
ar
X

iv
:1

91
2.

07
04

1v
1 

 [
m

at
h.

ST
] 

 1
5 

D
ec

 2
01

9

Testing Homogeneity for Normal Mixture

Models: Variational Bayes Approach

Natsuki Kariya, and Sumio Watanabe
Department of Mathematical and Computing Science,

Tokyo Institute of Technology

December 17, 2019

Abstract

The test of homogeneity for normal mixtures has been conducted in diverse re-

search areas, but constructing a theory of the test of homogeneity is challenging

because the parameter set for the null hypothesis corresponds to singular points in

the parameter space. In this paper, we examine this problem from a new perspective

and offer a theory of hypothesis testing for homogeneity based on a variational Bayes

framework. In the conventional theory, the constant order term of the free energy

has remained unknown, however, we clarify its asymptotic behavior because it is nec-

essary for constructing a hypothesis test. Numerical experiments shows the validity

of our theoretical results.

Keywords: hypothesis test, Bayesian statistics, variational inference, singular model, mix-
ture model, likelihood ratio
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1 Introduction

Mixture models are very useful for describing the data that comprises the effects of several

different factors. These models have been used in various fields, including pattern recogni-

tion, clustering analysis, and anomaly detection[1]. Identifying the number of the clusters

that affect the data is a very important problem, and a hypothesis test is one useful tools

for this purpose. This type of the tests is called testing homogeneity. Testing homogeneity

has been considered for various mixture models, but its use for normal mixture models has

been studied especially[2].

Theoretically, mixture models often have singularity in their parameter space where the

Fisher information matrix becomes singular. This results in the log likelihood ratio not

converging to χ2 distributions, unlike the case of the regular models. This is why testing

homogeneity for mixture model is theoretically challenging. [3][4].

To circumvent this problem, various methods have been proposed, such as the modi-

fied likelihood ratio test, a method that adds a regularizing term [5][6], a D test[7], and

applying an expectation-maximization (EM) algorithm for calculating the modified likeli-

hood ratio[8][9], and so on. However, few studies exists that treats the problem based on

a Bayesian treatment.

For statistical inference using singular models, the properties and effectiveness of a

Bayesian treatment have been clarified through the learning theory[10]. It is natural to

consider the application of this theory to the problem of the hypothesis test using singular

models. However, theoretical studies with such motivation are still very limited.

In the Bayesian hypothesis test, one must calculate the test statistics, the marginal

likelihood ratio, from the posterior. In general, this procedure is costly, and an efficient

method is needed. Variational Bayes (also called variational inference)[11][12] is a popular
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and useful method for fulfilling this requirement. However, to the best of our knowledge, no

studies have yet applied variational Bayes to the approximation of the marginal likelihood

ratio and used it to construct a hypothesis test has not been studied, especially for testing

homogeneity, as far as the authors know.

There have been some studies on the asymptote of the variational free energy for mix-

ture models[13][14]. One important results of these studies is that the phase transition is

induced by the hyperparameter. Phase transitions drastically change the behavior of the

test statistics, and the properties of the phase transitions must be studied to constructing

a hypothesis test.

Also, one must obtain the stochastic behavior of the test statistics for constructing a

Bayesian hypothesis test. Previous work has already shown that the stochastic term of

the logarithm of the test statistics (variational free energy) is O(1), while the leading term

is O(log n)[13] but in the previous work, the estimation of the variational free energy is

within the order of O(logn). Therefore, the estimation of the variational free energy to a

higher order is needed, but this has not been accomplished yet.

In this paper, we theoretically construct a new way to test for homogeneity of normal

mixture models based on the variational Bayes framework. We apply the scheme of the

variational Bayes to our problem and theoretically derive the asymptotic distribution of

the constant order term in the variational free energy, a task accomplished for the first

time to the best of our knowledge. We show that our model has the phase transition, and

we clarify the critical value. Also we derive the analytical expression of the variational free

energy on the order of O(1), when the hyperparameter φ is larger than the critical value.

We construct a new hypothesis test based on our results and demonstrate its validity with

numerical experiments.
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2 Bayesian hypothesis test

In this section, we briefly review the framework of a Bayesian hypothesis test. We also

define our problem concretely and introduce the latent variables.

Let {Xn = (X1, X2, ..., Xn) ∈ R
1} be sample, generated independently and identically

from a probabilistic model p0(x|w),

p0(x|w) = (1− a)N (0, 12) + aN (b, 12), (1)

where a and N (b, 12) show the mixture ratio and the normal distribution whose average is

b and whose variance is 12, respectively. The parameter of this model is w = (a, b), where

0 ≤ a ≤ 1 and b ∈ R.

In the Bayesian framework, parameters w0 is assumed to be generated from a prior

ϕ(w), which is described as

w0 ∼ ϕ(w), Xi ∼ p0(x|w0).

For testing homogeneity in a normal mixture model, the null and alternative hypotheses

are set as

N.H. : w0 ∼ ϕ0(w), Xi ∼ p0(x|w0),

A.H. : w0 ∼ ϕ1(w), Xi ∼ p0(x|w0).

The marginal likelihood ratio can be written as,

L(Xn) =

∫

ϕ1(w)
∏

i

p0(Xi|w)dw
∫

ϕ0(w)
∏

i

p0(Xi|w)dw
. (2)

In this paper, we discuss the asymptotic properties of L(Xn) for the hypothesis test of

homogeneity.
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We assume that the N.H and A.H are as follows,

ϕ0(a, b) = δ(a)δ(b),

ϕ1(a, b) = Ua(0, 1)×
1√
2πσ2

exp

(

− 1

2σ2
b2
)

.

where Ua(0, 1) is a uniform distributions of a on (0, 1).

The essentially difficult task is calculating the numerator of L(Xn). This is equivalent

to the integration of the posterior in the parameter space, under the A. H. In the following

sections, we will discuss how to estimate this quantity and construct the hypothesis test

based on it.

First, we introduce latent variables {yik} for convenience. The variable yik ∈ {0, 1}
shows to which cluster in the probabilistic model the sample Xi belongs. Note that the

latent variables satisfy the relation
∑

k yik = 1.

Using the latent variables, the posterior under the A. H. can be written as,

p(w, {yik} |Xn) ≡ 1

Zn

∏

k

{

ake
−(Xi−bk)

2/2
}yik

ϕ1(w) (3)

where a0 = (1 − a) and a1 = a, and b0 = 0 and b1 = b. We simply write the set of the

parameter{a, b} as w, and the summation of {yik} is taken for all configurations, Zn is

Zn ≡
∫

dw
∑

{yik}

∏

k

{

ake
−(Xi−bk)

2/2
}yik

ϕ1(w).
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3 Variational approximation for conditional probabil-

ity p(w|Xn)

In this section, we approximate p(w, {yik} , Xn) using the variational Bayes approach. That

is, we derive a function q({yik})r(w) that minimizes the Kullbuck-Leibler divergence,

D(qr||p) =
∫

dw
∑

{yik}
q({yik})r(w) log

q({yik})r(w)
p(w,Xn)

.

The q({yik}) and r(w) that minimize the Kullbuck-Leibler divergence should satisfy the

following conditions, which are derived from the variational principle.

q({yik}) ∝ exp [Er {log p(w|Xn)}],

r(w) ∝ exp [Eq {log p(w|Xn)}].

where Er {·}means the expected value with respect to r(w), and Eq {·} means the expected

value with respect to q({yik}). The logarithm of p(w, {yik} , Xn) becomes

log p(w, {yik} , Xn) =
∑

i

∑

k

yik

[

log ak −
1

2
(Xi − δk1b)

2

]

− n log
(

2πσ2
)

+ logϕ1(a, b), (4)

It is linear with respect to yik, and we can easily derive r(w),

r(w) ∝ exp [Eq {log p(w, {yik} , Xn)}]

=
∏

k

∏

i

a ˆyik
k

1√
2π

{

exp

[

−1

2
(Xi − δk1b)

2

]} ˆyik

× 1√
2πσ2

exp

[

− 1

2σ2
b2
]

, (5)

where ŷik means Eq {yik}.
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Similar to r(w), we can derive q({yik}), which becomes

q(yik) ∝ exp

[

∑

i

∑

k

yik

{

〈log ak〉 −
1

2
〈(Xi − δk1b)

2〉
}

]

=
∏

i

∏

k

{

exp

[

〈log ak〉 −
1

2
〈(Xi − δk1b)

2〉
]}yik

(6)

where 〈{·}〉 is abbreviation of Er {·}.
The self-consistent equation that ŷik should satisfy becomes

ŷik ∝ exp

[

〈log ak〉 −
1

2
〈(Xi − δk1b)

2〉
]

(7)

In addition, the self-consistent equation ak should satisfy is

〈log ak〉 = ψ

(

∑

i

ŷik + 1

)

− ψ (n+ 2) , (8)

where ψ(·) is the digamma function.

From these results, r(w) can be written as,

r(w) ∝
∏

k

∏

i

a ˆyik
k exp

[

−1

2

(

1

σ2
+
∑

i

ŷik

)]

× exp

(

b−
∑

iXiŷik
1
σ2 +

∑

i ŷik

)2

(9)

and 〈b〉 and 〈b2〉 should satisfy

〈b〉 =
∑

iXiŷik
∑

i ŷik +
1
σ2

,

〈b2〉 = 〈b〉2 + 1
∑

i ŷik +
1
σ2

.

We obtain the self-consistent equations for ŷik as follows,
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ŷi0 ∝ exp

[

ψ

(

∑

i

ŷi0 + 1

)

− ψ(n+ 2)− 1

2
X2

i

]

(10)

ŷi1 ∝ exp

[

ψ

(

∑

i

ŷi1 + 1

)

− ψ(n+ 2)− 1

2
〈(Xi − b)2〉

]

= exp

[

ψ

(

∑

i

ŷi1 + 1

)

− ψ(n+ 2)

]

× exp

[

−1

2

{

(Xi − 〈b〉)2 + 1
∑

i ŷi1 +
1
σ2

}]

(11)

The variational free energy becomes

F = 〈q({yik})r(w) log
q({yik})r(w)
p(w,Xn)

〉

=
∑

i

∑

k

ŷik log ŷik + log
Γ(
∑〈ak〉)

∏

Γ(〈ak〉)

+
1

2
log

(

1 + σ2
∑

i

ŷi1

)

+
1

2σ2
〈b〉2

+
1

2

∑

i

∑

k

ŷik (Xi − δk1〈bk〉)2 +
1

2

∑

i

∑

k

ŷik log (2π)

=
∑

i

∑

k

ŷik log ŷik + log
Γ(
∑

k

∑

i ŷik + 1)
∏

Γ(
∑

i ŷik + 1)

+
1

2
log

(

1 + σ2
∑

i

ŷi1

)

+
1

2

∑

X2
i

− 1

2

(
∑

Xj ŷj1)
2

∑

i ŷi1 +
1
σ2

+
n

2
log (2π) (12)

The logarithm of the denominator of L is calculated as
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F0 = − log

∫

ϕ0(w)
∏

p0(Xi, w)dw

=
1

2

∑

i

X2
i +

n

2
log (2π)

Therefore, we obtain the logarithm of L,

F − F0 =
∑

i

∑

k

ŷik log ŷik + log
Γ(
∑

k

∑

i ŷik + 1)
∏

Γ(
∑

i ŷik + 1)

+
1

2
log

(

1 + σ2
∑

i

ŷi1

)

− 1

2

(
∑

Xj ŷj1)
2

∑

i ŷi1 +
1
σ2

(13)

We can extend the result above and obtain the variational free energy when the prior of a

is a Dirichlet distribution, ϕ(a) ∝ (1− a)φ−1aφ−1. The result is

F − F0 =
∑

i

∑

k

ŷik log ŷik + log
Γ(
∑

k

∑

i ŷik + 2φ)
∏

Γ(
∑

i ŷik + φ)

+
1

2
log

(

1 + σ2
∑

i

ŷi1

)

− 1

2

(
∑

Xj ŷj1)
2

∑

i ŷi1 +
1
σ2

− log
Γ(2φ)
∏

(Γ(φ))
(14)

If we can derive the asymptotic distribution of F −F0, we can construct a hypothesis test.

This requires the stochastic behavior of ŷi1. However, as discussed in the next section, the

variational free energy exhibits the phase transition when the hyperparameter φ changes,

This affects the configuration and stochastic behavior of ŷi1.

9



4 Phase transition induced by the hyperparameter

In our problem, the candidates for the parameter sets that minimize the variational free

energy are those that corresponding to the null hypothesis. However, the parameter sets

that corresponds to the null hypothesis are not unique. Specifically, {yi1} that satisfies
∑

yi1
= O(1) and 〈b〉 = 0 is one candidate, but also {yi1} that satisfies

∑

yi1 = 0 is another

one.

In a previous study treating normal mixtures[13], the upper and lower bounds of the

asymptote of the variational free energy were derived within O(log(n)), and the existence

of the phase transition induced by the hyperparameter was proven. We can expect that

the phase transition to occur in our model as well, and it should be examined.

The phase transition affects the stochastic behavior of the variational free energy, the

test statistics. Therefore, we must study the effect of the phase transition and grasp what

kind of configuration is obtained as a function of the hyperparameter.This is the main

purpose in this section. We firstly show the existence of the phase transition and derive

the critical point φcr.
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4.1 Asymptotic form of F when
∑

i
yi1 is O(n)

Our purpose is to construct the hypothesis test, and we focus on a situation when the

hypothesis test is important, namely, one in which distinguishing two hypotheses is diffi-

cult. Specifically, when 〈b〉 is small and two gaussian distribution in the model are largely

overlapped, distinguishing the two distributions is difficult. We assume such a situation,

specifically 〈b〉Xmax ∼ op(1), under the null hypothesis.

Under these conditions, the following theorem holds.

Theorem 1. Under
∑

i yi1 is O(n) and 〈b〉 ∼ o(1/
√
log n), the asymptotic form of the

variational free energy becomes

F − F0 = logn + o(logn) (15)

under the null hypothesis.

Proof. Let us introduce ȳ as
∑

i ŷi1 ≡ n1 and n1/n ≡ α ∼ O(1) for brevity. The self-

consistent equation of {yi1}becomes

ŷi1 =
n1e

〈b〉Xi−1/2〈b2〉

n− n1 + n1e〈b〉Xi−1/2〈b2〉

=
n1

n
+
n1

n

(

1− n1

n

)

〈b〉Xi

+
1

2

n1

n
〈b〉2

(

1− n1

n

)

(

X2
i − 1

)

−
(n1

n

)2

〈b〉2X2
i +

(n1

n

)3

〈b〉2X2
i +O(〈b〉3)

= α + α(1− α)〈b〉Xi

+
1

2
α〈b〉2

[

X2
i

(

1− 3α+ 2α2
)

+ α− 1
]

+O(〈b〉3)
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Using this expression, 〈b〉 becomes

〈b〉 =

∑

j ŷj1Xj
∑

j ŷj1 +
1
σ2

=

∑

iXi (α + (1− α) 〈b〉Xi +O(〈b〉2))
n1 +

1
σ2

=
1

n

∑

Xi + 〈b〉 (1− α)

Therefore, we obtain

〈b〉 = 1

n1

∑

Xi = O(
1√
n
) (16)

ŷi1 becomes

ŷi1 = α +
(1− α)

n

∑

j

XjXi

+
1

2αn2

(

∑

Xj

)2
[

α− 1 +
(

1− 3α+ 2α2
)

X2
i

]

Let us calculate the variational free energy. For simplicity, we write ŷi1 as

ŷi1 = α +∆yi

The entropy term becomes,

∑

i

{ŷi1 log ŷi1 + (1− ŷi1) log (1− ŷi1)}

=
∑

i

(α +∆yi) log (α +∆yi)

+ [1− (α +∆yi)] log [1− (α+∆yi)]

= n [α logα + (1− α) log (1− α)]

+
∑

∆yi [logα− log (1− α)] +
∑

i

1

2
(∆yi)

2

[

1

α
− 1

1− α

]

12



The sum of ∆yi becomes

∑

i

∆yi = op

(

1√
n

)

and the sum of the square of ∆yi becomes

∑

(∆yi)
2 = (1− α)2 ξ2 + op

(

1√
n

)

Therefore, the entropy term becomes

∑

i

{ŷi1 log ŷi1 + (1− ŷi1) log (1− ŷi1)}

= n [α logα + (1− α) log (1− α)] +
1− α

2α
ξ2

The other terms can be calculated as follows:

log
Γ(n+ 2φ)

Γ(n1 + φ)Γ(n− n1 + φ)

=
1

2
log n−

(

nα + φ− 1

2

)

logα

−
(

n(1− α) + φ− 1

2

)

log(1− α)− 1

2
log 2π + o(1)

1

2
log
(

1 + σ2
∑

yi1

)

≃ 1

2

[

logn + logα + log σ2
]

+
1

2
log

(

1 +
1

nασ2

)

=
1

2

[

logn + logα + log σ2
]

+ o(1)

−1

2

(
∑

Xiŷi1)
2

∑

ŷi1 +
1
σ2

= −1

2
〈b〉2

(

∑

ŷi1 +
1

σ2

)

= − 1

2α
ξ2 + o (1)
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By integrating them, we obtain the variational free energy

F = logn + (1− φ) logα−
(

φ− 1

2

)

log(1− α) +
1

2
log σ2

− 1

2
ξ2 + log

Γ(2φ)
∏

(Γ(φ))
− 1

2
log 2π + o(1) (17)

From these results, we obtain

F − F0 = log n+ o(logn), (18)

and the proof is completed.

4.2 Asymptotic form of F when
∑

i
yi1/n→ 0

Theorem 2. Let us define the function f(yi) as,

f(yi) =
∑

i

{ŷi1 log ŷi1 + (1− ŷi1) log (1− ŷi1)}

− (
∑

iXiŷi1)
2

2 (n1 + 1/σ2)

When we fix
∑

i ŷi1 = n1, the minimum of f(ŷi1) satisfies

f(yi) = −n1 log n+ n1 log n1 − n1 + o(1) (19)

and F − F0 becomes

F − F0 = φ log
n

n1
+ log n1 +Op(1) (20)

Proof. In this case, the leading order of the logarithm of the ratio of the gamma function

is different from the previous case. It becomes
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log Γ(n+ 2φ)
∏

log Γ(
∑

i ŷik) + φ)
= (n1 + φ) logn

− (n1 + φ− 1

2
) log(n1 + φ)− (n− n1) log

(

1− n1

n

)

+O(1)

where we define
∑

i ŷi1 ≡ n1.

Applying the method of Lagrange multipliers, we minimize the function as follows:

f1(ŷi1) =
∑

i

{ŷi1 log ŷi1 + (1− ŷi1) log (1− ŷi1)}

− (
∑

iXiŷi1)
2

2 (n1 + 1/σ2)
− λ

(

∑

i

ŷi1 − n1

)

The equation of the stationary condition is given as

∂f1
∂ŷi1

= log
ŷi1

1− ŷi1
−
∑

j Xj ŷj1Xi

(n1 + 1/σ2)
− λ = 0 (21)

By solving it with yi, we obtain

ŷi1 =
1

1 + exp(−A(Xi − B))
(22)

where

A ≡
∑

j Xj ŷj1

(n1 + 1/σ2)

B ≡ λ

A

Let us assume that A > 0, and X1 ≤ X2 ≤ ... ≤ Xn. This assumption does not lose the

generality. From the result of lemma 1 the proof of which is provided in the appendix, the

asymptotic form of the trimmed sum of Xi becomes
n
∑

i=n−n1+1

X(i)n → n1

√

2 log
n

n1

(23)
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where X(i)n means the ith order statistics, and
{

X(i)n

}

satisfies

X(1)n ≤ X(2)n ≤ ... ≤ X(n)n

Using this, we can obtain

0 < A ≤
√

2 log
n

n1

As
∑

i ŷi1 = n1, and limn→∞
n1

n
= 0, the number of ŷi1 that satisfies ŷi1 > 1/2 should not

be O(n). Therefore, B should go to ∞ when n→ ∞.

Let Z be a constant that satisfies Z → ∞ and B
Z
→ ∞.

We will write the number of ŷi1 that satisfies Xi < B/Z as αn1, and β ≡ 1− α.

|Xi| ≤ B/Z ⇒ ŷi1 =
1

1 + exp(−AXi + AB)
∼ exp(−AB) (24)

Let us split f(ŷi1) into the three parts,

f(ŷi1) = f1(ŷi1) + f2(ŷi1) + f3(ŷi1), (25)

where

f1 =
∑

Xi<B/Z

ŷi1 log ŷi1 + (1− ŷi1) log(1− ŷi1) (26)

f2 =
∑

Xi>B/Z

ŷi1 log ŷi1 + (1− ŷi1) log(1− ŷi1) (27)

f3 = − (
∑

iXiŷi1)
2

2 (n1 + 1/σ2)
(28)

From the convexity, f1 satisfies the following inequality:

f1 ≥ n
[αn1

n
log

αn1

n
+
(

1− αn1

n

)

log
(

1− αn1

n

)]

= −αn1 logn + αn1 logαn1 − αn1 + α2n
2
1

n
.
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Also, because the minimum of the function g(y) = y log y + (1 − y) log(1 − y) is g(y =

1/2) = − log 2, f2 satisfies

f2 =
∑

Xi>B/Z

ŷi1 log ŷi1 + (1− ŷi1) log(1− ŷi1) ≥ −βn1 log 2 (29)

As for f3(ŷi1), the term
∑

iXiŷi1 in the numerator satisfies

∑

i

Xiŷi1 =
∑

Xi>B/Z

Xiŷi1 +
∑

Xi<B/Z

Xiŷi1

≤





∑

Xi>B/Z

Xi



 +
∑

Xi<B/Z

Xiŷi1

= βn1

√

2 log
n

βn1
+
∑

i

Xiα
n1

n

In the last line, we use the result,

αn1 = n exp (−AB) . (30)

Therefore,

∑

i

Xiŷi1 ≤ α
n1

n

∑

Xi<B/Z

Xi + βn1

√

2 log
n

βn1

(31)

The condition in which equality is satisfied is α = 1, β = 0, and

f3(ŷi1) ≥ −1

2

(

αn1
1
n

∑

Xi<B/Z Xi

)2

(n1 + 1/σ2)
(32)

We can see that the α and β that gives the maximum of f1 + f2 under α + β = 1 are also

α = 1, β = 0.

Therefore, we obtain

f(ŷi1) ≥ −n1 log n+ n1 logn1 − n1 + o(1) (33)

17



By adding the log gamma term to it, we obtain the minimum of the variational free energy,

F − F0 = φ log
n

n1
+ log n1 +Op(1) (34)

From the results of Theorem 1 and Thereom 2, we can obtain the asymptotic behavior

of the variational free energy as a function of φ within the O(log n) as

F − F0 =







φ logn + o (log n) (φ < 1)

log n+ o (logn) (otherwise)

This clearly shows that the phase transition exists in our model, and the critical value of

the hyperparameter φcr is φcr = 1. Note that this result and the critical value are different

from those obtained in the previous study[13], because our model and theirs have different

parameter space.

We should also note that the configuration of {ŷi1} of the solution is clearly different

depending on the value of the hyperparameter. When the φ ≥ 1, the solution satisfies
∑

ŷi1 ∼ O(1). This means that the sample is described under the A. H. by the two

clusters that have a mixture ratio of the same order, but the mean of the one cluster may

slightly deviate from the origin. The hypothesis test scheme based on this can be regarded

testing whether the number of the cluster is one or not.

In contrast, when φ < 1, the
∑

ŷi1 obtained as the solution is small. This means that

the vast majority of the sample is described under the A. H. by the one cluster whose mean

is located in the origin. The other cluster may have an arbitrary mean, but the mixture

ratio is very small. Under such circumstances, the hypothesis test scheme based on this

can be regarded as testing for the existence of outliers.

Our result shows that we should choose an appropriate hyperparameter suitable for the

purpose.
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5 Asymptotic form of the variational free energy on

the O(1)

In this section, we consider a situation in which it is difficult to distinguish whether or not

a sample is generated from one cluster. One such a situation is that in which n〈a〉 is O(n),

but 〈b〉 is close to 0. From the discussion in the previous section, this corresponds to the

case in which φ > 1.

The following theorem on the asymptotic form of the variational free energy is derived

under the above assumption.

Theorem 3. The variational free energy of the two component Gaussian mixture becomes

F = log n− (φ− 1) log (φ− 1)−
(

φ− 1

2

)

log

(

φ− 1

2

)

+

(

2φ− 3

2

)

+
1

2
log σ2 − 1

2
ξ2 + log

Γ(2φ)
∏

(Γ(φ))

− 1

2
log 2π + o(1) (35)

when the hyperparameter satisfies φ > 1. Here, ξ is a probabilistic variable that obeys

ξ ∼ N (0, 12).

Proof. As proven in Theorem 1, the variational free energy becomes

F = logn + (1− φ) logα−
(

φ− 1

2

)

log(1− α) +
1

2
log σ2

− 1

2
ξ2 + log

Γ(2φ)
∏

(Γ(φ))
− 1

2
log 2π + o(1) (36)

From the variational principle, α is determined as

α = argmin [F(α)] ≡ α0 (37)
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α0 is the solution of dF
dα

= 0, that is,

α0 =
φ− 1

2φ− 3
2

(38)

By substituting this into F , we can obtain

F = log n− (φ− 1) log (φ− 1)−
(

φ− 1

2

)

log

(

φ− 1

2

)

+

(

2φ− 3

2

)

+
1

2
log σ2 − 1

2
ξ2 + log

Γ(2φ)
∏

(Γ(φ))

− 1

2
log 2π + o(1) (39)

This is the result that we want to derive.

In Figure 1, α0 is plotted as a function of φ.We can see that α0 shows the power-law

behavior around the critical point φcr = 1, from the form of α0 derived above. That is,

α0 ∼ (φ− φcr)
−1 (40)
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Figure 1: Variational parameter α0 that minimizes variational free energy F as function of

the hyperparameter φ.

Figure 1 shows that the stochastic behavior of the variational free energy is determined

by ξ. Under the N. H., ξ follows a standard normal distribution and the distribution of the

variational free energy can be described by a χ2 distribution. The validity of these results

are examined in the next section.
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6 Numerical Experiment

In this section, we show the result of our numerical experiments to examine the validity of

our theoretical results.

First, to see the validity of the asymptote for a finite sample size, we compared the asymp-

tote with one that is numerically calculated by an iterative algorithm, the variational

Bayes-EM (VB-EM) algorithm. We set the hyperparameter as a sufficiently large value,

φ = 20, and calculated the asymptote in cases in which n = 200, 400, 800, 1600, 3200, 6400

cases. To see the variance, we calculated them for 100 different sample set. The results are

shown in figure 2. We can see the theoretical asymptote and the numerical result match

well as a distribution.
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Figure 2: Comparison of variational free energy calculated by VB-EM algorithm with the

asymptote we derived for different sample sizes. Red triangles corresponds to the variational

free energy calculated from theoretically derived asymptote, and blue circles corresponds

to variational free energy numerically calculated by variational Bayes.

We also numerically calculated the rejection rates for a finite sample with the VB-EM

algorithm, and compared it with the threshold determined from the asymptote we derived.

We numerically calculated the variational free energy for many sample sets independently

generated from the null hypothesis, and determined the rejection rate as the ratio of the

number of the sample set whose variational free energy becomes less than the threshold to

the total number of the sample sets.

Through the numerical experiments, the hyperparameter was set as φ = 20 and we

evaluated the variational free energy for the 5000 sample sets generated from the null

hypothesis.
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The results are summarized in the table 1. The results show that the threshold derived

from the asymptote functions correctly. Therefore, we can conclude that the asymptotic

form of the variational free energy we derived is valid.

Table 1: Rejection rates calculated numerically by variational Bayes. Threshold is calcu-

lated from the asymptote of the variational free energy analytically derived in previous

section.

sample size rejection rates

n 10% 5% 1%

100 7.5% 3.6% 0.8%

200 8.5% 4.3% 0.8%

400 9.0% 4.4% 0.8%

800 9.9% 5.1% 1.1%

From the results we have shown, now the hypothesis test of homogeneity based on

variational Bayes, which we refer it to as the VB test, can be constructed as follows.

First, calculate the variational free energy from the sample numerically by VB-EM

algorithm. In this procedure, the hyperparameter φ should be set as greater than one.

Second, test whether the variational free energy is below the threshold or not, derived

from the asymptote we derived in Section 5. The stochastic behavior of the asymptote is

described by the square of the standard normal distribution, and it is easy to calculate the

threshold for the rejection rates one needs, by combining the well-known behavior of the

χ2 distribution and the asymptote we derived.
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7 Conclusion

We discussed a new hypothesis test for the homogeneity using variational Bayes. We

derived the variational free energy of the normal mixture model and showed that the

phase transition occurs when the hyperparameter φ in the prior. exceeds the critical value

φ > φcr = 1. We also derived the analytical asymptote of the variational free energy on

the O(1) in the φ > 1 phase. This enabled us to construct a new approach to testing for

homogeneity, the VB test.

The application of variational Bayes for hypothesis tests is not limited to the problem

we discussed in this paper. As future problems, it would also be interesting to construct

hypothesis tests for other singular models, using this framework.

A Proof of the Lemma 1

Lemma 1. Let X1, X2, ...Xn be an i.i.d sample generated from the standard normal

distribution N (0, 12), and let X(i),n be the order statistics of the sample, that satisfies

X(1),n ≤ X(2),n ≤ ... ≤ X(n),n.

Let us consider the trimmed sum of the largest n1th data from the sample. When

n1 → ∞ and n1/n→ 0, the asymptotic behavior of the sum is

S =
n
∑

i=n−n1+1

X(i),n →
√

2 log
n

n1
+ op(n1) (41)

proof of Lemma 1. As the normal distribution satisfies the von Mises conditions, the

asymptote of the n1th maximum values x(n−n1+1),n satisfies

(

X(n−n1+1),n − an
)

/bn → N (0, 1) (42)
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where an ≡ F−1
(

1− n1

n

)

and bn ≡ √
n1/ (nf(an)), here F (x) means the cdf of Xi, and

f(x) means the distribution function of Xi (see Theorem 8.3.4 and Theorem 8.5.3 in [15]).

In our case, the asymptotic form of an becomes an →
√

2 log n
n1

− log log
(

n
n1

)2

, bn →
√
n1

n
1√
2π
e−

1

2
a2n , and the leading term of the X(n−n1+1),nbecomes

X(n−n1+1),n = an + op(
n1

n
) (43)

Let us proof the lemma using this result. First, we split the X(n−n1+1),n, ...X(n),n samples

by T groups that satisfy 1 ≪ T < n1 ≪ n. Each group contains [n1/T ] terms.

The maximum in the t + 1th group, Yt+1 satisfies

Yt+1 ≤
√

2 log (n/ (n1 ∗ t/T )) + op(
n1

n
)

=
√

2 log (n/n1) + 2 log (T/t) + op(
n1

n
)

=
√

2 log (n/n1)×
√

1 + log (T/t)/ log (n/n1) + op(
n1

n
)

≤
√

2 log (n/n1)× (1 + log (T/t)/ log (n/n1))

=
√

2 log (n/n1) +
√
2 log (T/t)/

√

log (n/n1)
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Therefore,

n
∑

i=n−n1+1

x(i),n ≤ n1

T

T−1
∑

t=1

Yt+1 +
n1

T

√

2 logn

(r.h.s) =
n1

T
(T − 1)

√

2 log (n/n1)

+
√
2 (T − 1) /

√

log (n/n1) +
n1

T

√

2 logn

≤
(

n1 −
n1

T

)

√

2 log (n/n1)

+
n1

T

(

√

2 logn/n1 +
√
2

log n1
√

log(n/n1)

)

= n1

√

2 log (n/n1) +
n1

T

√
2 log n1

√

log (n/n1)
+ op(n1)

If we choose T that satisfies 1 ≪ T < n1 ≪ n properly, e.g., T =
√
n1, the second term

becomes op(n1). and the lemma is proven.
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