.

On the other hand, the luminance distributions of bench-
mark datasets for super-resolution [5]—[11] are different from
each other, as shown in Fig. 1. The performance of the CNN
is dependent on the characteristic of the training dataset. For
practical use, however, the luminance distributions of train-
ing and inferred images are not always the same. These
differences may cause performance degradation. Thus, the
method which achieves luminance isotropy is one of the
promising strategies for improving the performance of CNN-
based super-resolution.

Based on our survey, we propose two methods. One is
“Luminance Inversion Training.” This method augments the
dataset with the luminance inversion of the original dataset;
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Fig.1 Luminance distributions of benchmark datasets for super-

resolution. (The datasets of solid lines and broken lines are often used
as training images and testing images, respectively.)

therefore, it gives luminance variability and isotropy to the
training dataset. The other method is “Luminance Inver-
sion Averaging.” This method gives complete luminance
isotropy to the CNN-based super-resolution. Specifically,
the CNN generates two magnified images from a positive
image and a luminance inversed image (negative image), and
then the final magnified image is obtained from the average
of the positive and re-inversed negative images. These pro-
posed methods improve luminance isotropy and are promis-
ing strategies for improving the performance of CNN-based
super-resolution.

2. Proposed Methods
2.1 Luminance Inversion Training (LIT)

Data augmentation is one of the most widely used tech-
niques for boosting performance with deep learning. For
image super-resolution, some useful augmentations, such as
random cropping, flipping, scaling, rotating, and color jitter-
ing have already been proposed [4]. In this letter, we propose
anew data augmentation method for super-resolution, called
Luminance Inversion Training (LIT). Let ¥ be the 8-bit im-
age with luminance channel of YCrCb space. In this method,
the original image Y is augmented by luminance inversion
as

Y =255-Y. (1)

Then, Y is added to the original dataset. This method gives

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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Fig.2  Luminance inversion averaging (LIA).

the luminance variability and isotropy to the training dataset.
2.2 Luminance Inversion Averaging (LIA)

We propose another method, called Luminance Inversion
Averaging (LIA) for complete luminance isotropy. Figure 2
shows the flow of this method. First, we prepare the positive
image Y and the negative image Y. The negative image Y
is calculated using the luminance inversion of the positive
image as

Y =255-Y. )

Thereafter, the magnified images of the positive image Y and
negative image Y are generated as

F(Y) = (V) 1, 3)
FY) =M1, “)

respectively, where T is the CNN-based super-resolution F
with scale factor s. Next, the magnified image from the
negative image F'(Y) is re-inversed as

F(Y)=255-F(@J). (5)

Finally, the output image is calculated using the pixel average
of F(Y) and F(Y) as
F(Y)+F(Y)

LIA(F(Y)) = >

(6)
LIA(F(Y)) is always isotropy for the luminance signal like
linear interpolation. Note that the LIA(*) is an external
processing of the F(Y); therefore, LIA is applicable for any
type of CNN-based super-resolution technique.

3. Experiment and Results

We prove the effectiveness of the proposed methods by
applying them to the CNN-based super-resolutions called
Multi-Channel Convolutional Neural Network (MCH) [2]
and Laplacian Pyramid Super-Resolution Network (Lap-
SRN) [3] shown in Table 1. MCH is developed for low-
complexity and high-speed processing, and its hyperparam-
eters are the same as the original study [2], excluding the fact
that the number of backpropagations is 7.5 million. LapSRN

Table1  Conditions of CNN-based super-resolutions.
Method Convolutional layers Training dataset
MCH [2] 3 T91 [5]
LapSRN [3] 14 T91 [5] + BSDS200 [6]
Table2  PSNR and SSIM of 2x magnified images for all testing datasets.
PSNR [dB]/ SSIM
Method MCH TapSRN
Baseline 32.25/0.9176 | 32.48/0.9208

+Luminance Inversion Training (LIT) 32.36/0.9184 | 32.53/0.9208
+Luminance Inversion Averaging (LIA) || 32.45/0.9193 | 32.63/0.9216
Red bold letters indicate the best scores in each CNN-based
super-resolution.

is developed for the state-of-the-art image-quality perfor-
mance, and its hyperparameters are the same as the original
study [3] excluding the fact that there is no data augmen-
tation. MCH is implemented with a Caffe package [12].
LapSRN is implemented with a MatConvNet package [13]
and the package distributed by the original study [3]. Testing
datasets are Set5 [7], Set14 [8], BSDS100 [6], Urban100 [9],
and Mangal09 [10], [11]. We focus only on the luminance
channel in the YCrCb space and evaluate 2x image magni-
fication. Luminance Inversion Training doubles the original
training dataset; however, no other data augmentations are
used for training and testing images.

3.1 Objective Evaluation with PSNR and SSIM

Table 2 shows the average PSNR (peak signal-to-noise ratio)
and SSIM (structural similarity) for all testing datasets. Each
proposed method improved PSNR in both MCH and Lap-
SRN. Especially, LIA is effective and improved the average
PSNR by 0.15-0.20 dB.

Tables 3 and 4 show the average PSNR for each testing
dataset. First, we focus on LIT. Although greatly improving
the average PSNRs in the case of Mangal(9, this method
only slightly improved or degraded them in the other datasets.
Thus, the LIT does not necessarily improve the image quality.
Next, we focus on LIA. This method improved the PSNRs
in all testing datasets. These results mean that the internal
improvement of the CNN is difficult; however, the LIA of the
external processing can easily improve the super-resolution
performance.

Next, we discuss the relationship between the lumi-
nance distributions of datasets and the improvements of im-
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Table 3 PSNRs and SSIMs of 2x magnified images with MCH.
PSNR[dB]/ SSIM
Method Set5 Sctl4 BSDSI00 Urban100 Mangal09
Baseline 36.73/0.9539 | 32.47/0.9057 | 31.21/0.8869 | 29.41/0.8951 | 35.56/0.9663
+Luminance Inversion Training (LIT) 36.80/0.9542 | 32.52/0.9062 | 31.25/0.8874 | 29.46/0.8960 | 35.83/0.9672
+Luminance Inversion Averaging (LIA) || 36.88/0.9549 | 32.59/0.9071 | 31.29/0.8882 | 29.52/0.8971 | 35.98/0.9683
Red bold letters indicate the best score in each testing dataset.
Table4 PSNRs and SSIMs of 2x magnified images with LapSRN.
PSNR[dB] / SSIM
Method Sets Setl4 BSDS100 Urban100 Mangal09
Baseline 36.86/0.9558 | 32.56/0.9082 | 31.44/0.8899 | 29.60/0.8989 | 35.86/0.9693
+Luminance Inversion Training (LIT) 36.85/0.9554 | 32.55/0.9081 | 31.43/0.8896 | 29.62/0.8988 | 36.01/0.9695
+Luminance Inversion Averaging (LIA) 36.97/0.9562 | 32.62/0.9088 | 31.47/0.8903 | 29.68/0.8998 | 36.20/0.9703

Red bold letters indicate the best score in each testing dataset.
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Fig.4  Isotropic of Impulse response with MCHs (I and I indicate positive and negative impulse

signals, respectively).

age quality. Figure 1 shows that the luminance distribution
of BSDS100 is similar to other distributions used for training
CNNs; however, luminance distribution of Mangal09 is dif-
ferent from them. In such a case, LIA is especially effective.
Table 3 shows that LIA improved the PSNR by only 0.08 dB
in BSDS100 but by 0.42dB in Mangal09. Table 4 also
shows the same tendency. From these results, we found that
LIA is greatly effective for correcting the mismatch between
the luminance distributions of training and inferred images.

3.2 Subjective Evaluation of Magnified Images

Figure 3 shows the magnified images with MCHs. We can
see that LIA reduces the overshoots around the edge and
outlines these edges clearly, compared with other methods.
This is because LIA calculates the average of the positive and
negative output signals, and then their noises are canceled.
3.3 TIsotropic of Impulse Response

Figure 4 shows the inversed positive and negative impulse
responses. We can see that the conventional MCH has no
luminance isotropy. In LIT, although the training dataset
has luminance isotropy, the impulse responses have no lumi-
nance isotropy. This is because the CNN itself is a nonlinear
function and its parameters are initialized with random val-
ues. On the other hand, the inversed positive and negative
impulse responses are exactly equal in LIA. Thus, LIA has
the perfect isotropy for the luminance signal. This indicates
that the super-resolution gives the same performance in both
bright and dark areas. The authors believe that this is one
of the important characteristics that super-resolutions should
have.

4. Conclusion

In this letter, “Luminance Inversion Training (LIT)” and
“Luminance Inversion Averaging (LIA)” were proposed to
improve the luminance isotropy of CNN-based image super-
resolutions. Experimental results have shown that the aver-
age PSNR for super-resolution using Luminance Inversion
Averaging is about 0.15-0.20 dB higher than that for the
conventional super-resolution. We have ensured that the
proposed method can improve the performances of CNN-
based super-resolutions even if the luminance distributions
of training and inferred images are different from each other.

Additionally, the proposed methods are applicable for any
CNN-based super-resolution. However, Luminance Inver-
sion Averaging does not improve the internal structure of
CNN and requires twice the processing time in principle.
The implementation for internal isotropy of CNN will be the
focus of our future work.
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