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SUMMARY Routing problems derived from silicon-interposer and etc.
are often formulated as a set-pair routing problem where the combination
of pin-pairs to be connected is flexible. In this routing problem, a length
matching routing pattern is often required due to the requirement of the
signal propagation delays be the same. We propose a fast length matching
routing method for the set-pair routing problem. The existing algorithm
generates a good length matching routing pattern in practical time. How-
ever, due to the limited searching range, there are length matching routing
patterns that cannot find due to the limited searching range of the algo-
rithm. Also, it needs heavy iterative steps to improve a solution, and the
computation time is practical but not fast. In the set-pair routing, although
pin-pairs to be connected is flexible, it is expected that combinations of
pin-pairs which realize length matching are restricted. In our method, such
a combination of pin-pairs is selected in advance, then routing is performed
to realize the connection of the selected pin-pairs. Heavy iterative steps are
not used for both the selection and the routing, then a routing pattern is
generated in a short time. In the experiments, we confirm that the quality
of routing patterns generated by our method is almost equivalent to the ex-
isting algorithm. Furthermore, our method finds length matching routing
patterns that the existing algorithm cannot find. The computation time is
about 360 times faster than the existing algorithm.
key words: routing algorithm, set-pair routing problem, PCB, interposer

1. Introduction

In the routing design such as silicon interposer [1], [2],
printed circuit board (PCB) [3], [4], FPGA [5] and etc., the
combination of a pin-pair to be connected by a wire is of-
ten flexible. The set-pair routing problem [6] is defined for
modeling such routing designs, in which a connection re-
quirement is set between a source-pin set and a sink-pin set.
In this routing problem, a length matching routing pattern
while keeping wire lengths small is often required under the
assumption of signal propagation delay is proportional to
the wire length. Also, small computation time to generate
a routing pattern is required due to the scalable requirement
for the routing area.

In this paper, we propose a fast length matching method
for the set-pair routing problem. Our algorithm generates a
length matching routing pattern by mainly using a network
flow-based algorithm, in which some restrictions for each
net are set to the routing area to control the flow. Since heavy
iterative steps to improve a solution is not used, our method
generates a routing pattern in a short time.

A length matching routing algorithm for the set-pair
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routing problem has been proposed [6] (Hereinafter, it is
called the Nakatani algorithm). This algorithm generates
a length matching routing pattern while keeping the total
length as small as possible by improving an initial solution.
The initial solution is a minimum total length pattern gen-
erated by the network flow-based algorithm [2]. The initial
solution is improved by a heuristic approach to reduce the
wire length differences by changing the pin-pairs to be con-
nected while keeping the minimum total length. Then, small
length wires are extended to realize length matching without
changing the pin-pairs connected. Although the time com-
plexity of this problem that minimizes the length difference
of wires is not apparent, the Nakatani algorithm finds a good
routing in practical computation time.

Nakatani algorithm has drawbacks of the approach of
improving a minimum total length pattern. In the set-pair
routing problem, a better length matching routing is some-
times generated by combinations of pin-pairs that do not ap-
pear in minimum total length patterns. Nakatani algorithm
only searches the combinations of pin-pairs in minimum to-
tal length patterns, thus it cannot find such a good routing
pattern. For example in Fig. 1, (b) is a routing pattern in
which pin-pairs in a minimum total length pattern are con-
nected, and (c) is a routing pattern in which pin-pairs in a
non-minimum total length pattern are connected. The com-
putation time of the Nakatani algorithm is practical but not
fast. It needs heavy iterative steps to find a small wire length
difference routing pattern in minimum total length patterns.

In the set-pair routing, although pin-pairs to be con-
nected is flexible, it is expected that combinations of pin-
pairs which realize length matching are restricted. In our
method, such a combination of pin-pairs is selected in ad-
vance, then routing is performed to realize the connection
of the selected pin-pairs. A routing pattern generated in this
way is expected to contain many appropriate pin-pairs to
realize length matching. Modification to improve such solu-
tions will be small and will be performed in a short time.

As a combination of pin-pairs to be connected (Here-
inafter, it is referred to as target pin-pair set), we select pin-
pairs that the distances of each pin-pair are small. In the
actual routing pattern, wires are routed with the affection of
obstacles or other wires, and the lengths of them will be dif-
ferent from the distances of each pin-pair. However, most
of the pin-pairs in an ideal combination of pin-pairs that
achieves length matching will be expected to have almost
the same distance, that is the distance differences between
them are small.
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Our routing algorithm tries to connect the target pin-
pairs as much as possible. Unlike routing algorithms for
general routing problems where the connection requirement
is given to each pin-pairs, this routing algorithm does not
guarantee the connectivity of the given pin-pairs. The target
pin-pairs are candidates for achieving length matching but it
will include pin-pairs that cannot connect or not in the ideal
combination. The algorithm certainly generates a feasible
routing pattern by modifying such pin-pairs, and a better
routing pattern is expected than a routing pattern forced to
connect the given pin-pairs.

Our proposal in this paper is a routing method for the
set-pair routing algorithm that mainly consists of a pin-pair
selection algorithm and a pin-pair connection algorithm. We
have proposed a pin-pair selection algorithm [7] and a rout-
ing algorithm [8] separately as conference papers. For the
pin-pair selection algorithm in this paper, an improved pin-
pair selection algorithm based on the previous work [7]
is proposed. For the pin-pair connection, the same algo-
rithm [8] is used.

2. Set-Pair Routing Problem

The set-pair routing problem is a routing problem that con-
nection requirements are given between two sets of pins,
named source-pin set and sink-pin set. One pin from the
source-pin set and one pin from the sink-pin set are con-
nected by a wire to propagate a signal so that no pin is shared
by more than one signal. All pins should be connected by
wires without crossing each other.

In this paper, the routing area is represented as a single-
layer grid array. Some intersections of edges are specified
as source-pins, sink-pins, and obstacles. The location of
these points is given as an input. An intersection except
specified as an obstacle can be connected to neighboring in-
tersections. A chain of connections from a source-pin to a
sink-pin forms a wire.

Figure 1 is an example of set-pair routing problem.
Figure 1(a) is an input, and (b) and (c) are routing pat-
terns as the different types of solution. The red rectangles
{A, B,C} and the blue rectangles {X,Y,Z} represent source-
pins and sink-pins, respectively. The bold lines in Fig. 1(b)
and Fig. 1(c) that each line connects a source-pins and a
sink-pin represent wires. In the set-pair routing, a routing
pattern is said to be feasible if each wire connects source-
pin and sink-pin without using grid intersections of obsta-

Fig. 1 Example of set-pair routing problem.

cles. The existence of a feasible routing pattern is easily
checked by a maximum flow algorithm [6]. Therefore, in
the following discussion, we focus on the problem instances
that have a feasible routing pattern.

In routing pattern generation, a routing pattern that re-
alizes not only connection requirements but also small de-
lays of signal propagation, small difference of signal delays,
and etc. is required. Under the assumption that the signal
propagation delay is proportional to the wire length, a rout-
ing pattern that has small length wires and small length dif-
ferences of wires is often pursued.

In the set-pair routing problem, the length matching
is not easy even though the minimum total wire length is
achieved in polynomial time. Even though the time com-
plexity of the problem that minimizes the length difference
of wires is not apparent, the problem of finding disjoint
paths of the specified length or length-cap is NP-hard in gen-
eral [9]. The length matching in the set-pair routing would
be improved by applying length matching algorithms for or-
dinary routing problems [4], [10], [11]. However, the results
seem not good enough since they generate routing patterns
by utilizing characteristics of problem specifications well,
but without utilizing the flexibility of pin-pairs. For exam-
ple, the flexibility of pin-pairs will be important in the case
that some wire needs large detour to realize the fixed pin-
pair connectivity in a dense routing area.

The routing pattern of Fig. 1(b) achieves a length
matching by applying snaking to an initial solution of mini-
mum total length. The total length of the pattern is 17, and
the pattern is generated from a minimum total length pattern
whose total length is 13. The routing pattern of Fig. 1(c) also
achieves a length matching with the total length of 15. The
maximum length difference of wires in (b) is 1 whereas in
(c) is zero.

The Nakatani algorithm generates a routing pattern like
Fig. 1(b) by modifying a pattern of minimum total length.
The algorithm cannot generate a pattern like Fig. 1(c) be-
cause the pattern achieves the length matching in non-
minimum total length. Our objective is to obtain a length
matched routing pattern like Fig. 1(c).

3. Related Work: Nakatani Algorithm

In order to obtain a routing pattern that achieves length
matching as much as possible in a set-pair routing problem,
a heuristic algorithm is proposed [6] (Hereinafter, called
Nakatani algorithm). This algorithm tries to find a length
matching routing pattern while keeping the total wire length
small. This algorithm firstly generates a minimum total
length pattern and generates a length matching routing pat-
tern by improving the initial pattern.

The outline of the algorithm is shown in Fig. 2(b).
(1) Total Length Minimization: A routing pattern of the

minimum total length is generated as an initial solution
by a minimum cost maximum flow algorithm.

(2) Length Difference Reduction: A routing pattern that
achieves a small wire length difference is generated
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Fig. 2 The outline of design flow for length matched routing algorithm
in set-pair routing.

from the initial solution. The length differences be-
tween wires are reduced by changing the pin-pairs to
be connected while keeping the minimum total length
of the pattern. An algorithm to find zero cost closed
cycles is used for this step.

(3) Minimum Length Increase: A routing pattern that
achieves length matching is generated by increasing
the length of wires to match the maximum length. A
snaking technique [3] is used for this step.
The Nakatani algorithm finds a good solution of length

matching routing pattern but has some disadvantages.
A routing pattern of the initial solution generated in

the step (1) tends to have large wire length differences, and
it causes large computation time for improving a solution
in the step (2). In this step, pin-pairs located nearby are
connected in first because a breadth-first algorithm is used.
Therefore, the length difference of the wire firstly connected
and the wire lastly connected often be large.

The step (2) requires large computation time for im-
proving the initial solution. In this step, candidates of the
pin-pairs to change the connection is searched. The candi-
dates of the pin-pairs are found on a zero-weighted directed
cycle that includes two vertices of pins. Many combina-
tions of zero-weight directed cycles exist in the flow graph
of the initial solution and large computation time is needed
to check them. Because of the initial solution that has large
wire length differences, the step (2) needs heavy iterations
to improve the solution, and it is one reason for the large
computation time.

Furthermore, there are length matching patterns that
the Nakatani algorithm never finds them since this algorithm
only searches combinations of pin-pairs to be connected in
minimum total wire length patterns. The examples in Fig. 1
is one of them. The routing pattern of (b) is a solution of the
Nakatani algorithm that is generated from a minimum total
length pattern of which the total length is 13. After applying
the snaking technique, the total wire length of (b) is finally
17, and wire length differences still remain. On the other

hand, the routing pattern of (c) achieves a length matching
with no wire length difference. Also, the total wire length is
15, and it is smaller than (c).

4. Selective Target Pin-Pair Connection Method

4.1 Outline of Our Method

Our method is designed to obtain a length matching routing
pattern in small computation time and also to find an optimal
pattern that is not based on a pattern of the minimum total
wire length. In the method, pin-pairs that are expected to
achieve length matching if they are connected are roughly
set before routing steps, and the routing steps try to connect
the pin-pairs as much as possible. Hereinafter, a pin-pair
selected before the routing steps is referred to as a target pin-
pair, and a set of target pin-pairs that includes all source-pins
and sink-pins is referred to as a target pin-pair set.

The flow of our method is shown in the Fig. 2(a).
(1) Target Pin-pair Selection Pin-pairs that are expected

to achieve length matching if they are connected, are
selected as the target pin-pair set. The connectivity of
the pin-pairs is not considered. All distances between
source-pins and sink-pins are measured and a combina-
tion of pin-pairs in which the maximum distance is the
minimum and the minimum distance is the maximum
is selected.

(2) Target Pin-pair Connection A routing pattern in which
the target pin-pairs are tried to connect is generated
by the network flow-based algorithm [8]. The algo-
rithm generates a feasible routing pattern while trying
to connect the target pin-pairs as much as possible. The
connection of all the target pin-pairs is not guaranteed.
Each wire is routed avoiding the area where it is ex-
pected the other wires exist.

(3) Reroute Detoured wires are modified in this step. Wires
that are routed avoiding the area where it is expected
the other wires exist may sometimes be detour. Each
wire is once ripped up and rerouted to be the length is
minimum. This modification is applied to all wires one
by one while keeping the pin-pairs connected.

(4) Minimum Length Increase Small length wires are ex-
tended by snaking to match the maximum wire length.
The same technique with the Nakatani algorithm step
(3) is used.

4.2 Target Pin-Pair Selection

Pin-pairs that the distances of each pin-pair are almost equal
should be selected as the target pin-pairs. Here, pin-pairs are
represented as a weighted complete bipartite graph G, where
a pin is a vertex and a candidate for pin-pair is an edge with
the weight of the distance of the pin-pair. A target pin-pair
set is equivalent to a perfect matching of the graph G.

The selection of a pin-pair set that achieves the max-
imum distance be minimum and the minimum distance be
maximum is formulated as a perfect matching that achieves
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the maximum-edge-weight be minimum and the minimum-
edge-weight be maximum in the weighted complete bipar-
tite graph G. To solve this problem, we propose a matching
algorithm based on our algorithm [7], which finds a perfect
matching of the maximum-edge-weight is minimum.

In the following explanation, a perfect matching where
the sum of edge weights be minimum is referred to as min-
total matching, a perfect matching where the maximum-
edge-weight be minimum is referred to as min-max match-
ing, and a perfect matching where the maximum-edge-
weight and the minimum-edge-weight be minimum among
the matching of maximum-edge-weight be minimum is re-
ferred to as min-max & diff matching.

A min-max & diff matching is obtained by repeating
the procedure of shrinking the upper bound and the lower
bound of weights of matching edges. In the following steps,
the step (ii) and the step (iii) are the processes of shrinking
the upper bound of weights of matching edges by our previ-
ous algorithm [7]. The step (iv) and the step (v) are the pro-
cesses of shrinking the lower bound of weights of matching
edges.
Step (i) Generate weighted complete bipartite graphs G and

G′, which are the same ones. Where a vertex, an edge,
and an edge weight correspond to a pin, a pin-pair can-
didate, and the distance of the pin-pair, respectively.

Step (ii) Obtain a min-total matching M in the graph G.
Eliminate all edges whose weights are greater than or
equal to w from the graph G′. Where the w is the max-
imum weight in M.

Step (iii) If a perfect matching exists in the graph G′, assign
G′ to G, and return to the step (ii). If not, go to the step
(iv).

Step (iv) Obtain a min-total matching M in the graph G.
Eliminate all edges whose weights are less than or
equal to w from the graph G′. Where the w is the mini-
mum weight in M.

Step (v) If a perfect matching exists in the graph G′, assign
G′ to G, and return to the step (iv). If not, output M
and finish.
The validity of our proposed algorithm is as follows.

Let G be the bipartite graph when the step (iv) starts. Perfect
matchings in G are the min-max matching, and it is validated
in the paper [7]. Let M and G′ be the matching outputted by
our algorithm and the bipartite graph when M is outputted.
Also, let w be the minimum-edge-weight in M. If M is
not a matching where the difference of the maximum-edge-
weight and the minimum-edge-weight is minimum, that is,
if M is not optimal, then there is an optimal perfect match-
ing M′, and all edge weights in M′ are larger than w. G′

contains a perfect matching M′ since G′ keeps all the edges
whose weight is larger than w, and the algorithm does not
output M since there is a perfect matching M′ in G′.

An example of a weighted complete bipartite graph is
shown in Fig. 3(a). Figure 3(b) is a min-total matching ob-
tained from Fig. 3(a), in which the sum of weights of the
matching edges is minimum. Figure 3(c) is a min-max
matching obtained after applying the step (ii) and (iii), in

Fig. 3 An example of matching.

which the edges of weight 12 are eliminated from the graph
and the maximum edge weight be 10 is achieved. Figure 3
(d) is a min-max & diff matching obtained after applying all
steps, in which the edge of weight 4 is eliminated from the
graph and the difference of edge weights be 0 is achieved.

4.3 Target Pin-Pair Connection

This algorithm generates a routing pattern in which a given
pin-pair set is connected as much as possible. Here, the al-
gorithm [8] that we have proposed is used. We applied the
Ford-Fulkerson algorithm [12], which is a maximum flow
algorithm, to obtain a routing pattern by finding a maximum
flow between the target pin-pairs.

The algorithm certainly generates a feasible routing
pattern while trying to connect the target pin-pairs as much
as possible. That is, if the realization of all target pin-pairs
connection is difficult, it generates a routing pattern in which
some pin-pairs connected are not from the target pin-pair
set.

To realize a target pin-pair connection, each wire is
routed avoiding the area where it is expected the other wires
exist. A bounding box that is a minimum rectangle enclos-
ing a target pin-pair is introduced as an estimated wiring
area of the target pin-pair. Searching routing paths is pro-
ceeded by detouring an area that the bounding boxes are
overlapped.

In order to obtain a routing pattern by a network flow
algorithm, pins and routing area are converted to a flow
graph and a primary source that is connected to all source-
pins and a primary sink that is connected to all sink-pins are
added to the graph, then a maximum flow from the primary
source to the primary sink is used as routing paths [6]. We
define the degree of overlapping bounding boxes for each
edge of a routing area as the number of overlapping bound-
ing boxes on each edge, in which the target pin-pairs of them
are not connected yet (Hereinafter, it is simply called the
overlapping degree).

The following steps are the process to find a maximum
flow by our algorithm.
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Fig. 4 Process of the target pin-pair connection.

Step(i) Update the overlapping degree for each edge in the
flow graph G.

Step(ii) Search a flow augmenting path from the primary
source to the primary sink of G. Edges whose over-
lapping degree is 1 are firstly searched. If a flow aug-
menting path is not found, edges that the overlapping
degree is larger than 1 are secondly searched. Finally,
all edges including edges that the overlapping degree is
0 are searched.

Step(iii) When a flow augmenting path is found in the step
(ii), send a flow along to the augmenting path, and re-
turn to the step (i). If no flow augmenting path exists,
output the obtained maximum flow and finish.
An example of the routing process is shown in Fig. 4.

Figure 4(a) shows the bounding boxes and Fig. 4(b) shows
the degree of overlapping for each edge. Figure 4(c) and (d)
show the routing process, and Fig. 4(e) is an obtained flow as
a routing pattern of our algorithm. A pair of a red rectangle
and a blue rectangle labeled in the same alphabet is a target
pin-pair, and the current flow that already found exists in the
upper right of the routing area.

A bounding box is set to a target pin-pair for which a
flow augmenting path is not found yet. In the Fig. 4(a), two
bounding boxes for the target pin-pairs of A and B are set.

The overlapping degrees for each edge are shown in
the Fig. 4(b). The area of the black solid line is covered by
the two bounding boxes of A and B, then the overlapping
degree for these edges is 2. The area of the black dash line
is covered by only one bounding box, then the overlapping
degree for these edges is 1. The area of the gray line is not
covered by any bounding boxes, then the overlapping degree
for these edges is 0. The green line is the current flow, that is
the flow augmenting path for this pin-pair is already found.

Figure 4(c) shows the progress of searching a flow aug-
menting path using edges of the overlapping degree of 1.
The edges of the overlapping degree of 2 and 0 are not used
for the searching.

Figure 4(d) shows the situation of finding a flow aug-

Fig. 5 Reroute and minimum length increase.

menting path for the target pin-pair A. The target pin-pair A
can be connected by the edges of the overlapping degree of
1, then a flow augmenting path for the target pin-pair A is
found earlier than for the target pin-pair B.

Figure 4(e) is the obtained flow as a routing pattern
as of our algorithm. The target pin-pairs connection is
achieved. Considering a simple network flow algorithm, a
flow augmenting path from the source-pin of A to the sink-
pin of B will be found early because the distance of them is
small. On the other hand, even if a flow augmenting path
between target pin-pair A is found, the path will sometimes
prevent to find a flow augmenting path between the target
pin-pair B depending on algorithms. Our algorithm avoids
these problems by introducing a bounding box.

4.4 Reroute and Minimum Wire Length Increase

The routing pattern generated by our target pin-pair connec-
tion algorithm tends to include some detoured wires because
of the routing avoiding areas that the other wires will be ex-
pected to use. The 3rd and 4th steps of our routing method
are the modification of the routing pattern generated by our
routing algorithm. An example of these steps is shown in
the Fig. 5.

The Fig. 5(a) is a routing pattern generated by our rout-
ing algorithm. The left wire is detoured and these two wires
have length differences.

In the 3rd step, all wires are rerouted one by one to be
connected in shortest route. The shortest path of a pin-pair
is obtained by the Dykstra algorithm [13] where the other
wires are treated as obstacles. The Fig. 5(b) is a result of
this step. The length of the left wire is changed from 8 to 5
by this modification.

In the 4th step, short wires are extended by a snaking
technique to realize length matching. The same technique
used in the Nakatani algorithm is used for this modification.
The Fig. 5(c) is a result of this step. The length of the right
wire is changed from 2 to 4. This step is iteratively applied
to the pattern to be the length of all wires equal as much as
possible.

The Fig. 5(d) is the final result. Both of the wire lengths
is 6.
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Table 1 Wire length and computation time.

Lmax Lave dmax Time [sec]
Instance S ize #Net #Obst A N1 N A N1 N A N1 N A N1 N

#E1 17×17 16 0 14 10 10 9 9 10 8 4 0 0.003 0.016 0.590
#E2 17×17 16 50 14 18 16 10 9 10 6 12 8 0.003 0.008 0.220
#B1 17×20 6 50 17 19 17 17 16 16 1 9 2 0.001 0.016 0.083
#B2 27×29 12 100 36 35 30 36 28 30 1 12 1 0.004 0.051 5.030
#B3 27×29 12 100 46 46 46 39 30 38 8 24 10 0.007 0.091 4.128
#S 1 10×10 6 10 17 17 12 7 7 8 14 14 8 0.000 0.003 0.006
#S 2 20×20 8 60 22 22 16 13 11 15 13 17 2 0.002 0.008 0.230
#S 3 30×30 12 100 33 51 30 32 23 30 1 44 1 0.008 0.053 5.144
#F1 27×27 12 120 23 23 19 17 11 16 8 20 4 0.004 0.028 1.327

S ize, #Net, #Obst: Routing area size, # of nets, # of obstacles
Lmax: Max. wire length
Lave: Avg. wire length

dmax: Max. wire length difference (Max. wire length - Max. wire length)
Bold font value is the smallest one.

5. Experiments

The effectiveness of our proposed method is evaluated by
comparison with the Nakatani algorithm in the following ex-
periments.
• Performance of our method.

Routing patterns generated by our method are evalu-
ated by comparing patterns generated by the Nakatani
algorithm. Also, the computation time for pattern gen-
eration is compared.
• Quality of the selected target pin-pair set.

How our algorithm selects appropriate pin-pairs is
evaluated by comparing it with the solution of the
Nakatani algorithm.
• Performance of the target pin-pair connection algo-

rithm.
How much the target pin-pairs connection is realized is
evaluated.
We implement our method in C++. Also, we modi-

fied the Nakatani algorithm program used for the paper [6],
whose update procedure of distance label on vertices be
faster. The programs are compiled with GNU C++ com-
piler version 5.4.0 with optimization option O2, and they
are executed on a computer of Intel Core i7 4790K CPU, 32
GB memory, and Ubuntu 16.04 OS.

The problem instances are from the paper [6]. They are
generated randomly to fit with several situations as single
layer routing problem. The number of source-pins is equal
to the number of sink-pins. Obstacles are randomly inserted
in the routing area. In E series instances, source-pins are
on the array and sink-pins are on the boundary. In B series
instances, source-pins and sink-pins are generated to align
on lines. In S series instances, source-pins and sink-pins
are generated in top half and bottom half of the single layer
routing region. In F series instances, source-pins and sink-
pins are on arrays of different sizes.

In the below, routing patterns generated by our method
is denoted with A, and patterns generated by the Nakatani
algorithm is denoted with N. Also, outputs for each step is
denoted with the index number of each step from Fig. 2. For

example, the output of step 2 in our method is denoted as
A2.

5.1 Performance of Our Method

As a performance of our method, the quality of generated
routing patterns and the computation time for each instance
are evaluated. A routing pattern of our method is compared
with a routing pattern of the Nakatani algorithm. Also, it
is compared with an initial solution pattern of the Nakatani
algorithm, which is an output of step 1 (N1).

We introduce Lmax, Lavg, and dmax as metrics of the
quality of a routing pattern, where Lmax is the maximum
wire length in a pattern, Lavg is the average wire length of
the pattern, and dmax is the maximum wire length difference
which is the difference between the maximum wire length
and the minimum wire length. The Table 1 is the result.

For the Lmax, our method (labeled with A) achieves
smaller than or equal to that of the Nakatani algorithm
step 1 (labeled with N1) except of the cases of E1 and B2.
Compared to the Nakatani algorithm (labeled with N), our
method performs well in the cases of E2 and B3, but the
Lmax is large in the other cases.

For the Lave, our method shows good performance as
well as the Nakatani algorithm. Patterns of N1 are minimum
total length patterns, so these are the minimum Lave.

For the dmax, our method achieves smaller than or equal
to that of the N in the cases of E2, B1, B2, B3, and S3.
The Lmax and the Lave for these five cases of our method is
different from them of N. We can see that our method finds
length matching routing patterns that the Nakatani algorithm
cannot find.

For computation time, our method shows quite good
performance against the Nakatani algorithm. In all cases,
the computation time is shorter than even for the initial so-
lution generation of the Nakatani algorithm (N1). The com-
putation time of our method is about 360 times faster than
N.

From this evaluation, we confirmed that our method
generates a length matching pattern in a short time. In the
point of view of Lmax, our method is worse than or equal
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Table 2 DTT and rate comparison.

A1 A3 N2
Instance Dmax Dmin Dave Lmax Lmin Lave DTT rate Lmax Lmin Lave DTT rate

#E1 10 10 10 14 6 9 9 0.50 10 8 9 8 0.53
#E2 12 10 10 14 6 9 6 0.63 16 6 9 7 0.56
#B1 16 13 15 17 13 16 1 0.94 17 13 16 1 0.94
#B2 29 25 27 36 23 29 4 0.88 30 25 28 2 0.93
#B3 28 26 27 46 26 31 4 0.88 46 26 30 4 0.88
#S 1 9 7 8 17 3 7 5 0.60 12 3 7 3 0.70
#S 2 14 10 12 22 5 12 4 0.73 16 6 11 3 0.79
#S 3 27 21 24 33 11 23 10 0.70 30 11 23 7 0.77
#F1 15 9 12 23 3 11 5 0.71 19 3 11 7 0.61

Dmax,min,ave: max.,min., avg. of the Manhattan distance of each target pin-pair
Lmax,min,ave: max.,min., avg. wire length

Fig. 6 Routing patters generated by our method.

to the Nakatani algorithm. On the other hand, in the point
of view of dmax, our method shows the ability to find length
matching routing patterns that the Nakatani algorithm can-
not find.

Figure 6 shows routing patterns generated by our algo-
rithm for some instances. The location of source-pins and
sink-pins are the same in each series, and the difference of
instances in a series is the amount and location of obstacles.

5.2 Quality of Target Pin-Pair Set

The quality of the target pin-pair set is confirmed by how the
target pin-pair set is similar to the connected pin-pairs in a
routing pattern of the Nakatani algorithm. A routing pattern
generated by the Nakatani algorithm step 2 (N2) is one of the
good solutions that achieve the minimum total wire length
and the small differences of each wire length. The similarity
of the target pin-pair set and connected pin-pairs in N2 is
measured by the metrics of DTT and rate.

DTT is the average Manhattan distance of sink-pins in
the target pin-pair set and in a routing pattern whose source-
pins are the same. If a target pin-pair is connected in a rout-
ing pattern, DTT be 0.

The rate is a metric that represents how much the tar-
get pin-pairs is connected in a routing pattern. The value is
given by rate = Lave/(Lave + DTT ).

An example of calculating DTT and rate is shown in
the Fig. 7. Where the target pin-pairs are (A, X), (B,Y), (C,Z),

Fig. 7 DTT and rate.

and the connected pin-pairs are (A,Y), (B,Z), (C, X).
The DTT in this case is 2. Seeing the source-pin A, X

is the target sink-pin and Y is the connected sink-pin, then
the Manhattan distance of these sink-pins is 2. For B, the
sink-pins are Y and Z, then the Manhattan distance is 1. For
C, the sink-pins are Z and X, then the Manhattan distance is
3. The DTT is an average of these Manhattan distances, so
it is (2 + 1 + 3)/3 = 2.

The rate in this case is 0.65. The total wire length of
this pattern is 11, and the average wire length Lave is 11/3 =

3.7. The rate is calculated by Lave/(Lave + DTT ), so it is
3.7/(3.7 + 2) = 0.65.

The DTT and the rate for benchmark instances are in
the Table 2. The quality of the target pin-pair set is con-
firmed by the DTT and the rate in the column of N2, which
is a comparison with the Nakatani method step 2. The Man-
hattan distance of selected target pin-pairs is concluded in
the column of A1, which is a result of our method step 1.

The rate for B series and S series is over 0.7. Our tar-
get pin-pair selection algorithm seems to perform well es-
pecially for B series because, in the performance evaluation
above, our method finds good length matching routing pat-
terns.

For E series and F series, the rate is about 0.5. Seeing
the routing pattern Fig. 6, source-pins in E series and F se-
ries are placed nearby each other and also include obstacles.
Since our pin-pair selection algorithm does not take obsta-
cles or connectivity of pin-pairs into account, it is thought
that our algorithm selects pin-pairs that cannot realize the
connection of them as a target pin-pairs for these instances.

From this evaluation, our target pin-pair selection al-
gorithm selects good pin-pairs as target pin-pairs for some
cases. However, inappropriate pin-pairs might be selected
for some other cases, so there are spaces to improve its per-
formance.
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5.3 Performance of Target Pin-Pair Connection Algorithm

The performance of our target pin-pair connection algorithm
is evaluated by how the target pin-pairs are connected in the
routing pattern. Seeing the DTT and the rate of our method,
the performance can be seen. The result of the DTT and the
rate is in the A3 column of the Table 2.

In the cases of B1, B2, B3, S2, S3, and F1, the rate is
over 0.7. The rate of these cases in N2 is also over 0.7. Then,
we can see that our connection algorithm realizes the target
pin-pair connection when appropriate pin-pairs are selected.

6. Conclusion

In this paper, we proposed a fast length matching routing
method for the set-pair routing problem. In the set-pair rout-
ing, although pin-pairs to be connected is flexible, it is ex-
pected that combinations of pin-pairs which realize length
matching are restricted. In our method, such a combination
of pin-pairs is selected in advance, then routing is performed
to realize the connection of the selected pin-pairs. Heavy
iterative steps are not used for both the selection and the
routing, then a routing pattern is generated in a short time.
In the experiments, we confirmed that the quality of routing
patterns generated by our method is almost equivalent to the
Nakatani algorithm. Furthermore, our method finds length
matching routing patterns that the Nakatani algorithm can-
not find. The computation time is about 360 times faster
than the Nakatani algorithm.
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