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SUMMARY This paper presents the first attribute-based signature
(ABS) scheme in which the correspondence between signers and signatures
is captured in an arithmetic model of computation. Specifically, we design
a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS
scheme for signing policies realizable by arithmetic branching programs
(ABP), which are a quite expressive model of arithmetic computations. On
a more positive note, the proposed scheme places no bound on the size and
input length of the supported signing policy ABP’s, and at the same time,
supports the use of an input attribute for an arbitrary number of times inside
a signing policy ABP, i.e., the so called unbounded multi-use of attributes.
The size of our public parameters is constant with respect to the sizes of
the signing attribute vectors and signing policies available in the system.
The construction is built in (asymmetric) bilinear groups of prime order,
and its unforgeability is derived in the standard model under (asymmetric
version of) the well-studied decisional linear (DLIN) assumption coupled
with the existence of standard collision resistant hash functions. Due to the
use of the arithmetic model as opposed to the boolean one, our ABS scheme
not only excels significantly over the existing state-of-the-art constructions
in terms of concrete efficiency, but also achieves improved applicability in
various practical scenarios. Our principal technical contributions are (a) ex-
tending the techniques of Okamoto and Takashima [PKC 2011, PKC 2013],
which were originally developed in the context of boolean span programs,
to the arithmetic setting; and (b) innovating new ideas to allow unbounded
multi-use of attributes inside ABP’s, which themselves are of unbounded
size and input length.
key words: attribute-based signatures, arithmetic branching programs,
arithmetic span programs, concrete efficiency, unbounded multi-use of at-
tributes, bilinear groups

1. Introduction

Attribute-based signatures (ABS), introduced in the seminal
work of Maji et al. [2], is an ambitious variant of digital sig-
natures [3] that simultaneously enforce fine-grained control
over authentication rights and conceal the identity of sign-
ers. An ABS scheme is associated with a predicate family
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R = {R(Y, ·) : X → {0, 1} | Y ∈ Y}, where X is a uni-
verse of possible signing attributes and Y is a collection
of admissible signing policies over the attributes of X. A
central authority holds a master signing key and publishes
system public parameters. Using its master signing key,
the authority can issue restricted signing keys to individual
signers corresponding to the attributes X ∈ X possessed by
them. Such a constrained signing key associated with some
attribute X ∈ X allows a signer to sign messages under only
those signing policies Y ∈ Y which are satisfied by X , i.e.,
for which R(Y, X ) = 1. The signatures can be verified by
any one using solely the public parameters.

In an ABS scheme, by verifying a signature on some
message with respect to some claimed signing policy, a ver-
ifier gets convinced that the signature is indeed generated
by someone holding some attributes satisfying the policy.
In particular, generating a valid signature on any message
under any signing policy is (computationally) infeasible for
any group of colluding signers, none of whom individually
possesses a signing attribute that satisfies the signing pol-
icy, by pooling their attributes together. This is the so called
unforgeability property of an ABS scheme. The second prop-
erty of an ABS scheme, which ensures that given a signature,
it is impossible to trace the exact signer or signing attributes
used to create it, is known as signer privacy.

We refer the above notion of ABS as signature-policy
ABS in recognition of the fact that in this notion of ABS sign-
ing policies are associated with signatures. Another flavor
of this notion that interchanges the roles of signing attributes
and signing policies, i.e., where signing policies are attached
to signing keys and signatures are produced with respect to
signing attributes, is usually termed as key-policy ABS. In ad-
dition to being an exciting cryptographic primitive in its own
right, ABS has found countless important practical applica-
tions ranging from attribute-based messaging and attribute-
based authentication to anonymous credential systems, trust
negotiations, and leaking secrets (see [2], [4]–[6] for more
details). In this paper, we will deal with the signature-policy
variant since this variant is more natural and better suited in
most of the aforementioned real-life applications of ABS.

Since their inception, ABS have been intensively stud-
ied in a long sequence of interesting works, and just like any
other access-control primitive, a central theme of research
in those works has been to expand the expressiveness of the
allowable class of signing policies in view of implement-
ing this delicate signature paradigm in scenarios where the
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relationship between the signing attributes and policies is
more and more sophisticated. Starting with the early works
[2], [6]–[9], which can handle threshold signing policies, the
class of admissible signing policies has been progressively
enlarged to boolean formulas or span programs by Maji et
al. [4], Okamoto and Takashima [10], [11] as well as El
Kaafarani et al. [12], [13], and further to general circuits by
Tang et al. [14], Sakai et al. [15], Tsabary [16], as well as
El Kaafarani and Katsumata [17], based on various compu-
tational assumptions on bilinear groups and lattices, as well
as in different security models such as random oracle model,
generic group model, and standard model. Very recently,
Datta et al. [18] and Sakai et al. [19] have constructed ABS
schemes which can even realize Turing machines as signing
policies. On the other hand, Bellare and Fuchsbauer [20]
have put forward a versatile signature primitive termed as
policy-based signatures (PBS) and have presented a generic
construction of an ABS scheme from a PBS scheme. This
generic construction, when instantiated with their proposed
PBS scheme for general NP languages, results in an ABS
scheme which can realize any NP relation as signing policy.

Two other important parameters determining the quality
and applicability of ABS schemes are (a) supporting signing
policies of unbounded polynomial size and input length, and
(b) allowing the use of a signing attribute for an unbounded
polynomial number of times inside a signing policy, i.e.,
the so called unbounded multi-use of attributes. Here, the
term “unbounded” means not fixed by the public parame-
ters. Out of the existing ABS schemes mentioned above, the
only schemes which achieve both these parameters simulta-
neously and are somewhat practicable are the constructions
due to Sakai et al. [15], [19]. While Okamoto and Takashima
were able to realize unbounded multi-use of attributes in an
updated version of their ABS scheme [10], namely, [21],
their scheme cannot handle signing policies of unbounded
size and input length. On the other hand, the ABS scheme
of Datta et al. [18] features both the above properties, but
are based on heavy-duty cryptographic tools such as indis-
tinguishability obfuscation.

From the above review of the available ABS schemes,
it is evident that research in the field of ABS has already
reached the pinnacle in terms of expressiveness and un-
boundedness of the supported signing policies, as well as in
terms of accommodating unbounded multi-use of attributes.
Despite of this massive progress, one significant limitation
that still persists in the current state of the art in this area
is that all the existing ABS constructions consider the rela-
tionship between the signing attributes and policies only in
some boolean model of computation, i.e., in those schemes
the signing attributes are treated as bit strings and the poli-
cies are defined by sets of boolean operations. This raises
the following natural question:
Can we construct an ABS scheme which captures the rela-
tionship between the signing attributes and policies in some
arithmetic model of computation, while at the same time,
supports signing policies having unbounded size and input
length, as well as unbounded multi-use of attributes?

In an arithmetic-model-based ABS scheme, signing at-
tributes are considered to be elements of some finite field
Fq , and signing policies are represented by collections of
field operations, i.e., additions and multiplications over the
field Fq . The above question is not only intriguing from
a theoretical perspective as the arithmetic model is a more
structured one compared to its boolean counter part, it is also
of a high significance from several practical view points.
Most importantly, since arithmetic computations arise in
many real-life scenarios, this question has a natural moti-
vation when the concrete efficiency of most of the applica-
tions of ABS discussed above is considered. For instance,
note that it is possible to capture any arithmetic relationships
between the signing attributes and policies by employing
the state-of-the-art ABS schemes of Sakai et al. for general
circuits and Turing machines [15], [19] by representing an
arithmetic computation by an equivalent boolean computa-
tion that replaces each field operation by a corresponding
boolean sub-computation. Given the bit representation of
the signing attributes, this approach can be used to simu-
late any arithmetic relation with an overhead which depends
on the boolean complexity of the field operations. While
providing reasonable asymptotic efficiency in theory (e.g.,
via fast integer multiplication techniques [22]), the concrete
overhead of this approach is enormous. Moreover, scenar-
ios may arise where one does not have access to the bits
of the signing attributes and must treat them as atomic field
elements. Note that in view of similar efficiency and applica-
bility issues with boolean computations, arithmetic variants
of various important cryptographic primitives have already
been considered in the last few years. Examples include
arithmetic garbled circuits [23], arithmetic multi-party com-
putations [24], verifiable arithmetic computations [25], and
so on. An even more fascinating aspect of the above ques-
tion is to simultaneously support unbounded signing policies
and unbounded multi-use of attributes in the arithmetic set-
ting. These properties are especially significant for making
the scheme resilient to potential usage situations which may
arise after the scheme is setup. It can be readily inferred from
the scarcity of existing ABS schemes supporting unbounded
signing policies and unbounded multi-use of attributes si-
multaneously, even in the boolean setting, that achieving
both these properties at the same time is a rather challenging
task in any computational model.

Our Contribution

In this paper, we provide an affirmative answer to the above
important question. For the first time in the literature, we
design an ABS scheme where the relationship between the
signing attributes and policies are considered in an arithmetic
model of computation. More specifically, we construct an
ABS scheme in which signing attributes are represented as
elements of a finite field Fq and the signing policies are ex-
pressed as arithmetic branching programs (ABP) [26], [27]
of unbounded polynomial size and input length over Fq .
While not capable of capturing most general relations like
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Table 1 Comparison of concrete efficiency for 128-bit prime q.

Schemes Computational
Assumptions Signature Size Exponentiations Needed

in Signing
Pairings Needed
in Verification

[15] SXDH At least 4102 |g | At least 5860 At least 4102

Ours SXDLIN 26 |g | 138 30

The values presented in this table is for the signing policy ABP f : Fq → Fq defined by f (x1) = x1 − a1, where a1
is a constant belonging to Fq .
In this table, |g | represents the size of a group element.

arbitrary circuits or Turing machines, ABP’s are a quite pow-
erful model for realizing a wide range of relations that arise
in practice, namely, the relations which can be expressed as
polynomials over some finite field. In particular, note that
there is a linear-time algorithm that can convert any Boolean
formula, Boolean branching program, or arithmetic formula
to an ABP only with a constant blow-up in the representation
size. Thus, in terms of expressiveness of supported sign-
ing policies, our ABS scheme subsumes all the existing ABS
schemes except those for general circuits or Turing machines.
On a more positive note, we place no restriction on the num-
ber of times an attribute can be used inside the description
of a signing policy ABP.

The proposed scheme enjoys perfect signer privacy and
unforgeability against adversaries which are allowed to make
an arbitrary polynomial number of signing key and signature
queries adaptively. Our scheme is built in asymmetric bilin-
ear groups of prime order, and its unforgeability is derived
under the simultaneous external decisional linear (SXDLIN)
assumption [28], which is the asymmetric version of and in
fact equivalent to the well-studied decisional linear (DLIN)
assumption, coupled with the existence of standard collision
resistant hash functions. Observe that asymmetric bilinear
groups of prime order are now considered to be both faster
and more secure in the cryptographic community following
the recent progress of analysing bilinear groups of composite
order [29], [30] and symmetric bilinear groups instantiated
with elliptic curves of small characteristics [31]–[34].

While our ABS construction is less expressive compared
to the state-of-the-art schemes of Sakai et al. [15], [19], due
to the use of the arithmetic model as opposed to the boolean
one, our scheme outperforms those constructions by a large
margin in terms of concrete efficiency. In fact, as we demon-
strate in Table 1 and explain in Remark 2, even for a very
simple signing policy such as an equality test over some fi-
nite field Fq , where q is a 128-bit prime integer, our scheme
can give more than 136 times better results from the view
points of signature size and verification time while at least
42 times better performance on the signing time ground
compared to the one of [15], which is also built in asymmet-
ric prime-order bilinear group setting under the symmetric
external Diffie-Hellman (SXDH) assumption. Hence, it is
evident that our scheme is a far advantageous choice in most
real-life applications of ABS, which often do not require the
most general forms of signing policies but do require high
performance.

Our ABS construction is developed directly from the
scratch. On the technical side, our contribution is two
fold: Firstly, we extend the ABS construction techniques
devised by Okamoto and Takashima [10], [11] in the con-
text of boolean formulas to the arithmetic setting. Secondly
and more interestingly, we develop new ideas to support
unbounded multi-use of attributes inside arithmetic signing
policies, which themselves can be of an arbitrary size and
input length.

2. Preliminaries

In this section we present the backgrounds required for the
rest of this paper.

2.1 Notations

Let λ ∈ N denotes the security parameter and 1λ be its
unary encoding. Let Fq for any prime q ∈ N denotes the
finite field of integers modulo q. For d ∈ N and c ∈ N ∪ {0}
(with c < d), we let [d] = {1, . . . , d} and [c, d] = {c, . . . , d}.
For any set Z , z

U
←− Z represents the process of uniformly

sampling an element z from the set Z , and #Z signifies the
size or cardinality of the set Z . For a probabilistic algorithm
P, we denote byΠ

R
←− P (Θ) the process of samplingΠ from

the output distribution of P with a uniform random tape on
input Θ. Similarly, for any deterministic algorithm D, we
write Π = D (Θ) to denote the output of D on input Θ. We
use the abbreviation PPT to mean probabilistic polynomial-
time. We assume that all the algorithms are given the unary
representation 1λ of the security parameter λ as input, and
will not write 1λ explicitly as input of the algorithms when
it is clear from the context. For any finite field Fq and
d ∈ N, let v⃗ denote the (row) vector (v1, . . . , vd) ∈ Fdq ,
where vi ∈ Fq for all i ∈ [d]. The all zero vector in Fdq
will be denoted by 0⃗d , while the canonical basis vectors

in Fdq will be represented by e⃗(d,i) = (
i−1︷  ︸︸  ︷

0, . . . , 0, 1,
d−i︷  ︸︸  ︷

0, . . . , 0)
for i ∈ [d]. For any two vectors v⃗, w⃗ ∈ Fdq , v⃗ · w⃗ stands
for the inner product of the vectors v⃗ and w⃗, i.e., v⃗ · w⃗ =∑
i∈[d]
viwi ∈ Fq . For any s ∈ N and any collection of s

vectors {v⃗ (i) }i∈[s] ⊂ F
d
q , we denote by span⟨⃗v (i) | i ∈ [s]⟩ the

subspace of Fdq spanned by {v⃗ (i) }i∈[s]. For any multiplicative
group G, let v represents a d-dimensional (row) vector of
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group elements, i.e., v = (gv1, . . . , gvd ) ∈ Gd for some
d ∈ N, where v⃗ = (v1, . . . , vd) ∈ Fdq . We use M =

(
mk,i

)
to represent a d × r matrix for some d, r ∈ N with entries
mk,i ∈ Fq . By M⊤ we will signify the transpose of the
matrix M and by det(M ) the determinant of the matrix M .
Let GL(d, Fq) denote the set of all d × d invertible matrices
over Fq . A function negl : N → R+ is said to be negligible
if for every c ∈ N, there exists T ∈ N such that for all λ ∈ N
with λ > T , |negl (λ ) | < 1/λc .

2.2 Arithmetic Branching Programs and Arithmetic Span
Programs

Here we formally define the notions of arithmetic branching
programs (ABP) and arithmetic span programs (ASP), and
explain the connection between them. These computational
models will be used to represent the signing policies in our
ABS construction.

Definition 1 (Arithmetic Branching Programs: ABP
[26], [27]): A branching program (BP) Γ is defined by
a 5-tuple Γ = (V, E, v0, v1, ϕ), where (V, E) is a directed
acyclic graph, v0, v1 ∈ V are two special vertices called
the source and the sink respectively, and ϕ is a labeling
function for the edges in E. An arithmetic branching pro-
gram (ABP) Γ over a finite field Fq computes a function
f : Fnq → Fq for some n ∈ N. In this case, the labeling
function ϕ assigns to each edge in E either a degree one
polynomial function in one of the input variables with co-
efficients in Fq or a constant in Fq . Let ℘ be the set of all
v0-v1 paths in Γ. The output of the function f computed by
the ABP Γ on some input x⃗ = (x1, . . . , xn) ∈ Fnq is defined

as f ( x⃗) =
∑
P∈℘

[∏
e∈P
ϕ(e) |x⃗

]
, where for any e ∈ E, ϕ(e) |x⃗

represents the evaluation of the function ϕ(e) at x⃗. We refer
to #V + #E as the size of the ABP Γ.

Ishai and Kushilevitz [26], [27] showed how to relate the
computation performed by an ABP to the computation of the
determinant of a matrix.

Lemma 1 ([27]): Given an ABP Γ = (V, E, v0, v1, ϕ) com-
puting a function f : Fnq → Fq , we can efficiently and deter-
ministically compute a function L mapping an input x⃗ ∈ Fnq
to a (#V − 1) × (#V − 1) matrix L( x⃗) over Fq such that the
following holds:

• det(L( x⃗)) = f ( x⃗).

• Each entry of L( x⃗) is either a degree one polynomial in
a single input variable xi (i ∈ [n]) with coefficients in
Fq or a constant in Fq .

• L( x⃗) contains only −1’s in the second diagonal, i.e., the
diagonal just below the main diagonal, and 0’s below
the second diagonal.

Specifically, L is obtained by removing the column corre-
sponding to v0 and the row corresponding to v1 in the matrix

AΓ − I , where AΓ is the adjacency matrix for Γ and I is the
identity matrix of the same size as AΓ.

Note that there is a linear-time algorithm that converts
any Boolean formula, Boolean branching program, or arith-
metic formula to an ABP with a constant blow-up in the
representation size. Thus, ABP’s can be viewed as a stronger
computational model than all the others mentioned above.

Definition 2 (Arithmetic Span Programs: ASP [35],
[36]): An arithmetic span program (ASP) S = (U, ρ)
over n variables is a collection of pairs of vectors U =
{( y⃗ ( j), z⃗( j))}j∈[m] for some m ∈ N, where for all j ∈ [m],
( y⃗ ( j), z⃗( j)) ∈ (Fℓq)2 for some ℓ ∈ N, and a function
ρ : [m] → [n]. We say that x⃗ ∈ Fnq satisfies S if and
only if e⃗(ℓ,ℓ) ∈ span⟨xρ( j) y⃗

( j) + z⃗( j) | j ∈ [m]⟩.

The following lemma shows a connection between the
two arithmetic computational models defined above.

Lemma 2 ([36]): There exists an efficient algorithm that
given an ABP Γ = (V, E, v0, v1, ϕ) of size m + 1 computing
some function f : Fnq → Fq for some n,m ∈ N, constructs
an ASP S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (F(m+1)

q )2, ρ : [m]→
[n]) such that for all x⃗ ∈ Fnq , f ( x⃗) = 0 ⇐⇒ S accepts x⃗.

Proof: The algorithm starts with constructing a modified
ABP Γ′ for f from the input ABP Γ, by first replacing each
edge e ∈ E with a pair of edges labeled ϕ(e) and 1, and
then adding an edge labeled 1 connecting the sink in Γ to a
newly created sink node. Clearly, the modified ABP Γ′ has
m+ 2 vertices, where every vertex has at most one incoming
edge having a lable of degree 1. Next, it applies the trans-
formation of Lemma 1 to Γ′ to obtain the (m + 1) × (m + 1)
matrix representation L of Γ′. By Lemma 1, we clearly have
det(L( x⃗)) = f ( x⃗) for all x⃗ ∈ Fnq , and L is of the following
form:

L =

*..........
,

⋆ ⋆ ⋆ . . . ⋆ ⋆ 0
−1 ⋆ ⋆ . . . ⋆ ⋆ 0
0 −1 ⋆ . . . ⋆ ⋆ 0
...

...
...
. . .

...
...
...

0 0 0 . . . −1 ⋆ 0
0 0 0 . . . 0 −1 1

+//////////
-

,

where the ⋆’s indicate polynomial functions of degree at
most 1 in some input variable xi (i ∈ [n]). Also, observe
that since each vertex in Γ′ has at most one incoming edge
having a label of degree one, for all j ∈ [m], each entry
of the j th column of the matrix L depends on one and the
same input variable xi (i ∈ [n]) and hence can be expressed as
xi y⃗ ( j)+ z⃗( j) for some pair of vectors ( y⃗ ( j), z⃗( j)) ∈ (F(m+1)

q )2.
Further, it is immediate from the structure of L that the first
m columns of L are linearly independent. Now, observe that
f ( x⃗) = 0 ⇐⇒ det(L( x⃗)) = 0 ⇐⇒ e⃗(m+1,m+1) , which
is the (m + 1)th column of L, lies in the linear span of the
first m columns of L, i.e., e⃗(m+1,m+1) ∈ span⟨xi y⃗ ( j) + z⃗( j) |

j ∈ [m]∧ the j th column of L depends on xi (i ∈ [n])⟩. The
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algorithm outputs the ASP S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂

(F(m+1)
q )2, ρ : [m] → [n]), where ρ : [m] → [n] is defined

by ρ( j) = i if the j th column of L depends on xi . This ASP
S is clearly the desired one by the above explanation. This
completes the proof of Lemma 2. ■

2.3 Bilinear Groups and Dual Pairing Vector Spaces

In this section, we will provide the necessary backgrounds
on bilinear groups and dual pairing vector spaces, which are
the primary building blocks of our ABS construction.

Definition 3 (Bilinear Group): A bilinear group paramsG =
(q,G1,G2,GT , g1, g2, e) is a tuple of a prime q ∈ N;
cyclic multiplicative groups G1,G2,GT of order q each with
polynomial-time computable group operations; generators
g1 ∈ G1, g2 ∈ G2; and a polynomial-time computable non-
degenerate bilinear map e : G1 × G2 → GT , i.e., e satisfies
the following two properties:

• Bilinearity: e(gΥ1 , g
Υ̂
2 ) = e(g1, g2)ΥΥ̂ for all Υ, Υ̂ ∈ Fq .

• Non-degeneracy: e(g1, g2) , 1GT , where 1GT denotes
the identity element of the group GT .

A bilinear group is said to be asymmetric if no efficiently
computable isomorphism exists between G1 and G2. Let
Gbpg be an algorithm that on input the unary encoded
security parameter 1λ, outputs a description paramsG =
(q,G1,G2,GT , g1, g2, e) of a bilinear group.

Definition 4 (Dual Pairing Vector Spaces: DPVS [37],
[38]): A dual pairing vector space (DPVS) paramsV =
(q,V,V∗,GT ,A,A∗, e) formed by the direct product of a
bilinear group paramsG = (q,G1,G2,GT , g1, g2, e) is a
tuple of a prime q ∈ N; d-dimensional vector spaces
V = Gd

1 , V∗ = Gd
2 over Fq for some d ∈ N, under vec-

tor addition and scalar multiplication defined component-
wise in the usual manner; canonical bases A = {a(i) =

(
i−1︷         ︸︸         ︷

1G1, . . . , 1G1, g1,

d−i︷         ︸︸         ︷
1G1, . . . , 1G1 )}i∈[d] and A∗ = {a∗(i) =

(
i−1︷         ︸︸         ︷

1G2, . . . , 1G2, g2,

d−i︷         ︸︸         ︷
1G2, . . . , 1G2 )}i∈[d] of V and V∗ respec-

tively, where 1G1 and 1G2 are the identity elements of the
groups G1 and G2 respectively; and a pairing e : V × V∗ →
GT defined by e(v, w) =

∏
i∈[d]

e(gvi1 , g
wi

2 ) ∈ GT for all

v = (gv11 , . . . , g
vd
1 ) ∈ V, w = (gw1

2 , . . . , g
wd

2 ) ∈ V∗. Ob-
serve that the newly defined map e is also non-degenerate
bilinear, i.e., e also satisfies the following two properties:

• Bilinearity: e(Υv, Υ̂w) = e(v, w)ΥΥ̂ for all Υ, Υ̂ ∈ Fq ,
v ∈ V, and w ∈ V∗.

• Non-degeneracy: If e(v, w) = 1GT for all w ∈ V∗, then

v = (
d︷         ︸︸         ︷

1G1, . . . , 1G1 ). Similar statement also holds with
the vectors v and w interchanged.

For any ordered basis W = {w (1), . . . , w (d) } of V (or V∗),
and any vector v⃗ ∈ Fdq , let (v⃗ )W represent the vector in V
(or V∗ accordingly) formed by the linear combination of
the members of W with the components of v⃗ as the coef-
ficients, i.e., (v⃗ )W =

∑
i∈[d]
viw

(i) ∈ V (or V∗ accordingly).

Also, for any s ∈ N and any collection of s vectors {v (i) }i∈[s]
of V (or V∗), we will denote by span⟨v (i) | i ∈ [s]⟩ the
subspace of V (or V∗ accordingly) spanned by the set of
vectors {v (i) }i∈[s]. The DPVS generation algorithm Gdpvs
takes as input the unary encoded security parameter 1λ,
a dimension value d ∈ N, along with a bilinear group
paramsG = (q,G1,G2,GT , g1, g2, e)

R
←− Gbpg(), and outputs

a description paramsV = (q,V,V∗, GT ,A,A∗, e) of DPVS
with d-dimensional V and V∗.

We now describe random dual orthonormal basis generator
Gob [37], [38] in Fig. 1. This algorithm will be utilized as a
sub-routine in our ABS construction.

2.4 Complexity Assumption

For realizing our ABS construction in asymmetric bilinear
groups, we rely on the natural extension of the well-studied
decisional linear (DLIN) assumption to the asymmetric bi-
linear group setting, called the external decisional linear
(XDLIN) assumption.

Assumption (External Decisional Linear: XDLIN
[28], [39]): For ȷ ∈ [2], the XDLIN ȷ problem
is to guess the bit β̂

U
←− {0, 1} given ϱ

xdlin ȷ
β̂

=

(paramsG, gϖ1 , g
Υ
1 , g

ℵϖ
1 , g

ςΥ
1 , g

ϖ
2 , g

Υ
2 , g

ℵϖ
2 , g

ςΥ
2 ,ℜ ȷ,β̂), where

paramsG = (q,G1,G2,GT , g1, g2, e)
R
←− Gbpg();

ϖ,Υ,ℵ, ς, ε
U
←− Fq;

ℜ ȷ,0 = g
(ℵ+ς)
ȷ ,ℜ ȷ,1 = g

(ℵ+ς)+ε
ȷ .

The XDLIN ȷ assumption states that for any PPT algorithmS,
for any security parameter λ, the advantage of S in deciding
the XDLIN ȷ problem, defined as

AdvXDLIN ȷ
S

(λ) = ��� Pr
[
1

R
←− S(ϱXDLIN ȷ

0 )
]
−

Pr
[
1

R
←− S(ϱXDLIN ȷ

1 )
] ���

is negligible in λ, i.e., AdvXDLIN ȷ
S

(λ) ≤ negl (λ ), where
negl is some negligible function. The simultaneous XDLIN
(SXDLIN) assumption states that both XDLIN1 and XDLIN2
assumptions hold at the same time. For any security parame-
ter λ, we denote the advantage of any probabilistic algorithm
S against SXDLIN as AdvSXDLIN

S
(λ).

Indeed as noted in [28], for all ȷ ∈ [2], the XDLIN ȷ assump-
tion is equivalent to the DLIN assumption in the group G ȷ in
the generic bilinear group model [40]. We now define some
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Gob (N, (d0, . . . , dN )): This algorithm takes as input the unary encoded security parameter 1λ , a number N ∈ N, and the respective
dimensions d0, . . . , dN ∈ N of the N + 1 pairs of bases to be generated. It executes the following operations:

1. It first generates paramsG = (q, G1, G2, GT , g1, g2, e)
R
←− Gbpg ().

2. Next, it samples ψ
U
←− Fq\{0} and computes gT = e(g1, g2)ψ .

3. Then, for ı ∈ [0, N ], it performs the following:

a. It constructs paramsVı = (q, Vı, V∗ı, GT , Aı, A
∗
ı, e)

R
←− Gdpvs (dı, paramsG).

b. It samples B(ı) =
(
b(ı)
k, i

) U
←− GL(dı, Fq ).

c. It computes B∗(ı) =
(
b∗(ı)
k, i

)
= ψ((B(ı) )−1)⊤.

d. For all k ∈ [dı ], let b⃗(ı,k ) and b⃗∗(ı,k ) represent the k th rows of B(ı) and B∗(ı) respectively. It computes b (ı,k ) =

(b⃗(ı,k ) )Aı , b
∗(ı,k ) = (b⃗∗(ı,k ) )A∗ı for k ∈ [dı ], and sets

Bı = {b
(ı,1), . . . , b (ı,dı ) }, B∗ı = {b

∗(ı,1), . . . , b∗(ı,dı ) }.

Clearly Bı and B∗ı form bases of the vector spaces Vı and V∗ı respectively. Also, note that Bı and B∗ı are dual orthonormal in the
sense that for all k, k′ ∈ [dı ],

e(b (ı,k ), b∗(ı,k
′) ) =

{
gT if k = k′,
1GT otherwise.

4. Next, it sets params = ( {paramsVı }ı∈[0,N ], gT ).

5. It returns (params, {Bı, B∗ı }ı∈[0,N ]).

Fig. 1 Dual orthonormal basis generator Gob.

decisional problems. We will rely on the hardness of these
decisional problems for deriving the unforgeability property
of our ABS construction. The hardness of these decisional
problems can be reduced to that of the SXDLIN problem, as
shown in Lemmas 3–8 below.

Definition 5 (Problem 1): Problem 1 is to guess the
bit β̂ ∈ {0, 1} given ϱP1

β̂
= (params, {Bı, B̃∗ı }ı∈[0,2],

{e(α,ν,β̂) }α∈[2],ν∈[2], f
(0,β̂), { f (1,ν,β̂) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗0 = {b
∗(0,1), b∗(0,3), b∗(0,4) };

B̃∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,7), b∗(1,8), b∗(1,11), . . . ,

b∗(1,14) };

B̃∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), . . . , b∗(2,8) };

δ, τ, {θν, θ
′
ν }ν∈[2], γ0

U
←− Fq,

{γ⃗ (ν), γ⃗′(ν), γ⃗′′(ν) }ν∈[2]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, 0⃗4, θν e⃗(2,ν), 0⃗2, γ⃗ (ν))B1

e(2,ν,0) = (0⃗2, 0⃗2, 0⃗2, γ⃗′(ν))B2

e(2,ν,1) = (0⃗2, θ ′ν e⃗(2,ν), 0⃗2, γ⃗′(ν))B2




for ν ∈ [2];

f (0,0) = (δ, 0, 0, γ0)B0, f
(0,1) = (δ, τ, 0, γ0)B0 ;

f (1,ν,0) = (0⃗2, δe⃗(2,ν), 0⃗6, 0⃗2, γ⃗′′(ν))B1

f (1,ν,1) = (0⃗2, δe⃗(2,ν), τe⃗(2,ν), 0⃗4, 0⃗2, γ⃗′′(ν))B1

}
for
ν ∈ [2].

For any security parameter λ, the advantage of any proba-
bilistic adversary B in deciding Problem 1 is defined as

AdvP1
B

(λ) =
����Pr

[
1

R
←− B(ϱP1

0 )
]
− Pr

[
1

R
←− B(ϱP1

1 )
] ���� .

Lemma 3: For any probabilistic algorithm B, there exist
probabilistic algorithms S1 and S2, whose running times
are essentially the same as that of B, such that for any secu-
rity parameter λ, AdvP1

B
(λ) ≤

∑
ν∈[2]

AdvSXDLIN
Sν

(λ) + negl (λ ),

where negl is some negligible function.

Proof: Observe that Problem 1 is analogous to Problem 1 in
[10], [21]. Thus, the proof of Lemma 3 is analogous to that
of Lemma 1 in [21]. ■

Definition 6 (Problem 2): Problem 2 is to guess the bit
β̂ ∈ {0, 1} given ϱP2

β̂
= (params, {B̃ı,B∗ı }ı∈[0,1],B2,B

∗
2,

h∗(0,β̂), f (0), {h∗(1,ν,β̂), f (1,ν) }ν∈[2], {h
∗(2,ν) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃0 = {b
(0,1), b(0,3), b(0,4) };

B̃1 = {b
(1,1), . . . , b(1,4), b(1,7), . . . , b(1,14) };

ϑ, <, δ, τ, ξ0 U
←− Fq, {ξ⃗

(ν) }ν∈[2]
U
←− F2

q;

h∗(0,0) = (ϑ, 0, ξ0, 0)B∗0, h
∗(0,1) = (ϑ, <, ξ0, 0)B∗0 ;

f (0) = (δ, τ, 0, 0)B0 ;

h∗(1,ν,0) = (0⃗2, ϑe⃗(2,ν), 0⃗6, ξ⃗ (ν), 0⃗2)B∗1
h∗(1,ν,1) = (0⃗2, ϑe⃗(2,ν), <e⃗(2,ν), 0⃗4, ξ⃗ (ν), 0⃗2)B∗1
f (1,ν) = (0⃗2, δe⃗(2,ν), τe⃗(2,ν), 0⃗4, 0⃗2, 0⃗2)B1




for
ν ∈ [2];

h∗(2,ν) = ϑb∗(2,ν) for ν ∈ [2].

For any security parameter λ, the advantage of any proba-
bilistic adversary B in deciding Problem 2 is defined as
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AdvP2
B

(λ) =
����Pr

[
1

R
←− B(ϱP2

0 )
]
− Pr

[
1

R
←− B(ϱP2

1 )
] ���� .

Lemma 4: For any probabilistic algorithm B, there exists a
probabilistic algorithm S, whose running time is essentially
the same as that of B, such that for any security parameter
λ, AdvP2

B
(λ) ≤ AdvSXDLIN

S
(λ) + negl (λ ), where negl is some

negligible function.

Proof: Observe that Problem 2 is essentially the same as
Basic Problem 2 in [41], [42]. Hence, Lemma 4 can be
proven in the same way as Lemma 35 in [42]. ■

Definition 7 (Problem 3): Problem 3 is to guess the bit
β̂ ∈ {0, 1} given ϱP3

β̂
= (params, {Bı,B∗ı }ı∈{0,2},B1, B̃

∗
1,

{e(1,ν,β̂) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗1 = {b
∗(1,1), . . . , b∗(1,8), b∗(1,11), . . . , b∗(1,14) };

{θν }ν∈[2]
U
←− Fq, {γ⃗

(ν) }ν∈[2]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, 0⃗4, θν e⃗(2,ν), 0⃗2, γ⃗ (ν))B1

}
for ν ∈ [2].

For any security parameter λ, the advantage of any proba-
bilistic adversary B in deciding Problem 3 is defined as

AdvP3
B

(λ) =
����Pr

[
1

R
←− B(ϱP3

0 )
]
− Pr

[
1

R
←− B(ϱP3

1 )
] ���� .

Lemma 5: For any probabilistic algorithm B, there exist
probabilistic algorithms S1 and S2, whose running times
are essentially the same as that of B, such that for any secu-
rity parameter λ, AdvP3

B
(λ) ≤

∑
ν∈[2]

AdvSXDLIN
Sν

(λ) + negl (λ ),

where negl is some negligible function.

Proof: Observe that Problem 3 is similar to Problem 1 in
[10], [21]. Thus, the proof of Lemma 5 is analogous to that
of Lemma 1 in [21]. ■

Definition 8 (Problem 4-α (α ∈ [n = p(λ)])): Prob-
lem 4-α is to guess the bit β̂ ∈

{0, 1} given ϱP4-α
β̂

= (params, {Bı,B∗ı }ı∈{0,2}, B̃1,B
∗
1, f

(0),

{h∗(1,α,ν,β̂), f (1,ν), g(1,ν) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃1 = {b
(1,1), . . . , b(1,6), b(1,11), . . . , b(1,14) };

τ, {σ̆α,ν }ν∈[2], {θα,ν }ν∈[2]
U
←− Fq, {ξ⃗

(α,ν) }ν∈[2]
U
←− F2

q;

f (0) = (0, τ, 0, 0)B0 ;

h∗(1,α,ν,0) = (σ̆α,ν (1, α), 0⃗2, 0⃗6, ξ⃗ (α,ν), 0⃗2)B∗1
h∗(1,α,ν,1) = (σ̆α,ν (1, α), 0⃗2,−θα,ν e⃗(2,ν),

θα,ν e⃗(2,ν), 0⃗2, ξ⃗ (α,ν), 0⃗2)B∗1
f (1,ν) = (0⃗4, τe⃗(2,ν), τe⃗(2,ν), 0⃗2, 0⃗2, 0⃗2)B1

g(1,ν) = (0⃗4, 0⃗4, τe⃗(2,ν), 0⃗2, 0⃗2)B1




for
ν ∈ [2].

For any security parameter λ, for any n = p(λ), where p
is an arbitrary polynomial, for any α ∈ [n], the advantage
of any probabilistic adversary B in deciding Problem 4-α is
defined as

AdvP4-α
B

(λ) =
����Pr

[
1

R
←− B(ϱP4-α

0 )
]
− Pr

[
1

R
←− B(ϱP4-α

1 )
] ���� .

Lemma 6: For any probabilistic algorithm B, there exists a
probabilistic algorithm S, whose running time is essentially
the same as that of B, such that for any security parameter
λ and any n = p(λ), AdvP4-α

B
(λ) ≤

∑
ν∈[2]

AdvSXDLIN
Sα-ν

(λ) +

negl (λ ) for all α ∈ [n], where Sα-ν (·) = S(α, ν, ·) for any
α, ν ∈ N, and negl is some negligible function.

Proof: Observe that Problem 4-α is essentially the same
as Basic Problem 3-p in [41], [42]. Hence, the proof of
Lemma 6 is analogous to that of Lemma 36 in [42]. ■

Definition 9 (Problem 5-α (α ∈ [n = p(λ)])): Prob-
lem 5-α is to guess the bit β̂ ∈ {0, 1} given
ϱP5-α
β̂
= (params, {Bı,B∗ı }ı∈{0,2},B1, B̃

∗
1, h
∗(0), {h∗(1,α,ν) }ν∈[2],

{ f (1,ι,ν,β̂) }ι∈[n]\{α },ν∈[2], {h̆
∗(ν)
}ν∈{5,6,9,10}), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗1 = {b
∗(1,1), . . . , b∗(1,6), b∗(1,9), . . . , b∗(1,14) };

<, {σ̆α,ν }ν∈[2], { µ̆ι,ν }ι∈[n]\{α },ν∈[2]
U
←− Fq, {ξ⃗

(α,ν) }ν∈[2],

{θ⃗ (ι,ν) }ι∈[n]\{α },ν∈[2], {γ⃗
(ι,ν) }ι∈[n]\{α },ν∈[2]

U
←− F2

q;

h∗(0) = <b∗(0,2);

h∗(1,α,ν) = (σ̆α,ν (1, α), 0⃗2, 0⃗2, <e⃗(2,ν), 0⃗2, ξ⃗ (α,ν), 0⃗2)B∗1
for ν ∈ [2];

f (1,ι,ν,0) = ( µ̆ι,ν (ι,−1), 0⃗2, 0⃗6, 0⃗2, γ⃗ (ι,ν))B1

f (1,ι,ν,1) = ( µ̆ι,ν (ι,−1), 0⃗2, 0⃗2, θ⃗ (ι,ν), 0⃗2, 0⃗2,
γ⃗ (ι,ν))B1




for
ι ∈ [n]\{α},
ν ∈ [2];

h̆
∗(ν)
= <b∗(1,ν) for ν ∈ {5, 6, 9, 10}.

For any security parameter λ, for any n = p(λ), where p
is an arbitrary polynomial, for any α ∈ [n], the advantage
of any probabilistic adversary B in deciding Problem 5-α is
defined as

AdvP5-α
B

(λ) =
����Pr

[
1

R
←− B(ϱP5-α

0 )
]
− Pr

[
1

R
←− B(ϱP5-α

1 )
] ���� .

Lemma 7: For any probabilistic algorithm B, there is
a probabilistic algorithm S, whose running time is es-
sentially the same as that of B, such that for any se-
curity parameter λ and any n = p(λ), AdvP5-α

B
(λ) ≤∑

ι∈[n]\{α },ν∈[2]
AdvSXDLIN

Sα-ι-ν
(λ) + negl (λ ) for all α ∈ [n], where

Sα-ι-ν (·) = S(α, ι, ν, ·) for any α, ι, ν ∈ N and negl is some
negligible function.

Proof: Observe that Problem 5-α is essentially the same as
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Basic Problem 5-p in [41], [42]. Hence, Lemma 4 can be
proven in the same way as Lemma 39 in [42]. ■

Definition 10 (Problem 6-α (α ∈ [n = p(λ)])): Prob-
lem 6-α is to guess the bit β̂ ∈ {0, 1} given ϱP6-α

β̂
=

(params, {Bı,B∗ı }ı∈{0,2}, B̃1,B
∗
1, {h

∗(1,α,ν,β̂) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃1 = {b
(1,1), . . . , b(1,6), b(1,9), . . . , b(1,14) };

{σ̆α,ν }ν∈[2], {θα,ν }ν∈[2]
U
←− Fq, {ξ⃗

(α,ν) }ν∈[2]
U
←− F2

q;

h∗(1,α,ν,0) = (σ̆α,ν (1, α), 0⃗2, 0⃗6, ξ⃗ (α,ν), 0⃗2)B∗1
h∗(1,α,ν,1) = (σ̆α,ν (1, α), 0⃗2, 0⃗2, θα,ν e⃗(2,ν), 0⃗2,

ξ⃗ (α,ν), 0⃗2)B∗1




for
ν ∈ [2].

For any security parameter λ, for any n = p(λ), where p
is an arbitrary polynomial, for any α ∈ [n], the advantage
of any probabilistic adversary B in deciding Problem 6-α is
defined as

AdvP6-α
B

(λ) =
����Pr

[
1

R
←− B(ϱP6-α

0 )
]
− Pr

[
1

R
←− B(ϱP6-α

1 )
] ���� .

Lemma 8: For any probabilistic algorithm B, there exists a
probabilistic algorithm S, whose running time is essentially
the same as that of B, such that for any security parameter
λ and any n = p(λ), AdvP6-α

B
(λ) ≤

∑
ν∈[2]

AdvSXDLIN
Sα-ν

(λ) +

negl (λ ) for all α ∈ [n], where Sα-ν (·) = S(α, ν, ·) for any
α, ν ∈ N, and negl is some negligible function.

Proof: Observe that Problem 6-α is essentially the same
as Basic Problem 4-p in [41], [42]. Hence, the proof of
Lemma 8 is similar to that of Lemma 38 in [42]. ■

Definition 11 (Problem 7): Problem 7 is to guess the bit
β̂ ∈ {0, 1} given ϱP7

β̂
= (params, {Bı,B∗ı }ı∈{0,2},B1, B̃

∗
1,

{e(1,ν,β̂) }ν∈[3]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,7), b∗(1,8), b∗(1,10), . . . ,

b∗(1,14) };

{θν }ν∈[3]
U
←− Fq, {γ⃗

(ν) }ν∈[3]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, θν e⃗(2,ν), 0⃗4, 0⃗2, γ⃗ (ν))B1

}
for ν ∈ [2];

e(1,3,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (3))B1,

e(1,3,1) = (0⃗4, 0⃗4, θ3e⃗(2,1), 0⃗2, γ⃗ (3))B1 .

For any security parameter λ, the advantage of any proba-
bilistic adversary B in deciding Problem 7 is defined as

AdvP7
B

(λ) =
����Pr

[
1

R
←− B(ϱP7

0 )
]
− Pr

[
1

R
←− B(ϱP7

1 )
] ���� .

Lemma 9: For any probabilistic algorithm B, there exist

probabilistic algorithms S1, S2, and S3, whose running
times are essentially the same as that of B, such that for
any security parameter λ, AdvP7

B
(λ) ≤

∑
ν∈[3]

AdvSXDLIN
Sν

(λ) +

negl (λ ), where negl is some negligible function.

Proof: Observe that Problem 7 is similar to Problem 1 in
[10], [21]. Thus, the proof of Lemma 9 is analogous to that
of Lemma 1 in [21]. ■

Definition 12 (Problem 8): Problem 8 is to guess the bit
β̂ ∈ {0, 1} given ϱP8

β̂
= (params, {B̃ı,B∗ı }ı∈{0,2},B1,B

∗
1,

h∗(0,β̂), f (0), {h∗(2,ν,β̂), f (2,ν) }ν∈[2]), where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃0 = {b
(0,1), b(0,3), b(0,4) };

B̃2 = {b
(2,1), b(2,2), b(2,5), . . . , b(2,8) };

ϑ, <, δ, τ, ξ0 U
←− Fq, {ξ⃗

(ν) }ν∈[2]
U
←− F2

q, X
U
←− GL(2, Fq),

Y = (X−1)⊤;
h∗(0,0) = (ϑ, 0, ξ0, 0)B∗0, h

∗(0,1) = (ϑ, <, ξ0, 0)B∗0 ;

f (0) = (δ, τ, 0, 0)B0 ;

h∗(2,ν,0) = (ϑe⃗(2,ν), 0⃗2, ξ⃗ (ν), 0⃗2)B∗2
h∗(2,ν,1) = (ϑe⃗(2,ν), <e⃗(2,ν)X, ξ⃗ (ν), 0⃗2)B∗2
f (2,ν) = (δe⃗(2,ν), τe⃗(2,ν)Y, 0⃗2, 0⃗2)B2




for ν ∈ [2].

For any security parameter λ, the advantage of any proba-
bilistic adversary B in deciding Problem 8 is defined as

AdvP8
B

(λ) =
����Pr

[
1

R
←− B(ϱP8

0 )
]
− Pr

[
1

R
←− B(ϱP8

1 )
] ���� .

Lemma 10: For any probabilistic algorithm B, there exists
a probabilistic algorithm S, whose running time is essen-
tially the same as that of B, such that for any security pa-
rameter λ, AdvP8

B
(λ) ≤ AdvSXDLIN

S
(λ)+negl (λ ), where negl

is some negligible function.

Proof: Observe that Problem 8 is essentially the same as
Problem 3 in [10], [21]. Thus, the proof of Lemma 10 is
similar to that of Lemma 3 in [21]. ■

2.5 Collision-Resistant Hash Functions

Here we will formally describe the notion of collision-
resistant hash functions which will be used as an ingredient
of our ABS construction.

▷ Syntax

A hash function family H associated with a bilinear group
generator Gbpg and a polynomial poly (· ) consists of the fol-
lowing two polynomial-time algorithms:

KGen(): The hashing key generation algorithm is a prob-
abilistic algorithm that takes as input the unary encoded
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security parameter 1λ, and samples a hashing key hk
from the key space HKλ, which is a probability space
over bit strings parameterized by λ.

H(λ,poly)
hk : D = {0, 1}poly(λ ) → Fq\{0}: A deterministic
function that maps an element of D = {0, 1}poly(λ ) to an
element of Fq\{0} with q being the first element of the
output paramsG = (q,G1,G2,GT , g1, g2, e) of Gbpg on
input 1λ.

▷ Collision Resistance

A hash function family H associated with Gbpg and poly (· )
is said to be collision resistant if for any PPT adversaryM,
for any security parameter λ and any hk

R
←− KGen(), the

advantage ofM in finding a collision, defined as

AdvH,CR
M

(λ) = Pr[Υ1,Υ2 ∈ D = {0, 1}poly(λ )∧

Υ1 , Υ2 ∧ H(λ,poly)
hk (Υ1) =

H(λ,poly)
hk (Υ2) | (Υ1,Υ2)

R
←−M(hk,D)]

is negligible, i.e., AdvH,CR
M

(λ) ≤ negl (λ ), where negl is
some negligible function.

2.6 The Notion of Attribute-Based Signatures for Arith-
metic Branching Programs

Let for some prime q ∈ N, F (q)
abp denote the class of all func-

tions f : Fnq → Fq for any n = p(λ) ∈ N, where p is an arbi-
trary polynomial, realizable by some ABP of polynomial size
over Fq . In this section, we will formally define the notion of
an attribute-based signature (ABS) scheme for the predicate
familyR (q)

z-abp defined asR (q)
z-abp = {R

(q)
z-abp( f , ·) : Fnq → {0, 1} |

f : Fnq → Fq ∈ F
(q)

abp }, where R(q)
z-abp( f , x⃗) = 1 if f ( x⃗) = 0,

and R(q)
z-abp( f , x⃗) = 0 otherwise for all f : Fnq → Fq ∈ F

(q)
abp

and x⃗ ∈ Fnq . As stated in Lemma 2, there exists a polynomial-
time algorithm that on input any f : Fnq → Fq ∈ F

(q)
abp ,

constructs an ASP S = (U, ρ) such that for any x⃗ ∈ Fnq , it
holds that R(q)

z-abp( f , x⃗) = 1 ⇐⇒ f ( x⃗) = 0 ⇐⇒ S ac-
cepts x⃗. Therefore, for the rest of this paper, we will identify
predicates R(q)

z-abp( f , ·) ∈ R (q)
z-abp by their corresponding ASP-

representations S = (U, ρ) computed using the algorithm of
Lemma 2.

▷ Syntax

An attribute-based signature (ABS) scheme for some pred-
icate family R (q)

z-abp consists of an associated message space
M ⊆ {0, 1}∗, a signature space Σ, along with the following
PPT algorithms:

ABS.Setup(): The setup algorithm takes as input the unary
encoded security parameter 1λ. It outputs the public
parameters mpk and the master signing key msk.

ABS.KeyGen(mpk,msk, x⃗): The signing key generation al-
gorithm takes as input the public parameters mpk, the

master signing key msk, along with a signing attribute
vector x⃗ ∈ Fnq for some n = p(λ) ∈ N. It outputs a
signing key sk( x⃗).

ABS.Sign(mpk, x⃗, sk( x⃗), S,msg): The signing algorithm
takes as input the public parameters mpk, a signing at-
tribute string x⃗ ∈ Fnq for some n = p(λ) ∈ N, a signing
key sk( x⃗) for x⃗, a signing policy R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp represented as an ASP S = (U, ρ), and a
message msg ∈ M. It outputs either a signature sig ∈ Σ
or the distinguished symbol ⊥ indicating failure.

ABS.Verify(mpk, S, (msg, sig)): The verification algorithm
takes as input the public parameters mpk, a signing policy
R(q)

z-abp( f , ·) ∈ R (q)
z-abp represented as an ASP S = (U, ρ),

and a message-signature pair (msg, sig) ∈ M × Σ. It
outputs either 1 or 0.

▷ Correctness

An ABS scheme for some predicate familyR (q)
z-abp is said to be

correct if for any security parameter λ, any n = p(λ) ∈ N,
any signing policy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈
R

(q)
z-abp represented as an ASP S = (U, ρ), any signing at-

tribute vector x⃗ ∈ Fnq , any (mpk,msk)
R
←− ABS.Setup(), and

any sk( x⃗)
R
←− ABS.KeyGen(mpk, msk, x⃗), if S accepts x⃗, then

Pr[1
R
←− ABS.Verify(mpk, S, (msg, sig)) | sig

R
←−

ABS.Sign(mpk, x⃗, sk( x⃗), S,msg)] ≥ 1 − negl (λ ) ,

where negl is some negligible function, and the probability
is taken over the random coins of ABS.Sign and ABS.Verify.

▷ Signer Privacy

An ABS scheme for some predicate family R (q)
z-abp is said

to achieve perfect signer privacy if for any security pa-
rameter λ, any n = p(λ) ∈ N, any message msg ∈

M, any (mpk,msk)
R
←− ABS.Setup(), any signing policy

R(q)
z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)

z-abp having ASP repre-
sentation S = (U, ρ), any two signing attribute vectors
x⃗, x⃗ ′ ∈ Fnq such that S accepts both x⃗ and x⃗ ′, any sign-

ing keys sk( x⃗)
R
←− ABS.KeyGen(mpk,msk, x⃗), sk( x⃗ ′)

R
←−

ABS.KeyGen(mpk, msk, x⃗ ′), the distributions of the sig-
natures outputted by ABS.Sign(mpk, x⃗, sk( x⃗), S,msg) and
ABS.Sign(mpk, x⃗ ′, sk( x⃗ ′), S,msg) are equivalent.

▷ Existential Unforgeability

Existential unforgeability of an ABS scheme for some
predicate class R (q)

z-abp against adaptive-predicate-adaptive-
message attack is defined through the following experiment
between a stateful probabilistic adversary A and a stateful
probabilistic challenger B:

• B generates (mpk,msk)
R
←− ABS.Setup() and sends mpk

to A.
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• A may adaptively make any polynomial number of
queries of the following types to B:

– Signing Key Generation Query: WhenA requests the
generation of a signing key for some signing attribute
vector x⃗ ∈ Fnq for some n = p(λ) ∈ N, B generates a

signing key sk( x⃗)
R
←− ABS.KeyGen(mpk,msk, x⃗) and

stores the signing key sk( x⃗).
– Signature Generation Query: When A specifies a

signing key for some signing attribute vector x⃗ ∈ Fnq
for some n = p(λ) ∈ N that it has already re-
quested B to generate, and requests the generation of
a signature using that signing key on some message
msg ∈ M under some signing policy R(q)

z-abp( f , ·) :
Fnq → {0, 1} ∈ R (q)

z-abp represented as an ASP S =
(U, ρ) such that S accepts x⃗, B creates a signature
sig

R
←− ABS.Sign(mpk, x⃗, sk( x⃗), S,msg) and stores it.

– Signing Key/Signature Reveal Query: When A re-
quests B to reveal an already created signing key cor-
responding to some signing attribute vector x⃗ ∈ Fnq
for some n = p(λ) ∈ N or an already created signa-
ture on some message msg ∈ M under some signing
policy R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp for some

n = p(λ) ∈ N represented by an ASP S = (U, ρ), B
provides A with the respective queried item.

We would like to emphasize that when a signing key or
signature generation query is made,A does not receives
the signing key or signature that B creates. A receives
it only when it makes a reveal query for that signing key
or signature.

• At the end of interactionA outputs a triplet (S,msg, sig),
where S is the ASP-representation of a signing policy
R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp for some n = p(λ) ∈

N, msg ∈ M, and sig ∈ Σ. A wins if the following
conditions hold simultaneously:

(a) 1 = ABS.Verify(mpk, S, (msg, sig)).
(b) A has not made a signature reveal query on msg under
S.

(c) S does not accept any signing attribute string x⃗ ∈ Fnq
for which A has requested to reveal a signing key.

An ABS scheme for some predicate family R (q)
z-abp is said

to be existentially unforgeable against adaptive-predicate-
adaptive-message attack if for any PPT adversary A, for
any security parameter λ, the advantage of A in the above
experiment, defined as

AdvABS,UF
A

(λ)=Pr
[
A wins in the unforgeability experiment

]
is negligible in λ, i.e., AdvABS,UF

A
(λ) ≤ negl (λ ), where negl

is some negligible function.

Remark 1: Note that following [10], we distinguish be-
tween the generation and reveal queries made by the adver-
sary for both signing keys and signatures in the existential
unforgeability experiment, as can be seen above. As ex-
plained in [10], the reason for making such distinction for
the signing keys is as follows. Suppose we do not differenti-
ate between the signing key generation and signing key reveal
queries. This means the challenger never stores any signing
key it generates for the adversary without revealing it to the
adversary. Consequently, according to the restriction of the
experiment, the adversary can never request the challenger
to generate a signing key corresponding to some signing at-
tribute vector x⃗ ∈ Fnq which is accepted by the signing policy
R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp., under which it claims

the forgery at the end of the experiment,prior to requesting a
signature on some message msg ∈ M under the signing pol-
icy R(q)

z-abp( f , ·). In order to answer such a signature query,
the challenger then needs to find out some signing attribute
vector x⃗ ∈ Fnq satisfying the signing policy R(q)

z-abp( f , ·) on its
own. Unfortunately however, the challenger may not always
find a suitable x⃗ ∈ Fnq in a polynomial time since it involves
the satisfiability problem for polynomial-size ABPs or ASPs.
This issue makes combining the signing key generation and
reveal queries problematic. In contrast, in our unforgeabil-
ity experiment, the adversary can first make a signing key
generation query for some attribute vector x⃗ ∈ Fnq satisfying
the signing policy R(q)

z-abp( f , ·) to the challenger without ever
asking to reveal the generated signing key. After that the ad-
versary can send a signature query to the challenger for some
message msg ∈ M under the signing policy R(q)

z-abp( f , ·) and
can simply instruct the challenger to use that already gen-
erated signing key corresponding to the attribute vector x⃗
to generate the signature. As a result, the challenger does
not need to solve any satisfiability problem to answer the
signature query. Note that an analogous approach was also
considered by Shi and Waters [43] while formulating the
security definition for key-delegation. While the above ar-
gument justifies the distinction between the generation and
reveal queries for the signing keys, it may still be possi-
ble to combine the generation and reveal queries in case of
signatures. However, following [10], we chose to make the
distinction for the signatures as well without the loss of gener-
ality in order to maintain some uniformity in the experiment
description.

3. Overview of Our Techniques

In this section, we provide an intuitive exposition to the
main technical ideas in this paper. In order to design our
ABS scheme for ABP’s, we start with the high level approach
adopted by Okamoto and Takashima [10], [11]. At the top
level of strategy, this approach considers an extension of the
Naor’s paradigm, which was originally proposed for convert-
ing an identity-based encryption (IBE) scheme to a digital
signature scheme. The idea is to build a signature-policy
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ABS scheme by augmenting a ciphertext-policy attribute-
based encryption (ABE) scheme [38], [44].

Just like a signature-policy ABS scheme, a ciphertext-
policy ABE scheme has an associated predicate family
R = {R(Y, ·) : X → {0, 1} | Y ∈ Y}, where X and Y com-
prise respectively of the admissible decryption attributes and
policies. A central authority holds a master secret key and
publishes public system parameters. Anyone can encrypt a
message, which is also referred to as a payload, with respect
to any decryption policy Y ∈ Y using solely the public pa-
rameters. A decrypter may obtain a restricted decryption key
from the authority corresponding to the attributes X ∈ X it
possesses. Using such a restricted decryption key for X ∈ X
the decrypter can recover the payload from only those cipher-
texts which are generated with respect to a policyY ∈ Y such
that R(Y, X ) = 1. In particular, it is (computationally) infea-
sible to decrypt a ciphertext generated with respect to some
decryption policy Y ∈ Y for any collection of colluding de-
crypters, none of whom individually possesses an attribute
that satisfies Y , by pooling their attributes together. An ABE
ciphertext contains the associated decryption policy in the
clear, and hence this security property of an ABE scheme is
referred to as payload hiding.

Roughly speaking, in the approach of Okamoto and
Takashima [10], [11], a signing key for some signing at-
tribute X ∈ X in the ABS scheme corresponds to a de-
cryption key for X in the underlying ABE scheme. On the
other hand, a signature on some message msg under some
claimed signing policy Y ∈ Y is verified by generating a
verification-text that corresponds to a ciphertext of msg un-
der Y in the underlying ABE scheme. The most challenging
part of this approach is that no straightforward counter part of
a signature in ABS exists in ABE, and moreover, the privacy
property of signatures, which is a vital requirement of an
ABS scheme has no corresponding notion in ABE. In order
to tackle these issues, Okamoto and Takashima [10], [11]
devised a novel technique, which they termed as “reran-
domization with specialized delegation”, where a signature
in the ABS scheme generated with respect to some signing
policy Y using a signing key for some attribute X can be
interpreted to be a random ABE decryption key specialized
to decrypt only those ABE ciphertexts which have Y as the
associated decryption policy. As for the security of the re-
sulting ABS scheme, the idea is to reduce the unforgeability
of the ABS scheme to the payload-hiding security of the un-
derlying ABE scheme. On the other hand, the signer privacy
is ensured by the careful rerandomized delegation procedure
employed in the generation of signatures. While this high
level description of the approach may sound quite simple,
the actual realization, however, is quite delicate and involves
many subtle aspects. Okamoto and Takashima [10], [11]
addressed those technical hurdles in the context of boolean
span programs using various additional ideas.

We first explain how we adopt the above high level con-
struction methodology to the context of ABP’s, which is a
rather non-trivial task. In order to design our scheme,we
utilize the machineries of the dual pairing vector spaces

(DPVS) [37], [38]. A highly powerful feature of DPVS
is that one can completely or partially hide a linear sub-
space of the whole vector space by concealing the basis
of that subspace or the basis of its dual subspace respec-
tively from the public parameters. In DPVS-based construc-
tions, a collection of pairs of mutually dual vector spaces
{Vı,V

∗
ı }ı∈[N ] along with a bilinear pairing e : Vı ×V∗ı → GT

for all ı ∈ [N], constructed from a standard bilinear group
paramsG = (q,G1,G2,GT , g1, g2, e) of prime order q is used.
Typically, for all ı ∈ [N], a pair of dual orthonormal bases
(Bı,B∗ı ) of (Vı,V∗ı ) is generated using a secret random in-
vertible linear transformation B(ı) over Fq during setup, and
portions of (Bı,B∗ı ), say (B̂ı, B̂∗ı ) for ı ∈ [N] are used as the
public parameters. Thus, the remaining portions of the bases
(Bı\B̂ı,B∗ı \B̂

∗
ı ) for ı ∈ [N] remain hidden from the outside

world. This provides a strong framework for various kinds
of information-theoretic tricks in the public-key setting by
exploiting various nice properties of linear transformations.

In order to extend the techniques of Okamoto and
Takashima [10], [11] to the setting of ABP’s, we first look
for a representation of ABP’s using some span program like
structure, which supports “linear reconstruction”. The linear
reconstruction property is important for our scheme since we
need to reconstruct some secrets in the exponents of group
elements. We observe that Ishai and Wee [36] have devised
a polynomial-time algorithm that given an ABP f , outputs
an arithmetic span program (ASP) S = (U, ρ) such that for
any x⃗ ∈ Fnq , f ( x⃗) = 0 ⇐⇒ S accepts x⃗. ASP’s are the
arithmetic counter part of boolean span programs. An ASP
S is described as a pair S = (U, ρ), where U is a set of
pairs of vectors U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2 for some
ℓ,m ∈ N and ρ is a mapping ρ : [m] → [n]. S accepts
x⃗ ∈ Fnq ⇐⇒ e⃗(ℓ,ℓ) ∈ span⟨xρ( j) y⃗

( j) + z⃗( j) | j ∈ [m]⟩,

where e⃗(ℓ,ℓ) = (
ℓ−1︷  ︸︸  ︷

0, . . . , 0, 1) and span refers to the standard
linear span of vectors. With this representation at hand,
we proceed to extending the ABS scheme of Okamoto and
Takashima [10], [11] to the ABP setting.

The most important difficulty we face here is with the
application of the rerandomization with special delegation
technique to generate the signatures due to a fundamental dif-
ference in the structures of the boolean and arithmetic span
programs. Recall that a boolean span program over n boolean
variables is represented as P = (P ∈ Fm×ℓq , ρ : [m] → [n]),
and P accepts a boolean string x⃗ ∈ Fn2 ⇐⇒ e⃗(ℓ,ℓ) ∈

span⟨p⃗( j) | j ∈ [m] ∧ xρ( j) = 1⟩, where p⃗( j) ∈ Fℓq is the j th

row vector of P. This means while evaluating a boolean span
program on some input, the input only determines which vec-
tors are to be included in the linear span and does not affect
the description of the included vectors as such. Roughly
speaking, in the ABS construction of [10], [11], the ran-
domized special delegation is applied by masking the actual
coefficients (Ωj )j∈[m] ∈ F

m
q of the linear span of the vectors

{p⃗( j) }j∈[m] of a signing policy P = (P ∈ Fm×ℓq , ρ) resulting
in the vector e⃗(ℓ,ℓ) when P accepts some boolean signing
attribute string x⃗ ∈ Fn2 , with the coefficients (Ω′j )j∈[m] ∈ F

m
q
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of some random linear combination of the vectors {p⃗( j) }j∈[m]

that results in the zero vector 0⃗ℓ . More precisely, while gen-
erating a signature under P = (P, ρ) using a secret key for
x⃗ ∈ Fn2 , one computes Ωj + Ω

′
j for all j ∈ [m]. This reran-

domization works for ensuring signer privacy, i.e., for erasing
the information of the specific signing attribute string x⃗ ∈ Fn2
from the signature for boolean span programs because see-
ing the rerandomized coefficients (Ωj +Ω

′
j )j∈[m], one cannot

decide which Ωj’s were 0 in the real linear span, and hence
the information of the actual boolean attribute string x⃗ ∈ Fn2
is completely erased via this rerandomization.

This rerandomization technique is, however, no longer
sufficient in case of ASP’s. This is because, while evaluating
an ASPS = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m]→ [n])
on some input vector x⃗ ∈ Fnq , the description of the vectors,
whose linear span needs to be considered, namely, the vectors
{xρ( j) y⃗

( j) + z⃗( j) }j∈[m] itself depends on the specific input
vector x⃗ ∈ Fnq used. Therefore, even if the above randomized
masking is applied, the result would still leak information of
the specific vector x⃗ used.

In order to overcome this issue, we apply a more clever
rerandomization. Roughly speaking, we randomize not only
the linear-combination-coefficients, but also the input values
{xρ( j) }j∈[m]. We consider a random linear combination of
the vectors { y⃗ ( j), z⃗( j) }j∈[m] that leads to the zero vector 0⃗ℓ ,
i.e., we compute random ((Ω′j )j∈[m], (Ω′′j )j∈[m]) such that∑
j∈[m]

(Ω′j y⃗
( j) + Ω′′j z⃗( j)) = 0⃗ℓ . Then, we use the scalars

(Ω′j )j∈[m] to mask (Ωj xρ( j))j∈[m] and (Ω′′j )j∈[m] to mask
(Ωj )j∈[m], where (Ωj )j∈[m] are the coefficients of the vectors
{xρ( j) y⃗

( j) + z⃗( j) }j∈[m] in the linear combination resulting in
e⃗(ℓ,ℓ) . More precisely, while generating a signature under
some ASP S using a signing key for x⃗ ∈ Fnq , we compute
Ωj xρ( j) +Ω

′
j and Ωj +Ω

′′
j for all j ∈ [m]. Observe that this

rerandomization not only erases the actual values of the linear
combination coefficients (Ωj )j∈[m] but also the information
of the actual input x⃗ for which the linear combination is
evaluated.

Now, note that unlike the schemes of [10], [11], in
which the size and input length of the supported span pro-
grams are bounded by the public parameters, our goal is
to support ABP’s, and hence ASP’s by the above discus-
sion, of unbounded size and input length. For this, we start
by extending the techniques called “indexing” and “consis-
tent randomness amplification”, developed by Okamoto and
Takashima in [41] in the context of ABE for boolean span
programs, to our setting of ASP’s. Roughly speaking, in
the ABS constructions of [10], [11], once parts of a set of
pairs of dual orthonormal bases {B̂ı, B̂∗ı }ı∈[n] are published as
the public parameters, the input length of the signing policy
span programs becomes fixed to n. The proof of adaptive un-
forgeability of the scheme follows the so called “dual system
encryption” methodology [45], [46], and crucially makes use
of certain information-theoretic arguments. The randomness
of the secret linear transformations {B(ı) }ı∈[n] used to gen-
erate the bases {Bı,B∗ı }ı∈[n], whose parts are included in the

public parameters, acts as the source of entropy for those
information-theoretic arguments.

In contrast, in the unbounded setting, the input length
of the signing policy span programs are not fixed by the
public parameters. In particular, in our unbounded ABS
scheme, the public parameters would only consist of a con-
stant number of pairs of dual orthonormal bases. Thus, the
randomness contained in the public parameters (which is
just a constant amount with respect to the length of the input
attribute vectors n) is clearly insufficient for the dual sys-
tem encryption arguments on adaptive security. To supply
the additional randomness required for the security reduc-
tion, we adopt the indexing technique of [41], and for all
ι ∈ [n], embed two dimensional prefix vectors σι (1, ι) and
µ j (ι,−1) within the components corresponding to the ιth
attribute in signing keys and verification-texts respectively,
whereσι and µ j are freshly sampled random elements of Fq .
However, this method of supplying linear-in-n amount of ad-
ditional randomness is still not sufficient. This is because,
for the application of the dual system encryption methodol-
ogy, such randomness introduced by the indexing technique
needs to be expanded to the hidden subspaces of signing keys
and verification-texts, and the distribution of the expanded
randomness should also be adjusted to the conditions im-
posed on the queries of the adversary in the unforgeability
experiment. To resolve the problem, we attempt to employ
the consistent randomness amplification technique similar to
[41].

However, recall that our objective is not limited to only
supporting signing policies of unbounded size and input
length. We additionally want to allow unbounded multi-
use of attributes inside the signing policies. As we explain
below, the consistent randomness amplification technique of
Okamoto and Takashima [41] does not suffice for achieving
both these goals simultaneously. Therefore, we need to inno-
vate new technical ideas to accomplish our target. In terms
of technicality, this is the most sophisticated part of this pa-
per. In fact, the techniques we devise in this segment are
pretty much general, and we strongly believe they will find
more applications in various other DPVS-based construction
in the future.

Roughly speaking, the single use restriction in DPVS-
based adaptively secure constructions of attribute-based
primitives arises from the use of a crucial information-
theoretic lemma, the so called “pairwise independence
lemma” (Lemma 3 in [38]), while employing the dual system
encryption paradigm in the security proofs. This technique
requires a one-to-one correspondence between a pair of a
key part and a verification-text or ciphertext part through the
map ρ of the policy span program considered. However, in
the multi-use scenario, one key part corresponds to multiple
verification-text or ciphertext parts. Even when a generalized
version of the pairwise independence lemma [38] is used, the
maximum number of times an attribute can be used inside
a policy span program remains bounded by the public pa-
rameters. In the domain of ABE, some initial attempts were
made to mitigate the problem [47], [48], but those were only
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partially successful. Very recently however, Kowalczyk and
Wee [49], [50] resolved the multi-use issue completely for
ABE supporting access policies represented by NC1 boolean
circuits. While very interesting and significantly different
from its predecessors [47], [48], the technique of [49], [50]
seems to be inherently tied to the boolean structure of the
underlying access policies and not suitable for adoption into
the arithmetic setting as we are considering in this paper.

On the other hand, Okamoto and Takashima addressed
the multi-use issue in the context of ABS in an updated ver-
sion of [10], namely, [21] by introducing a new technique,
which they termed as “one-dimensional localization of in-
ner product values”. The main idea of this technique is
to embed a specific inner product value for an unbounded
(with respect to the public parameters) number of times in
a certain one-dimension of the hidden subspace of a sign-
ing key or verification-text, while erasing all informations of
the inner product value from all the remaining dimensions
of the hidden subspace. This technique is applied in two
steps. First a “special linear transformation” step is applied
over the hidden segments of a signing key and a verification-
text. This step localizes the inner product values in certain
one-dimension of the hidden subspace. But, some informa-
tions of the inner product values still remain in the other
dimensions of the hidden subspace. To completely remove
those informations, random values are “injected” into those
dimensions of the hidden subspace. This second step is exe-
cuted via a computational transition based on the underlying
computational assumption, and thus is not problematic to
directly extend to the unbounded setting. However, the first
step, i.e., the special linear transformation step is information
theoretic, and crucially relies on the secret randomness used
to generate the public parameters. Since the public parame-
ters only uses a constant amount of secret randomness in the
unbounded setting, such an information-theoretic transition
cannot be applied.

The most intuitive way-out to the above issue is to use
the indexing and consistent randomness amplification tech-
niques of [41] to supply the additional randomness required
for the transition just as it is used to resolve similar issues
in extending the dual system encryption proof technique to
the unbounded setting. Unfortunately, the consistent ran-
domness amplification technique of [41] is only capable of
computationally simulating the application of a random lin-
ear transformation to the hidden segment of a key compo-
nent and the corresponding segment of a verification-text
component. Such a random linear transformation suffices
for the application of the pairwise independence lemma to
complete a security proof based on the dual system encryp-
tion paradigm. However, the one-dimensional localization
technique requires the application of certain specific linear
transformations over the hidden segments of a signing key
and a verification-text that crucially depend on the associated
signing attribute vector of the signing key being considered.

To resolve this issue, we devise a more sophisticated
technique. Very roughly, we first computationally simulate
the effect of random linear transformations over the hid-

den subspaces on the verification-text side. This step cor-
responds to the transition between the hybrid experiments
Hyb0′ and Hyb1 in the proof of unforgeability of our ABS con-
struction (proof of Theorem 2). Next, we computationally
amplify the randomness provided by the two-dimensional
prefix vectors to the hidden subspaces on the signing key
side. This is the transition from Hyb2-(χ−1)-9 to Hyb2-χ-1 in
the unforgeability proof. After this step, we computation-
ally alter the random linear transformations to specific ones
on the verification-text side. This step is executed while
moving from Hyb2-χ-1 to Hyb2-χ-2 in the proof of unforge-
ability. Finally, we computationally adjust the randomness
expanded to the hidden segments on the signing key side to
match the specific linear transformations to be applied on
that side. This transformation is achieved via the transition
between Hyb2-χ-2 and Hyb2-χ-3 in our unforgeability proof.
We stress that the above explanation of our highly involved
techniques is merely a bird’s eye-view. For a comprehensive
understanding of our techniques refer to our detail security
proof presented in Sect. 5.

We would conclude this technical overview with the
intuitive description of another small piece of idea due to
Okamoto and Takashima [10], [11] that we leverage in the
unforgeability proof of our proposed ABS scheme. Note
that the overall approach of our unforgeability proof is to
start with the real unforgeability experiment, as defined in
Sect. 2.6, and through various hybrid steps ultimately reach
an experiment in which the adversary has perfectly no chance
of producing a forged signature. In order to accomplish that,
we introduce a form of correlation between the verification
text used to verify a signature and the message-policy pair
with respect to which the verification is executed. Simi-
larly, we introduce a correlation between a signature and
the message-policy pair for which it is generated as well.
We make use of a collision resistant hash function Hhk for
this purpose. More precisely, we embed the two-dimensional
vectors (1,Hhk (msg∥S)) within signatures generated on mes-
sages msg under signing policy ASPs S = (U, ρ), while the
two dimensional vectors (−Hhk (msg∥S), 1) within the ver-
ification texts used to verify those signatures. During the
verification process, we require the verifier to compute the
inner product of the two vectors, which clearly evaluates
to zero if both the signature and the verification text corre-
spond to the same message-ASP pair. Now, due to the re-
striction of the unforgeability experiment, the adversary can
only output a forged signature on some message-ASP pair
(msg, S) which is distinct from all those message-ASP pairs
(msgπ, Sπ ) for which it queries signatures to the challenger
during the experiment. Thanks to this restriction and the col-
lision resistance property of the hash function, Hhk, the two-
dimensional vector (−Hhk (msg∥S), 1) embedded within the
honestly generated verification text used to verify the forged
signature would with high probability not be orthogonal to
any of the vectors (1,Hhk (msgπ ∥Sπ )) embedded within the
signatures the adversary obtains from the challenger during
the experiment. We leverage this fact in conjunction with
the pairwise independence lemma to alter the form of the
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verification text used to verify the forged signature to one
that embeds a uniformly random two-dimensional vector in
stead of (−Hhk (msg∥S), 1), and thereby make the verifica-
tion text uncorrelated to the message-ASP pair (msg, S) with
respect to which the forgery is claimed. Once this modifica-
tion is achieved, the inner product between the random two
dimensional vector embedded within the modified verifica-
tion text and the vector (1,Hhk (msg∥S)) embedded within
the forged signature outputted by the adversary would not
be zero except for negligible probability, and therefore, the
forged signature outputted by the adversary would not get
verified except for negligible probability.

4. The Proposed ABS Scheme

In this section, we will present our ABS scheme for a pred-
icate family R (q)

z-abp parameterized by some prime q ∈ N as
defined in Sect. 2.6. Let M ⊂ {0, 1}∗ be the message space
associated with our ABS scheme. We emphasize that in our
construction the functions ρ included within the description
of ASP’s are not necessarily injective, and thus our ABS
scheme supports unbounded multi-use of attributes within
the signing policies. In our scheme description and in the
proof of security n = p(λ) ∈ N for an arbitrary polynomial
p.

ABS.Setup(): The setup algorithm takes as input the unary
encoded security parameter 1λ. It proceeds as follows:

1. It first generates (params, {Bı,B∗ı }ı∈[0,2])
R
←−

Gob(2, (4, 14, 8)).
2. Then, it sets the following:

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) }.

3. Next, it samples a hashing key hk
R
←− KGen() for a

hash function family H associated with the bilinear
group generator Gbpg used as a subroutine of Gob
and a polynomial poly (· ), where poly (λ ) represents
the length of the bit string formed by concatenating a
message belonging toM and the binary representation
of an ASP representing a signing policy predicate in
R

(q)
z-abp.

4. It outputs the public parameters mpk = (hk, params,
{B̂ı, B̂

∗
ı }ı∈[0,2]) and the master signing key msk =

b∗(0,1) .

ABS.KeyGen(mpk,msk, x⃗): The signing key generation al-
gorithm takes as input the public parameters mpk, the

master signing key msk, and a signing attribute vector
x⃗ ∈ Fnq . It executes the following steps:

1. First, it samples ω
U
←− Fq\{0}, φ0

U
←− Fq , and com-

putes

k∗(0) = (ω, 0, φ0, 0)B∗0 .

2. Next, for ι ∈ [n], it samples σι
U
←− Fq , φ⃗(ι) U

←− F2
q ,

and computes

k∗(ι) = (σι (1, ι), ω(1, xι), 0⃗6, φ⃗(ι), 0⃗2)B∗1 .

3. Then, it samples φ⃗(n+1,1), φ⃗(n+1,2) U
←− F2

q , and com-
putes

k∗(n+1,1) = (ω(1, 0), 0⃗2, φ⃗(n+1,1), 0⃗2)B∗2,

k∗(n+1,2) = (ω(0, 1), 0⃗2, φ⃗(n+1,2), 0⃗2)B∗2 .

4. It outputs the signing key sk( x⃗) = (k∗(0), . . . , k∗(n),
k∗(n+1,1), k∗(n+1,2)).

ABS.Sign(mpk, x⃗, sk( x⃗), S,msg): The signing algorithm
takes in the public parameters mpk, a signing at-
tribute string x⃗ ∈ Fnq , a signing key sk( x⃗) = (k∗(0),

. . . , k∗(n), k∗(n+1,1), k∗(n+1,2)) for x⃗, a signing policy
predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp with ASP

representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ :
[m] → [n]), along with a message msg ∈ M. If S does
not accept x⃗, it outputs ⊥. Otherwise, i.e., if S accepts
x⃗, it operates as follows:

1. It first computes (Ωj )j∈[m] ∈ F
m
q such that e⃗(ℓ,ℓ) =∑

j∈[m]
Ωj (xρ( j) y⃗

( j) + z⃗( j)).

2. After that, it samples ξ
U
←− Fq\{0}, and

((Ω′j )j∈[m], (Ω′′j )j∈[m])
U
←− (Fmq )2 such that∑

j∈[m]
(Ω′j y⃗

( j) +Ω′′j z⃗( j)) = 0⃗ℓ .

3. Next, it samples r∗(0) U
←− span⟨b∗(0,3)⟩ and computes

s∗(0) = ξk∗(0) + r∗(0) .

4. Then, for j ∈ [m], it samples σ′j
U
←− Fq , r∗( j)

U
←−

span⟨b∗(1,11), b∗(1,12)⟩, and computes

s∗( j) = ξΩj k
∗(ρ( j)) + σ′j (b

∗(1,1) + ρ( j)b∗(1,2))+

Ω
′′
j b
∗(1,3) +Ω′j b

∗(1,4) + r∗( j) .

5. Next, it samples r∗(m+1) U
←− span⟨b∗(2,5), b∗(2,6)⟩ and

computes

s∗(m+1) = ξ (k∗(n+1,1) + H(λ,poly)
hk (msg∥S)k∗(n+1,2))+
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r∗(m+1) .

6. It outputs the signature sig = (s∗(0), . . . , s∗(m+1)).

ABS.Verify(mpk, S, (msg, sig)): The verification algorithm
takes as input the public parameters mpk, a signing pol-
icy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)
z-abp hav-

ing ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m] → [n]), a message-signature pair (msg ∈
M, sig = (s∗(0), . . . , s∗(m+1))). It proceeds as follows:

1. It generates a verification-text (c (0), . . . , c (m+1)) as
follows:

a. It first samples u⃗ = (u1, . . . , uℓ )
U
←− Fℓq , and com-

putes s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) for j ∈ [m].

b. Next, it samples u, η0
U
←− Fq , and computes

c (0) = (−u − uℓ, 0, 0, η0)B0 .

c. Then, for j ∈ [m], if s∗( j) < V∗1, then it outputs

0. Otherwise, it samples µ j
U
←− Fq , η⃗ ( j) U

←− F2
q ,

and computes

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), 0⃗
6, 0⃗2, η⃗ ( j))B1 .

d. Then, it samples κ
U
←− Fq , η⃗ (m+1) U

←− F2
q , and

computes

c (m+1) = ((u − κH(λ,poly)
hk (msg∥S), κ), 0⃗2, 0⃗2, η⃗ (m+1))B2 .

2. It outputs 0 if e(b(0,1), s∗(0)) = 1GT .
3. It outputs 1 if

∏
j∈[0,m+1]

e(c ( j), s∗( j)) = 1GT . It outputs

0 otherwise. Here, 1GT is the identity element of the
group GT .

▷ Correctness

The correctness of the proposed ABS construction can be ver-
ified as follows: For any signature sig = (s∗(0), . . . , s∗(m+1))
on a message msg ∈ M under a signing policy predi-
cate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)
z-abp having ASP rep-

resentation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ :
[m] → [n]) generated using a signing key sk( x⃗) =
(k∗(0), . . . , k∗(n), k∗(n+1,1), k∗(n+1,2)) for a signing attribute
vector x⃗ ∈ Fnq such that S accepts x⃗, and any verification-text
(c (0), . . . , c (m+1)) generated while executing ABS.Verify, we
have∏

j∈[0,m+1]
e(c ( j), s∗( j))

= e(c (0), k∗(0))ξ
∏
j∈[m]

e(c ( j), k∗(ρ( j)))ξΩ j ·∏
j∈[m]

[e(c ( j), b∗(1,3))Ω
′′
j e(c ( j), b∗(1,4))Ω

′
j ]·

[e(c (m+1), k∗(n+1,1))e(c (m+1), k∗(n+1,2))H(λ,poly)
hk (msg∥S)]ξ

= g
ξω(−u−uℓ )
T

∏
j∈[m]

g
ξωΩ j (xρ( j )sj+s

′
j )

T

∏
j∈[m]

g
(Ω′j sj+Ω

′′
j s
′
j )

T ·

g
ξωu
T

= g
ξω(−u−uℓ )
T g

ξω(u⃗ ·
∑

j∈[m] Ω j (xρ( j ) y⃗
( j )+z⃗ ( j ) ))

T ·

g
u⃗ ·
∑

j∈[m] (Ω′j y⃗
( j )+Ω′′j z⃗

( j ) )
T g

ξωu
T

= g
ξω(−u−uℓ )
T g

ξω(u⃗ ·e⃗(ℓ,ℓ ) )
T gu⃗ ·⃗0

ℓ

T g
ξωu
T

= g
ξω(−u−uℓ )
T g

ξωuℓ
T 1GT g

ξωu
T

= 1GT .

The above follows from the expressions of (c (0), . . . , c (m+1)),
(s∗(0), . . . , s∗(m+1)), (k∗(0), . . . , k∗(n), k∗(n+1,1), k∗(n+1,2)),
and the dual orthonormality property of {Bı,B∗ı }ı∈[0,2]; in
conjunction with the facts that

∑
j∈[m]

Ωj (xρ( j) y⃗
( j) + z⃗( j)) =

e⃗(ℓ,ℓ) (since S accepts x⃗), and
∑

j∈[m]
(Ω′j y⃗

( j) + Ω′′j z⃗( j)) = 0⃗ℓ

(by selection).

Remark 2 (Discussion on the Concrete Efficiency of the
Proposed ABS Scheme): In order to understand the con-
crete efficiency gains of our ABS scheme over the state-
of-the-art scheme of [15], let us consider the performance
of both the schemes for a simple signing policy ABP
f : Fq → Fq defined by f (x1) = x1 − a1 for all x1 ∈ Fq ,
where q is a 128-bit prime integer and a1 is a constant be-
longing to Fq . We have already presented the summary of
this efficiency analysis in Table 1 in the Introduction sec-
tion. For the considered ABP, we have R(q)

z-abp( f , x1) =
1 ⇐⇒ f (x1) = 0 ⇐⇒ x1 = a1. By applying the
algorithm of [36], we can represent the ABP f by the ASP
S = (U = {( y⃗ (1) = (1, 0), z⃗(1) = (−a,−1))}, ρ | 1 7→ 1).
Hence, it can be readily verified from the description of the
proposed ABS scheme above that in this scheme, a signature
sig = (s∗(0), s∗(1), s∗(2)) on some message msg ∈ M under
R(q)

z-abp( f , ·) would consist of only 26 group elements, namely,
4 group elements for s∗(0) , 14 group elements for s∗(1) , while
8 group elements for s∗(2) . On the other hand, to generate
the signature a signer would have to compute 138 exponenti-
ations, namely 8 exponentiations for s∗(0) , 98 for s∗(1) , while
32 for s∗(2); and to verify the signature, a verifier would have
to compute 30 pairing operations, namely, 4 pairing oper-
ations to verify whether e(b(0,1), s∗(0)) = 1GT and 26 pair-
ing operations to verify whether

∏
j∈[0,2]

e(c ( j), s∗( j)) = 1GT ,

where (c (0), c (1), c (2)) is the verification-text computed dur-
ing the verification procedure.

Now, let us look into the size of a signature for the
same signing policy as well as the computations required for
its generation and verification in the ABS scheme of Sakai
et al. [15]. Observe that in this scheme, signing policies
are considered as boolean circuits. So, we must express
R(q)

z-abp( f , ·) as a boolean circuit. Clearly, the boolean circuit
that simulates R(q)

z-abp( f , ·) would have 128 input gates to take



40
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

as input the bit representation of x1. Moreover, in order
to simulate the equality test x1 = a1 over Fq using boolean
operations, the circuit would need to implement 127 boolean
AND gates, where the first boolean AND gate would connect
the first and second bits of x1, the second one would connect
the earlier AND gate with the third bit of x1, and so on.
Also, for all i ∈ [128], the wire connecting the ith bit of x1
to an AND gate must pass through a NOT gate if the ith bit
of a1 is 0. For instance, if we represent the ith bit of an
element b ∈ Fq by b[i] for all i ∈ [128], and some a1 ∈ Fq
has binary representation 110 . . . 01, then the boolean circuit
simulating R(q)

z-abp( f , ·) with this a1 would be

((( . . . ((x1[1] AND x1[2]) AND (NOT x1[3])) . . .) AND
(NOT x1[127])) AND x1[128]).

Hence, it follows that the boolean circuit that realizes
R(q)

z-abp( f , ·) would have 128 input gates, 127 AND gates along
with some additional NOT gates. Further, note that the ABS
scheme of [15] considers representing signing policies us-
ing boolean circuits consisting of NAND gates only. Since
3 NAND gates are required to simulate each AND gate, and
1 NAND gate is needed to simulate each NOT gate, it fol-
lows that the boolean circuit simulating R(q)

z-abp( f , ·) using
only NAND gates would consist of at least 128 input gates
and at least 127 NAND gates. Now, notice that Sakai et al.
employs the celebrated Groth-Sahai proof system for pairing
product equations [51] as an underlying tool in their ABS
construction. A signature in their ABS scheme includes two
Groth-Sahai commitments for each wire of the signing policy
circuit with respect to which it is being generated and proofs
showing the well-formedness of all those commitments. In
addition, the signature includes proofs attesting to the correct
evaluation of all the NAND gates of the signing policy circuit.
On the other hand, verifying a signature involves checking
all the proofs comprising it. Therefore, it is immediate from
the performance figures presented in Tables 1 and 2 of [15]
that a signature on some message with respect to the boolean
circuit simulating R(q)

z-abp( f , ·) in this scheme would include at
least 4102 group elements, and verification of the signature
would require at least 4102 pairing operations. Also, since
generating a commitment in the Groth-Sahai proof system
involves 4 exponentiations while creating a proof involves
at least 10 exponentiations, it follows that generating the
signature would require at least 5860 exponentiations.

Thus, it is clear that in terms of concrete efficiency, even
for a very simple signing policy such as an equality test over
Fq , our ABS scheme gives more than 136 times better results
from the view points of signature size and verification time
while exhibits at least 42 times better performance on the
signing time ground compared to the one of [15].

5. Security

Theorem 1 (Signer Privacy): The proposed ABS scheme
achieves perfect signer privacy (as per the security model

described in Sect. 2.6).

Proof: In order to prove Theorem 1, we introduce the follow-
ing signing algorithm, we call ABS.AltSign, that generates
signatures on messages using the master signing key msk
and do not use any attribute-specific signing key sk( x⃗).

ABS.AltSign(mpk,msk, S,msg): This algorithm takes in
the public parameters mpk, the master signing key
msk, a signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]), and a mes-
sage msg ∈ M. It proceeds as follows:

1. If

S = {((Ω̂j )j∈[m], (Ω̂′j )j∈[m]) ∈

(Fmq )2 |
∑
j∈[m]

(Ω̂j y⃗
( j) + Ω̂′j z⃗

( j)) = e⃗(ℓ,ℓ) } = ∅,

(1)

then it outputs ⊥ indicating failure. Otherwise, it
samples ((Ω̂j )j∈[m], (Ω̂′j )j∈[m])

U
←− S.

2. Next, it samples ω̂
U
←− Fq\{0}, υ̂0

U
←− Fq , and com-

putes

s∗(0) = (ω̂, 0, υ̂0, 0)B∗0 .

3. For j ∈ [m], it samples σ̂ j
U
←− Fq , ⃗̂υ j

U
←− F2

q , and
computes

s∗( j) = (σ̂ j (1, ρ( j)), (Ω̂′j, Ω̂j ), 0⃗6, ⃗̂υ
( j)
, 0⃗2)B∗1 .

4. Then, it samples ⃗̂υ
(m+1) U

←− F2
q and computes

s∗(m+1) = (ω̂(1,H(λ,poly)
hk (msg∥S)), 0⃗2, ⃗̂υ

(m+1)
, 0⃗2)B∗2 .

5. It outputs the signature sig = (s∗(0), . . . , s∗(m+1)).

Remark 3: Note that using the ABS.AltSign algorithm, one
can generate a correctly verifiable signature on any message
msg ∈ M under any signing policy predicate R(q)

z-abp( f , ·) :
Fnq → {0, 1} ∈ R

(q)
z-abp having ASP-representation S = (U =

{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) even without
knowing any signing attribute string x⃗ ∈ Fnq accepted by S.
However, in order to execute this algorithm, one should have
access to the master signing key msk – something which a
signer does not have access to in the real world (and an ad-
versary in the unforgeability experiment). Hence, the above
algorithm should only be viewed as a virtual one used in
the security proof. Also, note that if the set S defined in
the ABS.AltSign algorithm above is empty, then it is impos-
sible that there exists some signing attribute string x⃗ ∈ Fnq
accepted by S, and hence no signature can ever be generated
under S, even in the real world.
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Clearly, in order to prove Theorem 1 it is enough to
show that the following statement is true:
For any security parameter λ ∈ N, any message msg ∈ M,
any signing attribute string x⃗ ∈ Fnq , any signing pol-
icy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)
z-abp hav-

ing ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m] → [n]) such that S accepts x⃗, any

(mpk,msk)
R
←− ABS.Setup(1n), and any sk( x⃗)

R
←−

ABS.KeyGen(mpk,msk, x⃗), the distributions of the signa-
tures outputted by ABS.Sign(mpk, x⃗, sk( x⃗), S,msg) and those
outputted by ABS.AltSign(mpk, msk, S,msg) are equivalent.
In the proposed ABS scheme, sig = (s∗(0), . . . , s∗(m+1))

R
←−

ABS.Sig(mpk, x⃗, sk( x⃗), S,msg) is computed as

s∗(0) = (p0, 0, 0, υ0)B∗0,

s∗( j) = (σ̄ j (1, ρ( j)), p⃗( j), 0⃗6, υ⃗( j), 0⃗2)B∗1 for j ∈ [m],

s∗(m+1) = (p⃗(m+1), 0⃗2, υ⃗(m+1), 0⃗2)B∗2,

such that p0 = ξω, σ̄ j = ξσρ( j)Ωj + σ
′
j , p⃗( j) =

(ξωΩj + Ω
′′
j , ξωxρ( j)Ωj + Ω

′
j ) for j ∈ [m], and

p⃗(m+1) = ξω(1,H(λ,poly)
hk (msg∥S)), where ω, ξ

U
←− Fq\{0},

{σι}ι∈[n], {σ
′
j }j∈[m], υ0

U
←− Fq , {υ⃗( j) }j∈[m+1]

U
←− F2

q ,
(Ωj )j∈[m] ∈ F

ℓ
q with

∑
j∈[m]

Ωj (xρ( j) y⃗
( j) + z⃗( j)) = e⃗(ℓ,ℓ) ,

and ((Ω′j )j∈[m], (Ω′′j )j∈[m])
U
←− (Fmq )2 with

∑
j∈[m]

(Ω′j y⃗
( j) +

Ω′′j z⃗( j)) = 0⃗ℓ .

On the other hand sig = (s∗(0), . . . , s∗(m+1))
R
←−

ABS.AltSign(mpk,msk, S, msg) is computed as

s∗(0) = (p̂0, 0, υ̂0, 0)B∗0,

s∗( j) = (σ̂ j (1, ρ( j)), ⃗̂p
( j)
, 0⃗6, ⃗̂υ

( j)
, 0⃗2)B∗1 for j ∈ [m],

s∗(m+1) = (⃗̂p
(m+1)
, 0⃗2, ⃗̂υ

(m+1)
, 0⃗2)B∗2,

such that p̂0 = ω̂, ⃗̂p
( j)
= (Ω̂′j, Ω̂j ) for j ∈ [m], and

⃗̂p
(m+1)

= ω̂(1,H(λ,poly)
hk (msg∥S)), where ω̂

U
←− Fq\{0},

{σ̂ j }j∈[m], υ̂0
U
←− Fq , {⃗̂υ

( j)
}j∈[m+1]

U
←− F2

q , and ((Ω̂j )j∈[m],

(Ω̂′j )j∈[m])
U
←− S = {((Ω̂j )j∈[m], (Ω̂′j )j∈[m]) ∈ (Fmq )2 |∑

j∈[m]
(Ω̂j y⃗

( j) + Ω̂′j z⃗
( j)) = e⃗(ℓ,ℓ) }.

Observe that the distributions




(ξω, (ξωxρ( j)Ωj +Ω
′
j )j∈[m], (ξωΩj +Ω

′′
j )j∈[m]) |

ω, ξ
U
←− Fq\{0}, ((Ω′j )j∈[m], (Ω′′j )j∈[m])

U
←− (Fmq )2

with
∑

j∈[m]
(Ω′j y⃗

( j) +Ω′′j z⃗( j)) = 0⃗ℓ, (Ωj )j∈[m] ∈ F
m
q

with
∑

j∈[m]
Ωj (xρ( j) y⃗

( j) + z⃗( j)) = e⃗(ℓ,ℓ)




(2)
and




(ω̂, (Ω̂j )j∈[m], (Ω̂′j )j∈[m]) | ω̂
U
←− Fq\{0},

((Ω̂j )j∈[m], (Ω̂′j )j∈[m])
U
←− S




(3)

are equivalent.

Remark 4: Note that the set S defined in Eq. (1) above is an
affine subspace of F2m

q . Hence, it follows that other than the
first component (which is uniformly distributed overFq\{0}),
the distribution specified in Eq. (3) above is essentially the
uniform distribution over an affine subspace of F2m

q . On
the other hand, leaving aside the first component (which is
uniformly distributed over Fq\{0} as well), the distribution
specified in Eq. (2) is an affine shift of a uniform distribution
over a linear subspace of F2m

q .

Also, the distributions




(σ̄ j = ξΩjσρ( j) + σ
′
j )j∈[m] | ξ

U
←− Fq\{0},

{σι}ι∈[n], {σ
′
j }j∈[m]

U
←− Fq, (Ωj )j∈[m] ∈ F

m
q

with
∑

j∈[m]
Ωj (xρ( j) y⃗

( j) + z⃗( j)) = e⃗(ℓ,ℓ)




and

{(σ̂ j )j∈[m] | {σ̂ j }j∈[m]
U
←− Fq }

are equivalent. Thus, the distributions of sig
R
←−

ABS.Sign(mpk, x⃗, sk( x⃗), S,msg) and that of sig
R
←−

ABS.AltSign(mpk,msk, S,msg) are equivalent. This com-
pletes the proof of Theorem 1. ■

Theorem 2 (Existential Unforgeability): The proposed
ABS scheme is existentially unforgeable against adaptive-
predicate-adaptive-message attack (as per the security model
described in Sect. 2.6) under the SXDLIN assumption.

Proof: In order to prove Theorem 2, we consider a sequence
of hybrid experiments which differ from one another in the
construction of the signing keys/signatures queried by the ad-
versaryA and/or the verification-text used by the challenger
B to verify the validity of the forged signature outputted
by A at the end of the experiment. The first hybrid cor-
responds to the real unforgeability experiment described in
Sect. 2.6, while the last hybrid corresponds to one in which
the probability that a forged signature outputted byA passes
the verification is negligible. We argue that A’s winning
probability changes only by a negligible amount in each suc-
cessive hybrid experiment, thereby establishing Theorem 2.
The overall structure of our reduction is demonstrated in
Fig. 2. Let qkey and qsig be the total number of signing keys
and signaturesA requestsB to reveal during the experiment.
The sequence of hybrid experiments are described below. In
the description of the hybrids a part framed by a box indi-
cates coefficients which are altered in a transition from its
previous hybrid.
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Fig. 2 Structure of the hybrid reduction for the proof of Theorem 2.

▷ Sequence of Hybrid Experiments

Hyb0

This is the real unforgeability experiment described in
Sect. 2.6.

Hyb0′

This experiment is the same as Hyb0 except the following:

1. WhenA makes a signing key generation query for some
signing attribute string x⃗ ∈ Fnq , B only records x⃗, but
creates no actual signing key.

2. When a signature query is made by A on some mes-
sage msg ∈ M under some signing policy predicate
R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)
z-abp having ASP-

representation S = (U, ρ) to be created using a signing
key for some signing attribute string x⃗ ∈ Fnq for which it
has already made a signing key generation query, B sim-
ply records the triple (msg, S, x⃗), but creates no actual

signature.

3. When A issues a signing key reveal query for some
signing attribute string x⃗ ∈ Fnq which has been al-
ready recorded, B creates the queried signing key as
sk( x⃗)

R
←− ABS.KeyGen(mpk,msk, x⃗), and returns it to

A. On the other hand, whenA issues a signature reveal
query for some triple (msg, S, x⃗) ∈ M×R (q)

z-abp×F
n
q which

has been already recorded, B creates the queried signa-
ture as sig

R
←− ABS.AltSign(mpk,msk, S,msg), where the

ABS.AltSign algorithm is described in the proof of The-
orem 1, and hands sig to A.

Thus, in this experiment for h ∈ [qkey], the hth sign-
ing key for signing attribute string x⃗ (h) ∈ Fnq re-
quested by A to reveal is generated as sk( x⃗ (h)) =
(k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1), k∗(h,n+1,2)) such that
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k∗(h,0) = (ωh, 0, φh,0, 0)B∗0,

k∗(h,ι) = (σh,ι (1, ι), ωh (1, x (h)
ι ), 0⃗6, φ⃗(h,ι), 0⃗2)B∗1

for ι ∈ [n],

k∗(h,n+1,1) = (ωh (1, 0), 0⃗2, φ⃗(h,n+1,1), 0⃗2)B∗2,

k∗(h,n+1,2) = (ωh (0, 1), 0⃗2, φ⃗(h,n+1,2), 0⃗2)B∗2,
(4)

where ωh
U
←− Fq\{0}, {σh,ι}ι∈[n], φh,0

U
←− Fq ,

{φ⃗(h,ι) }ι∈[n], φ⃗
(h,n+1,1), φ⃗(h,n+1,2) U

←− F2
q .

On the other hand, for t ∈ [qsig], the tth signa-
ture associated with the triple (msgt, St, x⃗ (t)) ∈ M ×
R

(q)
z-abp × F

n
q that A requests to reveal, where St = (Ut =

{( y⃗ (t, j), z⃗(t, j))}j∈[mt ] ⊂ (Fℓtq )2, ρt : [mt ] → [n]), is created
as sigt = (s∗(t,0), . . . , s∗(t,mt+1)) such that

s∗(t,0) = (ω̂t, 0, υ̂t,0, 0)B∗0,

s∗(t, j) = (σ̂t, j (1, ρt ( j)), (Ω̂′t, j, Ω̂t, j ), 0⃗6, ⃗̂υ
(t, j)
, 0⃗2)B∗1

for j ∈ [mt ],

s∗(t,mt+1) = (ω̂(1,H(λ,poly)
hk (msgt ∥St )), 0⃗2, ⃗̂υ

(t,mt+1)
, 0⃗2)B∗2,

(5)

where ω̂t
U
←− Fq\{0}, {σ̂t, j }j∈[mt ], υ̂t,0

U
←− Fq ,

{⃗̂υ
(t, j)
}j∈[mt+1]

U
←− F2

q , and ((Ω̂t, j )j∈[mt ], (Ω̂′t, j )j∈[mt ])
U
←−

St = {((Ω̂t, j )j∈[mt ], (Ω̂′t, j )j∈[mt ]) ∈ (Fmt
q )2 |

∑
j∈[mt ]

(Ω̂t, j y⃗
(t, j)

+ Ω̂′t, j z⃗
(t, j)) = e⃗(ℓt,ℓt ) }.

Finally, in this experiment, the verification-text used to
verify the forged signature outputted byA on some message
msg ∈ M under some signing policy predicate R(q)

z-abp( f , ·) :
Fnq → {0, 1} ∈ R

(q)
z-abp having ASP-representation S = (U =

{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated as
(c (0), . . . , c (m+1)) such that

c (0) = (−u − uℓ, 0, 0, η0)B0,

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), 0⃗
6, 0⃗2, η⃗ ( j))B1 for j ∈ [m],

c (m+1) = ((u − κH(λ,poly)
hk (msg∥S), κ), 0⃗2, 0⃗2, η⃗ (m+1))B2,

(6)

where u⃗ = (u1, . . . , uℓ )
U
←− Fℓq , s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) for

j ∈ [m], u, {µ j }j∈[m], κ, η0
U
←− Fq , and {η⃗ ( j) }j∈[m+1]

U
←− F2

q .
Here {Bı,B∗ı }ı∈[0,2] is the collection of dual orthonor-

mal bases generated by B during the setup phase of the
experiment.

Hyb1

This experiment is analogous to Hyb0′ except that in this ex-
periment, the verification-text used to verify the forged signa-
ture outputted byA on some message msg ∈ M under some

signing policy predicate R(q)
z-abp( f , ·) : Fnq → {0, 1} ∈ R

(q)
z-abp

having ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m]→ [n]) is generated as (c (0), . . . , c (m+1)) such
that

c (0) = (−u − uℓ, −ũℓ , 0, η0)B0,

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ) , 0⃗
2, r⃗ ( j) ,

0⃗2, η⃗ ( j))B1 for j ∈ [m],

c (m+1) = ((u − κH(λ,poly)
hk (msg∥S), κ), r⃗ (m+1) ,

0⃗2, η⃗ (m+1))B2,

(7)

where ⃗̃u = (ũ1, . . . , ũℓ )
U
←− Fℓq , s̃ j = ⃗̃u · y⃗ ( j) , s̃′j =

⃗̃u · z⃗( j) for

j ∈ [m], {r⃗ ( j) }j∈[m+1]
U
←− F2

q , and all the other variables are
generated as in Hyb0′ .

Hyb2-χ-1 (χ ∈ [qkey])

Hyb2-0-9 coincides with Hyb1. This experiment is the same
as Hyb2-(χ−1)-9 with the only exception that in this ex-
periment, the χth signing key for signing attribute string
x⃗ (χ) ∈ Fnq requested by A to reveal is generated as
sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2)) such
that k∗(χ,n+1,1), k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,0) = (ωχ, ω̃χ , φχ,0, 0)B∗0,

k∗(χ,ι) = (σχ,ι (1, ι), ωχ (1, x (χ)
ι ), ω̃χ (1, x (χ)

ι ) ,

0⃗4, φ⃗(χ,ι), 0⃗2)B∗1 for ι ∈ [n],

(8)

where ω̃χ
U
←− Fq\{0} and all the other variables are generated

as in Hyb2-(χ−1)-9.

Hyb2-χ-2 (χ ∈ [qkey])

This experiment is analogous to Hyb2-χ-1 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated as
(c (0), . . . , c (m+1)) such that c (0) , c (m+1) have the same form
as in Eq. (7) and

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ), 0⃗
2,

(s̃′j, s̃ j )Z
(ρ( j)) , 0⃗2, η⃗ ( j))B1 for j ∈ [m],

(9)

where Z (ι) ∈ {Z ∈ GL(2, Fq) | e⃗(2,2) = (1, x (χ)
ι )(Z−1)⊤}

for ι ∈ [n], and all the other variables are generated as in
Hyb2-χ-1.

Hyb2-χ-3 (χ ∈ [qkey])

This experiment is the same as Hyb2-χ-2 with the only excep-
tion that in this experiment, the χth signing key for signing at-
tribute string x⃗ (χ) ∈ Fnq requested byA to reveal is generated
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as sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(χ,0) is given by Eq. (8), k∗(χ,n+1,1), k∗(χ,n+1,2)

are given by Eq. (4), and

k∗(χ,ι) = (σχ,ι (1, ι), ωχ (1, x (χ)
ι ), 0⃗2 , 0⃗2,

(0, ω̃χ) , φ⃗(χ,ι), 0⃗2)B∗1 for ι ∈ [n],
(10)

where all the variables are generated as in Hyb2-χ-2.

Hyb2-χ-4 (χ ∈ [qkey])

This experiment is identical to Hyb2-χ-3 except that in this ex-
periment, the verification-text used to verify the forged signa-
ture outputted byA on some message msg ∈ M under some
signing policy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp

having ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m]→ [n]) is generated as (c (0), . . . , c (m+1)) such
that c (0) , c (m+1) have the same form as in Eq. (7) and

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), a⃗( j) , 0⃗2,

( ã j , ⃗̃u · (x (χ)
ρ( j) y⃗

( j) + z⃗( j))), 0⃗2, η⃗ ( j))B1 for j ∈ [m],

(11)

where {ã j }j∈[m]
U
←− Fq , {a⃗( j) }j∈[m]

U
←− F2

q , and all the other
variables are generated as in Hyb2-χ-3.

Hyb2-χ-5 (χ ∈ [qkey])

This experiment is the same as Hyb2-χ-4 with the only excep-
tion that in this experiment, the χth signing key for signing at-
tribute string x⃗ (χ) ∈ Fnq requested byA to reveal is generated
as sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that {k∗(χ,ι) }ι∈[n] are given by Eq. (10), k∗(χ,n+1,1) ,
k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,0) = (ωχ, ℑχ , φχ,0, 0)B∗0, (12)

where ℑχ
U
←− Fq , and all the other variables are generated as

in Hyb2-χ-4.

Hyb2-χ-6 (χ ∈ [qkey])

This experiment is analogous to Hyb2-χ-5 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated
as (c (0), . . . , c (m+1)) such that c (0) , c (m+1) have the same
form as in Eq. (7) and {c ( j) }j∈[m] are given by Eq. (9) where
s̃ j = ⃗̃u · y⃗ ( j) , s̃′j =

⃗̃u · z⃗( j) for j ∈ [m], Z (ι) ∈ {Z ∈ GL(2, Fq) |

e⃗(2,2) = (1, x (χ)
ι )(Z−1)⊤} for ι ∈ [n], and all the other vari-

ables are generated as in Hyb2-χ-5.

Hyb2-χ-7 (χ ∈ [qkey])

This experiment is analogous to Hyb2-χ-6 with the only excep-

tion that in this experiment, the χth signing key for signing at-
tribute string x⃗ (χ) ∈ Fnq requested byA to reveal is generated
as sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(0) is given by Eq. (12), {k∗(χ,ι) }ι∈[n] are given
by Eq. (8), and k∗(χ,n+1,1), k∗(χ,n+1,2) are given by Eq. (4),
where all the variables are generated as in Hyb2-χ-6.

Hyb2-χ-8 (χ ∈ [qkey])

This experiment is analogous to Hyb2-χ-7 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated
as (c (0), . . . , c (m+1)) such that {c ( j) }j∈[0,m+1] have the same
form as in Eq. (7), where {r⃗ ( j) }j∈[m]

U
←− F2

q , and all the other
variables are generated as in Hyb2-χ-7.

Hyb2-χ-9 (χ ∈ [qkey])

This experiment is analogous to Hyb2-χ-8 with the only excep-
tion that in this experiment, the χth signing key for signing at-
tribute string x⃗ (χ) ∈ Fnq requested byA to reveal is generated
as sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(0) is given by Eq. (12), and {k∗(χ,ι) }ι∈[n],
k∗(χ,n+1,1), k∗(χ,n+1,2) are given by Eq. (4), where all the vari-
ables are generated as in Hyb2-χ-8.

Hyb3

This experiment is identical to Hyb2-qkey-9 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated as
(c (0), . . . , c (m+1)) such that {c ( j) }j∈[m+1] have the same form
as in Eq. (7), and

c (0) = (−u − uℓ, v , 0, η0)B0, (13)

where v
U
←− Fq , and all the other variables are generated as

in Hyb2-qkey-9.

Hyb4-π (π ∈ [qsig])

Hyb4-0 coincides with Hyb3. This experiment is the
same as Hyb4-(π−1) except that in this experiment, the
πth signature associated with the triple (msgπ, Sπ, x⃗ (π)) ∈
M × R

(q,n)
z- abp × F

n
q that A requests to reveal, where Sπ =

(Uπ = {( y⃗ (π, j), z⃗(π, j))}j∈[mπ ] ⊂ (Fℓπq )2, ρπ : [mπ] → [n]),
is created as sigπ = (s∗(π,0), . . . , s∗(π,mπ+1)) such that
{s∗(π, j) }j∈[mπ ] have the same form as in Eq. (5), and

s∗(π,0) = (ω̂π, ζπ,0 , υ̂π,0, 0)B∗0,

s∗(π,mπ+1) = (ω̂π (1,H(λ,poly)
hk (msgπ ∥Sπ )),

ζ⃗ (π,mπ+1) , ⃗̂υ
(π,mπ+1)

, 0⃗2)B∗2,

(14)
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where ζπ,0
U
←− Fq , ζ⃗ (π,mπ+1) U

←− F2
q , and all the other vari-

ables are generated as in Hyb4-(π−1) .

Hyb5

This experiment is identical to Hyb4-qsig except that in this ex-
periment, the verification-text used to verify the forged signa-
ture outputted byA on some message msg ∈ M under some
signing policy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp

having ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m]→ [n]) is generated as (c (0), . . . , c (m+1)) such
that {c ( j) }j∈[m+1] have the same form as in Eq. (7), and

c (0) = ( w , v, 0, η0)B0, (15)

where w
U
←− Fq , and all the other variables are generated as

in Hyb5-qsig .

▷ Analysis

Let us now denote by Adv(i)
A

(λ) the probability thatAwins in
Hybi for i ∈ {0, 0′, 1, {2-χ-k}χ∈[qkey],k∈[9], 3, {4-π}π∈[qsig], 5}.
By definition, we clearly have AdvABS,UF

A
(λ) ≡ Adv(0)

A
(λ),

Adv(1)
A

(λ) ≡ Adv(2-0-9)
A

(λ), and Adv(3)
A

(λ) ≡ Adv(4-0)
A

(λ).
Hence, we have

AdvABS,UF
A

(λ) ≤
���Adv(0)

A
(λ) − Adv(0′)

A
(λ)��� +

���Adv(0′)
A

(λ) − Adv(1)
A

(λ)���+∑
χ∈[qkey]

[ ���Adv(2-(χ−1)-9)
A

(λ) − Adv(2-χ-1)
A

(λ)���+∑
k∈[8]

���Adv(2-χ-k)
A

(λ) − Adv(2-χ-(k+1))
A

(λ)���
]
+

����Adv(2-qkey-9)
A

(λ) − Adv(3)
A

(λ)
����+∑

π∈[qsig]

���Adv(4-(π−1)
A

(λ) − Adv(4,π)
A

(λ)���+

����Adv(4-qsig)
A

(λ) − Adv(5)
A

(λ)
���� + Adv(5)

A
(λ).

(16)

Then Theorem 2 follows from Lemmas 11–26 presented be-
low, in conjunction with Lemmas 3–10 of Sect. 2.4. ■

Lemma 11: For any stateful probabilistic adversaryA, for
any security parameter λ, Adv(0)

A
(λ) = Adv(0′)

A
(λ).

Proof: Lemma 11 follows directly from Theorem 1. ■

Lemma 12: For any stateful probabilistic adversary A,
there exists a probabilistic algorithmB1, whose running time
is essentially the same as that ofA, such that for any security
parameter λ, ���Adv(0′)

A
(λ) − Adv(1)

A
(λ)��� ≤ AdvP1

B1
(λ) + 5/q.

Proof: In order to prove Lemma 12, we construct below
a probabilistic algorithm B1 against Problem 1 using as a

blackbox sub-routine a stateful probabilistic adversary A
that distinguishes between Hyb0′ and Hyb1. Suppose B1 is
given an instance of Problem 1

ϱP1
β̂
= (params, {Bı, B̃∗ı }ı∈[0,2], {e

(α,ν,β̂) }α∈[2],ν∈[2],

f (0,β̂), { f (1,ν,β̂) }ν∈[2]),

where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗0 = {b
∗(0,1), b∗(0,3), b∗(0,4) };

B̃∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,7), b∗(1,8), b∗(1,11), . . . ,

b∗(1,14) };

B̃∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), . . . , b∗(2,8) };

δ, τ, {θν, θ
′
ν }ν∈[2], γ0

U
←− Fq,

{γ⃗ (ν), γ⃗′(ν), γ⃗′′(ν) }ν∈[2]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, 0⃗4, θν e⃗(2,ν), 0⃗2, γ⃗ (ν))B1

e(2,ν,0) = (0⃗2, 0⃗2, 0⃗2, γ⃗′(ν))B2

e(2,ν,1) = (0⃗2, θ ′ν e⃗(2,ν), 0⃗2, γ⃗′(ν))B2




for ν ∈ [2];

f (0,0) = (δ, 0, 0, γ0)B0, f
(0,1) = (δ, τ, 0, γ0)B0 ;

f (1,ν,0) = (0⃗2, δe⃗(2,ν), 0⃗6, 0⃗2, γ⃗′′(ν))B1

f (1,ν,1) = (0⃗2, δe⃗(2,ν), τe⃗(2,ν), 0⃗4, 0⃗2, γ⃗′′(ν))B1

}
for
ν ∈ [2].

B1 interacts with A as follows:

1. At first, B1 sets

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) },

using {Bı, B̃∗ı }ı∈[0,2], which are part of the given Problem

1 instance. It also samples a hashing key hk
R
←− KGen()

for a hash function family H associated with Gbpg
and the polynomial poly (· ), where poly (λ ) represents
the length of the bit string formed by concatenating
a message belonging to M and the binary representa-
tion of an ASP representing a signing policy predicate
in R (q)

z-abp. It provides A with the public parameters
mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]).

2. For all h ∈ [qkey], in response to the hth signing key
reveal query of A for some x⃗ (h) ∈ Fnq , B1 gives A
a signing key sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2)) whose components are generated as in Eq. (4)
using {B̃∗ı }ı∈[0,2] included within the given Problem 1
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instance.

3. Similarly, for all t ∈ [qsig], in response to the tth signa-
ture reveal query of A for some triple (msgt, St, x⃗ (t)) ∈
M × R

(q)
z-abp × F

n
q , B1 hands A a signature sigt =

(s∗(t,0), . . . , s∗(t,mt+1)) whose components are computed
as in Eq. (5) using {B̃∗ı }ı∈[0,2] of the given Problem 1
instance.

4. When A outputs a forgery sig on some message
msg under some signing policy ASP S = (U =

{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) ∈ R (q)
z-abp,

B1 computes the verification-text (c (0), . . . , c (m+1)) as

c (0) = −u†
ℓ
f (0,β̂) + (−u‡

ℓ
− u)b(0,1),

c ( j) = µ j (ρ( j)b(1,1) − b(1,2)) + s′†j f (1,1,β̂)+

s†j f
(1,2,β̂) + s′‡j b

(1,3) + s‡j b
(1,4)+∑

ν∈[2]
r†( j)ν e(1,ν,β̂) +

∑
ν∈[2]
η
†( j)
ν b(1,12+ν)

for j ∈ [m],

c (m+1) = ub(2,1) + κ(−H(λ,poly)
hk (msg∥S)b(2,1) + b(2,2))+∑

ν∈[2]
e(2,ν,β̂),

where u⃗† = (u†1, . . . , u
†

ℓ
), u⃗‡ = (u‡1, . . . , u

‡

ℓ
)

U
←− Fℓq ,

s†j = u⃗† · y⃗ ( j) , s′†j = u⃗† · z⃗( j) , s‡j = u⃗‡ · y⃗ ( j) ,

s′‡j = u⃗‡ · z⃗( j) for j ∈ [m], u, κ, {µ j }j∈[m]
U
←− Fq ,

{r⃗†( j), η⃗†( j) }j∈[m]
U
←− F2

q , and {Bı }ı∈[0,2], {e
(1,ν,β̂) }ν∈[2],

{e(2,ν,β̂) }ν∈[2], f (0,β̂), { f (1,ν,β̂) }ν∈[2] are taken from the
given Problem 1 instance. B1 then verifies the valid-
ity of the forged signature outputted by A using the
above verification-text, and outputs 1 if the verification
succeeds, and 0 otherwise.

It is straightforward to verify that the distribution of
A’s view simulated by B1 given a Problem 1 instance ϱP1

β̂

for β̂ ∈ {0, 1} coincides with that in Hyb0′ if β̂ = 0. Similarly,
the view of A simulated by B1 given a Problem 1 instance
ϱP1
β̂

for β̂ ∈ {0, 1} coincides with that in Hyb1 in case β̂ = 1
except when any one of τ, {θν, θ ′ν }ν∈[2] is 0, i.e., except with
probability 5/q. This completes the proof of Lemma 12. ■

Lemma 13: For any stateful probabilistic adversary A,
there exists a probabilistic algorithm B2-1, whose running
time is essentially the same as that of A, such that for any
security parameter λ, ���Adv(2-(χ−1)-9)

A
(λ) − Adv(2-χ-1)

A
(λ)��� ≤

AdvP2
B2-χ-1

(λ) + 3/q for all χ ∈ [qkey], where B2-χ-1(·) =
B2-1( χ, ·) for any χ ∈ N.

Proof: In order to prove Lemma 13, we construct below a
probabilistic algorithm B2-1 against Problem 2 using as a

blackbox sub-routine a stateful probabilistic adversary A
that distinguishes between Hyb2-(χ−1)-9 and Hyb2-χ-1. Sup-
pose B2-1 is given χ ∈ [qkey] together with an instance of
Problem 2

ϱP2
β̂
= (params, {B̃ı,B∗ı }ı∈[0,1],B2,B

∗
2, h
∗(0,β̂), f (0),

{h∗(1,ν,β̂), f (1,ν) }ν∈[2], {h
∗(2,ν) }ν∈[2]),

where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃0 = {b
(0,1), b(0,3), b(0,4) };

B̃1 = {b
(1,1), . . . , b(1,4), b(1,7), . . . , b(1,14) };

ϑ, <, δ, τ, ξ0 U
←− Fq, {ξ⃗

(ν) }ν∈[2]
U
←− F2

q;

h∗(0,0) = (ϑ, 0, ξ0, 0)B∗0, h
∗(0,1) = (ϑ, <, ξ0, 0)B∗0 ;

f (0) = (δ, τ, 0, 0)B0 ;

h∗(1,ν,0) = (0⃗2, ϑe⃗(2,ν), 0⃗6, ξ⃗ (ν), 0⃗2)B∗1
h∗(1,ν,1) = (0⃗2, ϑe⃗(2,ν), <e⃗(2,ν), 0⃗4, ξ⃗ (ν), 0⃗2)B∗1
f (1,ν) = (0⃗2, δe⃗(2,ν), τe⃗(2,ν), 0⃗4, 0⃗2, 0⃗2)B1




for
ν ∈ [2];

h∗(2,ν) = ϑb∗(2,ν) for ν ∈ [2].

B2-1 interacts with A as follows:

1. At first, B2-1 sets

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) },

using {B̃ı,B∗ı }ı∈{0,1}, B2, and B∗2, which are part of the
given Problem 2 instance. It also samples a hashing key
hk

R
←− KGen() for a hash function family H associated

with Gbpg and the polynomial poly (· ), where poly (λ )
represents the length of the bit string formed by con-
catenating a message belonging to M and the binary
representation of an ASP representing a signing policy
predicate in R (q)

z-abp. It providesA with the public param-
eters mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]).

2. For h ∈ [qkey], in response to the hth signing key re-
veal query of A for some x⃗ (h) ∈ Fnq , B2-1 gives A a
signing key sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2)) whose components are generated as follows:

a. (h < χ) B2-1 computes k∗(h,0) as in Eq. (12), while
k∗(h,1), . . . , k∗(h,n), k∗(h,n+1,1), k∗(h,n+1,2) as in Eq. (4)
using {B∗ı }ı∈[0,2] included within the given Problem 2
instance.
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b. (h= χ)B2-1 computes k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1),
k∗(χ,n+1,2) as follows:

k∗(χ,0) = h∗(0,β̂),

k∗(χ,ι) = σχ,ι (b∗(1,1) + ιb∗(1,2)) + h∗(1,1,β̂)+

x (χ)
ι h∗(1,2,β̂) +

∑
ν∈[2]
φ
†(χ,ι)
ν b∗(1,10+ν)

for ι ∈ [n],

k∗(χ,n+1,ν) = h∗(2,ν) +
∑
α∈[2]

φ
(χ,n+1,ν)
α b∗(2,4+α)

for ν ∈ [2],

where {σχ,ι}ι∈[n]
U
←−Fq , {φ⃗†(χ,ι) }ι∈[n], {φ⃗

(χ,n+1,ν) }ν∈[2]
U
←− F2

q , and {B∗ı }ı∈[0,2], h
∗(0,β̂), {h∗(1,ν,β̂) }ν∈[2],

{h∗(2,ν) }ν∈[2] are taken from the given Problem 2 in-
stance.

c. (h > χ)B2-1 computes k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2) as in Eq. (4) using {B∗ı }ı∈[0,2] of the given
Problem 2 instance.

3. For all t ∈ [qsig], in reply to the tth signature reveal query
of A for some triple (msgt, St, x⃗ (t)) ∈ M × R (q)

z-abp × F
n
q ,

B2-1 hands A a signature sigt = (s∗(t,0), . . . , s∗(t,mt+1))
whose components are computed as in Eq. (5) using
{B∗ı }ı∈[0,2] of the given Problem 2 instance.

4. When A outputs a forgery sig on some message
msg ∈ M under some signing policy ASP S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) ∈ R (q)

z-abp,
B2-1 computes the verification-text (c (0), . . . , c (m+1)) as

c (0) = −u†
ℓ
f (0) + (−u‡

ℓ
− u)b(0,1) + η0b

(0,4),

c ( j) = µ j (ρ( j)b(1,1) − b(1,2)) + s′†j f (1,1)+

s†j f
(1,2) + s′‡j b

(1,3) + s‡j b
(1,4)+∑

ν∈[2]
r ( j)
ν b(1,8+ν) +

∑
ν∈[2]
η

( j)
ν b(1,12+ν)

for j ∈ [m],

c (m+1) = ub(2,1) + κ(−H(λ,poly)
hk (msg∥S)b(2,1) + b(2,2))+∑

ν∈[2]
r (m+1)
ν b(2,2+ν) +

∑
ν∈[2]
η (m+1)
ν b(2,6+ν),

where u⃗† = (u†1, . . . , u
†

ℓ
), u⃗‡ = (u‡1, . . . , u

‡

ℓ
)

U
←− Fℓq , s†j =

u⃗† · y⃗ ( j) , s′†j = u⃗† · z⃗( j) , s‡j = u⃗‡ · y⃗ ( j) , s′‡j = u⃗‡ · z⃗( j) for j ∈

[m], u, κ, {µ j }j∈[m], η0
U
←− Fq , {r⃗ ( j), η⃗ ( j) }j∈[m+1]

U
←− F2

q ,
and f (0), { f (1,ν) }ν∈[2] are taken from the given Problem
2 instance. B2-1 then verifies the validity of the forged
signature outputted by A using the above verification-
text, and outputs 1 if the verification succeeds, and 0
otherwise.

It is straightforward to verify that the distribution ofA’s

view simulated by B2-1 given χ ∈ [qkey] and a Problem 2
instance ϱP2

β̂
for β̂ ∈ {0, 1} coincides with that in Hyb2-(χ−1)-9

if β̂ = 0 except when τ = 0, i.e., except with probability 1/q.
Similarly, the view ofA simulated by B2-1 given χ ∈ [qkey]
and a Problem 2 instance ϱP2

β̂
for β̂ ∈ {0, 1} coincides with

that in Hyb2-χ-1 in case β̂ = 1 except when any one of <, τ is
0, i.e., except with probability 2/q. This completes the proof
of Lemma 13. ■

Lemma 14: For any stateful probabilistic adversary A,
there exists a probabilistic algorithm B2-2, whose running
time is essentially the same as that of A, such that for
any security parameter λ, ���Adv(2-χ-1)

A
(λ) − Adv(2-χ-2)

A
(λ)��� ≤

AdvP3
B2-χ-2

(λ) + 2/q for all χ ∈ [qkey], where B2-χ-2(·) =
B2-2( χ, ·) for any χ ∈ N.

Proof: In order to prove Lemma 14, we construct below a
probabilistic algorithm B2-2 against Problem 3 using as a
blackbox sub-routine a stateful probabilistic adversary A
that distinguishes between Hyb2-χ-1 and Hyb2-χ-2. Suppose
B2-2 is given χ ∈ [qkey] together with an instance of Problem
3

ϱP3
β̂
= (params, {Bı,B∗ı }ı∈{0,2},B1, B̃

∗
1, {e

(1,ν,β̂) }ν∈[2]),

where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗1 = {b
∗(1,1), . . . , b∗(1,8), b∗(1,11), . . . , b∗(1,14) };

{θν }ν∈[2]
U
←− Fq, {γ⃗

(ν) }ν∈[2]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, 0⃗4, θν e⃗(2,ν), 0⃗2, γ⃗ (ν))B1

}
for ν ∈ [2].

B2-2 interacts with A as follows:

1. At first, B2-2 sets

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) },

using {Bı,B∗ı }ı∈{0,2}, B1, and B̃∗1, which are part of the
given Problem 3 instance. It also samples a hashing key
hk

R
←− KGen() for a hash function family H associated

with Gbpg and the polynomial poly (· ), where poly (λ )
represents the length of the bit string formed by con-
catenating a message belonging to M and the binary
representation of an ASP representing a signing policy
predicate in R (q)

z-abp. It providesA with the public param-
eters mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]).
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2. For h ∈ [qkey], in response to the hth signing key re-
veal query of A for some x⃗ (h) ∈ Fnq , B2-2 gives A a
signing key sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2)) whose components are generated as follows:

a. (h < χ) B2-2 computes k∗(h,0) as in Eq. (12), while
k∗(h,1), . . . , k∗(h,n), k∗(h,n+1,1), k (h,n+1,2) as in Eq. (4).

b. (h = χ) B2-2 computes k∗(χ,0), . . . , k∗(χ,n) as in
Eq. (8), whereas k∗(χ,n+1,1), k∗(χ,n+1,2) as in Eq. (4)

c. (h > χ)B2-2 computes k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2) as in Eq. (4).

In these computations B2-2 uses {B∗ı }ı∈{0,2} and B̃∗1 in-
cluded within the given Problem 3 instance.

3. For all t ∈ [qsig], in reply to the tth signature reveal query
of A for some triple (msgt, St, x⃗ (t)) ∈ M × R (q)

z-abp × F
n
q ,

B2-2 hands A a signature sigt = (s∗(t,0), . . . , s∗(t,mt+1))
whose components are computed as in Eq. (5) using
{B∗ı }ı∈{0,2} and B̃∗1 of the given Problem 3 instance.

4. When A outputs a forgery sig on some message
msg ∈ M under some signing policy ASP S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) ∈ R (q)

z-abp,
B2-2 computes the verification-text (c (0), . . . , c (m+1)) as

c (0) = (−u − uℓ,−ũℓ, 0, η0)B0,

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ), 0⃗
2,

(s̃′j, s̃ j )Z
(ρ( j)), 0⃗2, η⃗†( j))B1+∑

ν∈[2]
r†( j)ν e(1,ν,β̂) for j ∈ [m],

c (m+1) = ((u − κH(λ,poly)
hk (msg∥S), κ), r⃗ (m+1),

0⃗2, η⃗ (m+1))B2,

where u⃗ = (u1, . . . , uℓ ), ⃗̃u = (ũ1, . . . , ũℓ )
U
←− Fℓq ,

s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) , s̃ j = ⃗̃u · y⃗ ( j) ,

s̃′j =
⃗̃u · z⃗( j) for j ∈ [m], u, κ, {µ j }j∈[m], η0

U
←− Fq ,

{r⃗†( j) }j∈[m], r⃗ (m+1), {η⃗†( j) }j∈[m], η⃗
(m+1) U

←− F2
q , Z (ι) ∈

{Z ∈ GL(2, Fq) | e⃗(2,2) = (1, x (χ)
ι )(Z−1)⊤} for ι ∈ [n],

and {Bı }ı∈[0,2], {e
(1,ν,β̂) }ν∈[2] are taken from the given

Problem 3 instance. B2-2 then verifies the validity of
the forged signature outputted by A using the above
verification-text, and outputs 1 if the verification suc-
ceeds, and 0 otherwise.

It is straightforward to verify that the distribution of
A’s view simulated by B2-2 given χ ∈ [qkey] and a Problem
3 instance ϱP3

β̂
for β̂ ∈ {0, 1} coincides with that in Hyb2-χ-1

if β̂ = 1 except when any one of {θν }ν∈[2] is 0, i.e., except
with probability 2/q. Similarly, the view of A simulated
by B2-2 given χ ∈ [qkey] and a Problem 3 instance ϱP3

β̂
for

β̂ ∈ {0, 1} coincides with that in Hyb2-χ-2 in case β̂ = 0.

This completes the proof of Lemma 14. ■

Lemma 15: Under the SXDLIN assumption, we have for
any PPT adversary A, for any security parameter λ,
���Adv(2-χ-2)

A
(λ) − Adv(2-χ-3)

A
(λ)��� ≤ negl (λ ) for all χ ∈ [qkey],

where negl is some negligible function.

Proof: In order to prove Lemma 15, we consider a sequence
of intermediate hybrid experiments, which differ from one
another in the construction of the χth signing key requested
by A to reveal and/or the verification-text used by the chal-
lenger B to verify the validity of the forged signature out-
putted by A at the end of the experiment. The first hybrid
corresponds to Hyb2-χ-2, while the last one corresponds to
Hyb2-χ-3. As usual, we argue that A’s winning probabil-
ity changes only by a negligible amount in each successive
hybrid experiment, thereby proving Lemma 15. The over-
all structure of the reduction is demonstrated in Fig. 3. The
sequence of intermediate hybrid experiments are described
below. As earlier, in the description of these hybrids as well a
part framed by a box indicates coefficients which are altered
in a transition from its previous hybrid.

▷ Sequence of Intermediate Hybrid Experiments between
Hyb2-χ-2 and Hyb2-χ-3 (χ ∈ [qkey])

Hyb2-χ-2-α-1 (χ ∈ [qkey], α ∈ [n])

Hyb2-χ-2-0-8 coincides with Hyb2-χ-2. This experiment is
analogous to Hyb2-χ-2-(α−1)-8 except that in this experiment,
the verification-text used to verify the forged signature out-
putted by A on some message msg ∈ M under some sign-
ing policy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R (q)
z-abp

having ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m]→ [n]) is generated as (c (0), . . . , c (m+1)) such
that c (0) , c (m+1) have the same form as in Eq. (7) and

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ), (s̃′j, s̃ j ) ,

(s̃′j, s̃ j )Z
(ρ( j)), 0⃗2, η⃗ ( j))B1 for j ∈ [m],

(17)

where all the variables are generated as in Hyb2-χ-2-(α−1)-8.

Hyb2-χ-2-α-2 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-1 with the
only exception that in this experiment, the χth sign-
ing key for signing attribute string x⃗ (χ) ∈ Fnq re-
quested by A to reveal is generated as sk( x⃗ (χ)) =
(k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2)) such that
k∗(χ,0), k∗(χ,α+1), . . . , k∗(χ,n) are given by Eq. (8),
k∗(χ,1), . . . , k∗(χ,α−1) are given by Eq. (10), k∗(χ,n+1,1),
k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,α) = (σχ,α (1, α), ωχ (1, x (χ)
α ),

(ω̃χ − ℑχ,α,1), (ω̃χ − ℑχ,α,2)x (χ)
α ,ℑχ,α,1,ℑχ,α,2x (χ)

α ,

0⃗2, φ⃗(χ,α), 0⃗2)B∗1,
(18)
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Fig. 3 Structure of the hybrid reduction for the proof of Lemma 15.

where {ℑχ,α,ν }ν∈[2]
U
←− Fq and all the other variables are

formed as in Hyb2-χ-2-α-1.

Hyb2-χ-2-α-3 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-2 with the
only exception that in this experiment, the χth

signing key for signing attribute string x⃗ (χ) ∈

Fnq requested by A to reveal is generated as
sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(χ,0), k∗(χ,α+1), . . . , k∗(χ,n) are given by Eq. (8),
k∗(χ,1), . . . , k∗(χ,α−1) are given by Eq. (10), k∗(χ,n+1,1),
k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,α) = (σχ,α (1, α), ωχ (1, x (χ)
α ),

ℑχ,α,1,ℑχ,α,2x (χ)
α , (ω̃χ − ℑχ,α,1), (ω̃χ − ℑχ,α,2)x (χ)

α ,

0⃗2, φ⃗(χ,α), 0⃗2)B∗1,
(19)

where all the variables are generated as in Hyb2-χ-2-α-2.

Hyb2-χ-2-α-4 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-3 with the

only exception that in this experiment, the χth

signing key for signing attribute string x⃗ (χ) ∈

Fnq requested by A to reveal is generated as
sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(χ,0), k∗(χ,α+1), . . . , k∗(χ,n) are given by Eq. (8),
k∗(χ,1), . . . , k∗(χ,α−1) are given by Eq. (10), k∗(χ,n+1,1),
k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,α) = (σχ,α (1, α), ωχ (1, x (χ)
α ), 0⃗2, ω̃χ (1, x (χ)

α ) ,

0⃗2, φ⃗(χ,α), 0⃗2)B∗1,
(20)

where all the variables are generated as in Hyb2-χ-2-α-3.

Hyb2-χ-2-α-5 (χ ∈ [qkey], α ∈ [n]

This experiment is similar to Hyb2-χ-2-α-4 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated as
(c (0), . . . , c (m+1)) such that c (0) , c (m+1) have the same form
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as in Eq. (7), {c ( j) | j ∈ [m] ∧ ρ( j) = α} are given by
Eq. (17), and

c ( j)= (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ), Υ⃗
( j) , (s̃′j, s̃ j )Z

(ρ( j)),

0⃗2, η⃗ ( j))B1 for j ∈ [m] ∧ ρ( j) , α,
(21)

where {Υ⃗( j) | j ∈ [m] ∧ ρ( j) , α}
U
←− F2

q and all the other
variables are generated as in Hyb2-χ-2-α-4.

Hyb2-χ-2-α-6 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-5 with the
only exception that in this experiment, the χth

signing key for signing attribute string x⃗ (χ) ∈

Fnq requested by A to reveal is generated as
sk( x⃗ (χ)) = (k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2))
such that k∗(χ,0), k∗(χ,α+1), . . . , k∗(χ,n) are given by Eq. (8),
k∗(χ,1), . . . , k∗(χ,α−1) are given by Eq. (10), k∗(χ,n+1,1),
k∗(χ,n+1,2) are given by Eq. (4), and

k∗(χ,α) = (σχ,α (1, α), ωχ (1, x (χ)
α ), 0⃗2,

ωχ (1, x (χ)
α ), (0, ω̃χ) , φ⃗(χ,α), 0⃗2)B∗1,

(22)

while the verification-text used to verify the forged signature
outputted by A on some message msg ∈ M under some
signing policy predicate R(q)

z-abp( f , ·) : Fnq → {0, 1} ∈ R
(q)
z-abp

having ASP-representation S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂
(Fℓq)2, ρ : [m]→ [n]) is generated as (c (0), . . . , c (m+1)) such
that c (0) , c (m+1) have the same form as in Eq. (7), {c ( j) |

j ∈ [m] ∧ ρ( j) , α} are given by Eq. (21), and {c ( j) | j ∈

[m] ∧ ρ( j) = α} are given by Eq. (9), where ωχ
U
←− Fq and

all the other variables are generated as in Hyb2-χ-2-α-5.

Hyb2-χ-2-α-7 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-6 except that in this
experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M
under some signing policy predicate R(q)

z-abp( f , ·) : Fnq →
{0, 1} ∈ R (q)

z-abp having ASP-representation S = (U =
{( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is generated as
(c (0), . . . , c (m+1)) such that c (0) , c (m+1) have the same form
as in Eq. (7), and c (1), . . . , c (m) are given by Eq. (9), where
all the variables are generated as in Hyb2-χ-2-α-6.

Hyb2-χ-2-α-8 (χ ∈ [qkey], α ∈ [n])

This experiment is similar to Hyb2-χ-2-α-7 with the
only exception that in this experiment, the χth sign-
ing key for signing attribute string x⃗ (χ) ∈ Fnq re-
quested by A to reveal is generated as sk( x⃗ (χ)) =
(k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1), k∗(χ,n+1,2)) such that
k∗(χ,0), k∗(χ,α+1), . . . , k∗(χ,n) are given by Eq. (8),
k∗(χ,1), . . . , k∗(χ,α) are given by Eq. (10), and k∗(χ,n+1,1),
k∗(χ,n+1,2) are given by Eq. (4), where all the variables are

generated as in Hyb2-χ-2-α-7. Observe that Hyb2-χ-2-n-8 coin-
cides with Hyb2-χ-3.

▷ Analysis

As earlier, let us denote by Adv(i)
A

(λ) the probability that
A wins in Hybi for i ∈ {2-χ-2-α-k}χ∈[qkey],α∈[n],k∈[8]. By
definition of these hybrids, we clearly have Adv(2-χ-2)

A
(λ) ≡

Adv(2-χ-2-0-8)
A

(λ) and Adv(2-χ-3)
A

(λ) ≡ Adv(2-χ-2-n-8)
A

(λ) for all
χ ∈ [qkey]. Hence, we have

���Adv(2-χ-2)
A

(λ) − Adv(2-χ-3)
A

(λ)��� ≤∑
α∈[n]

[ ���Adv(2-χ-2-(α−1)-8)
A

(λ) − Adv(2-χ-2-α-1)
A

(λ)���+∑
k∈[7]

���Adv(2-χ-2-α-k)
A

(λ) − Adv(2-χ-2-α-(k+1))
A

(λ)���
]

for all χ ∈ [qkey].
(23)

Then Lemma 15 follows from Claims 1–8 presented below,
the proofs of which are essentially analogous to those of
Lemmas 49–56 in [42] respectively, in conjunction with
Lemmas 6–8 of Sect. 2.4. ■

Claim 1: For any stateful probabilistic adversary A,
for any security parameter λ, Adv(2-χ-2-(α−1)-8)

A
(λ) =

Adv(2-χ-2-α-1)
A

(λ) for all χ ∈ [qkey], α ∈ [n].

Claim 2: For any stateful probabilistic adversary A, there
exists a probabilistic algorithm B2-3-1, whose running time
is essentially the same as that of A, such that for any se-
curity parameter λ, ���Adv(2-χ-2-α-1)

A
(λ) − Adv(2-χ-2-α-2)

A
(λ)��� ≤

AdvP4-α
B2-χ-3-α-1

(λ) for all χ ∈ [qkey], α ∈ [n], where
B2-χ-3-α-1(·) = B2-3-1( χ, α, ·) for any χ, α ∈ N.

Claim 3: For any stateful probabilistic adversaryA, for any
security parameter λ, Adv(2-χ-2-α-2)

A
(λ) = Adv(2-χ-2-α-3)

A
(λ)

for all χ ∈ [qkey], α ∈ [n].

Claim 4: For any stateful probabilistic adversary A, there
exists a probabilistic algorithm B2-3-2, whose running time
is essentially the same as that of A, such that for any se-
curity parameter λ, ���Adv(2-χ-2-α-3)

A
(λ) − Adv(2-χ-2-α-4)

A
(λ)��� ≤

AdvP4-α
B2-χ-3-α-2

(λ) for all χ ∈ [qkey], α ∈ [n], where
B2-χ-3-α-2(·) = B2-3-2( χ, α, ·) for any χ, α ∈ N.

Claim 5: For any stateful probabilistic adversary A, there
exists a probabilistic algorithm B2-3-3, whose running time
is essentially the same as that of A, such that for any se-
curity parameter λ, ���Adv(2-χ-2-α-4)

A
(λ) − Adv(2-χ-2-α-5)

A
(λ)��� ≤

AdvP5-α
B2-χ-3-α-3

(λ) for all χ ∈ [qkey], α ∈ [n], where
B2-χ-3-α-3(·) = B2-3-3( χ, α, ·) for any χ, α ∈ N.

Claim 6: For any stateful probabilistic adversaryA, for any
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security parameter λ, Adv(2-χ-2-α-5)
A

(λ) = Adv(2-χ-2-α-6)
A

(λ)
for all χ ∈ [qkey], α ∈ [n].

Claim 7: For any stateful probabilistic adversary A, there
exists a probabilistic algorithm B2-3-4, whose running time
is essentially the same as that of A, such that for any se-
curity parameter λ, ���Adv(2-χ-2-α-6)

A
(λ) − Adv(2-χ-2-α-7)

A
(λ)��� ≤

AdvP5-α
B2-χ-3-α-4

(λ) for all χ ∈ [qkey], α ∈ [n], where
B2-χ-4-α-3(·) = B2-3-4( χ, α, ·) for any χ, α ∈ N.

Claim 8: For any stateful probabilistic adversary A, there
exists a probabilistic algorithm B2-3-5, whose running time
is essentially the same as that of A, such that for any se-
curity parameter λ, ���Adv(2-χ-2-α-7)

A
(λ) − Adv(2-χ-2-α-8)

A
(λ)��� ≤

AdvP6-α
B2-χ-3-α-5

(λ) for all χ ∈ [qkey], α ∈ [n], where
B2-χ-3-α-5(·) = B2-3-5( χ, α, ·) for any χ, α ∈ N.

Lemma 16: For any stateful probabilistic adversary A,
there exists a probabilistic algorithm B2-4, whose running
time is essentially the same as that of A, such that for
any security parameter λ, ���Adv(2-χ-3)

A
(λ) − Adv(2-χ-4)

A
(λ)��� ≤

AdvP7
B2-χ-4

(λ) + 3/q for all χ ∈ [qkey], where B2-χ-4(·) =
B2-4( χ, ·) for any χ ∈ N.

Proof: In order to prove Lemma 16, we construct below a
probabilistic algorithm B2-4 against Problem 7 using as a
blackbox sub-routine a stateful probabilistic adversary A
that distinguishes between Hyb2-χ-3 and Hyb2-χ-4. Suppose
B2-4 is given χ ∈ [qkey] together with an instance of Problem
7

ϱP7
β̂
= (params, {Bı,B∗ı }ı∈{0,2},B1, B̃

∗
1, {e

(1,ν,β̂) }ν∈[3]),

where

(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,7), b∗(1,8), b∗(1,10), . . . ,

b∗(1,14) };

{θν }ν∈[3]
U
←− Fq, {γ⃗

(ν) }ν∈[3]
U
←− F2

q;

e(1,ν,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (ν))B1

e(1,ν,1) = (0⃗4, θν e⃗(2,ν), 0⃗4, 0⃗2, γ⃗ (ν))B1

}
for ν ∈ [2];

e(1,3,0) = (0⃗4, 0⃗6, 0⃗2, γ⃗ (3))B1,

e(1,3,1) = (0⃗4, 0⃗4, θ3e⃗(2,1), 0⃗2, γ⃗ (3))B1 .

B2-4 interacts with A as follows:

1. At first, B2-4 sets

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) },

using {Bı,B∗ı }ı∈{0,2}, B1, and B̃∗1, which are part of the
given Problem 7 instance. It also samples a hashing key
hk

R
←− KGen() for a hash function family H associated

with Gbpg and the polynomial poly (· ), where poly (λ )
represents the length of the bit string formed by con-
catenating a message belonging to M and the binary
representation of an ASP representing a signing policy
predicate in R (q)

z-abp. It providesA with the public param-
eters mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]).

2. For h ∈ [qkey], in response to the hth signing key re-
veal query of A for some x⃗ (h) ∈ Fnq , B2-4 gives A a
signing key sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2)) whose components are generated as follows:

a. (h < χ) B2-4 computes k∗(h,0) as in Eq. (12), while
k∗(h,1), . . . , k∗(h,n), k∗(h,n+1,1), k (h,n+1,2) as in Eq. (4).

b. (h = χ) B2-4 computes k∗(χ,0) as in Eq. (8),
k∗(χ,1), . . . , k∗(χ,n) as in Eq. (10), whereas k∗(χ,n+1,1),
k∗(χ,n+1,2) as in Eq. (4)

c. (h > χ)B2-4 computes k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1),
k∗(h,n+1,2) as in Eq. (4).

In these computations B2-4 uses {B∗ı }ı∈{0,2} and B̃∗1 in-
cluded within the given Problem 7 instance.

3. For all t ∈ [qsig], in response to a signature reveal query of
A for some triple (msgt, St, x⃗ (t)) ∈ M×R (q)

z-abp×F
n
q , B2-4

handsA a signature sigt = (s∗(t,0), . . . , s∗(t,mt+1)) whose
components are computed as in Eq. (5) using {B∗ı }ı∈{0,2}
and B̃∗1 of the given Problem 7 instance.

4. WhenA outputs a forgery sig on some message msg ∈ M
under some signing policyS = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂

(Fℓq)2, ρ : [m] → [n]) ∈ R (q)
z-abp, B2-4 computes the

verification-text (c (0), . . . , c (m+1)) as

c (0) = (−u − uℓ,−ũℓ, 0, η0)B0,

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ), 0⃗
2,

(s̃′j, s̃ j )Z
(ρ( j)), 0⃗2, η⃗†( j))B1+∑

ν∈[2]
a†( j)ν e(1,ν,β̂) + ã†j e

(1,3,β̂) for j ∈ [m],

c (m+1) = ((u − κH(λ,poly)
hk (msg∥S), κ), r⃗ (m+1),

0⃗2, η⃗ (m+1))B2,

where u⃗ = (u1, . . . , uℓ ), ⃗̃u = (ũ1, . . . , ũℓ )
U
←− Fℓq ,

s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) , s̃ j = ⃗̃u · y⃗ ( j) , s̃′j =

⃗̃u · z⃗( j) for j ∈ [m], u, κ, {µ j }j∈[m], {ã
†

j }j∈[m], η0
U
←− Fq ,

{a⃗†( j) }j∈[m], r⃗ (m+1), {η⃗†( j) }j∈[m], η⃗
(m+1) U

←− F2
q , Z (ι) ∈

{Z ∈ GL(2, Fq) | e⃗(2,2) = (1, x (χ)
ι )(Z−1)⊤} for ι ∈ [n],
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and {Bı }ı∈[0,2], {e
(1,ν,β̂) }ν∈[3] are taken from the given

Problem 7 instance. B2-4 then verifies the validity of
the forged signature outputted by A using the above
verification-text, and outputs 1 if the verification suc-
ceeds, and 0 otherwise.

It is straightforward to verify that the distribution of
A’s view simulated by B2-4 given χ ∈ [qkey] and a Problem
7 instance ϱP7

β̂
for β̂ ∈ {0, 1} coincides with that in Hyb2-χ-3

if β̂ = 0. Similarly, the view of A simulated by B2-4 given
χ ∈ [qkey] and a Problem 7 instance ϱP7

β̂
for β̂ ∈ {0, 1}

coincides with that in Hyb2-χ-4 in case β̂ = 1 except when
any one of {θν }ν∈[3] is 0, i.e., except with probability 3/q.
This completes the proof of Lemma 16. ■

Lemma 17: For any stateful probabilistic adversaryA, for
any security parameter λ, Adv(2-χ-4)

A
(λ) = Adv(2-χ-5)

A
(λ) for

all χ ∈ [qkey].

Proof: In order to prove Lemma 17, we show that the
distribution (mpk, {sk( x⃗ (h))}h∈[qkey], {sigt }t∈[qsig], (c (0), . . . ,

c (m+1))) in Hyb2-χ-4 and that in Hyb2-χ-5 are equivalent,
where mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]) is the public
parameters given to A, sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n),
k∗(h,n+1,1), k∗(h,n+1,2)) is the answer to the hth signing key re-
veal query ofA, sigt = (s∗(t,0), . . . , s∗(t,mt+1)) is the answer
to the tth signature reveal query ofA, and (c (0), . . . , c (m+1))
is the verification-text used to check the forged signature out-
putted by A at the end of the experiment. By the definition
of these hybrids, it is clear that we only need to consider the
joint distribution of sk( x⃗ (χ)) and (c (0), . . . , c (m+1)).

The components k∗(χ,0), . . . , k∗(χ,n), k∗(χ,n+1,1),
k∗(χ,n+1,2) of the signing key sk( x⃗ (χ)) in Hyb2-χ-4 can be
expressed as

k∗(χ,0) = (ωχ, p̃χ,0, φχ,0, 0)B∗0,

k∗(χ,ι) = (σχ,ι (1, ι), ωχ (1, x (χ)
ι ), 0⃗4, (0, p̃χ,ι),

φ⃗(χ,ι), 0⃗2)B∗1 for ι ∈ [n],

k∗(χ,n+1,1) = (ωχ (1, 0), 0⃗2, φ⃗(χ,n+1,1), 0⃗2)B∗2,

k∗(χ,n+1,2) = (ωχ (0, 1), 0⃗2, φ⃗(χ,n+1,2), 0⃗2)B∗2,

where p̃χ,0 = · · · = p̃χ,n = ω̃χ, ωχ
U
←− Fq\{0},

{σχ,ι}ι∈[n], φχ,0
U
←− Fq , and {φ⃗(χ,ι) }ι∈[n], φ⃗

(χ,n+1,1),

φ⃗(χ,n+1,2) U
←− F2

q . On the other hand, the components
c (0), . . . , c (m+1) of the verification-text are computed in
Hyb2-χ-4 as

c (0) = (−u − uℓ, q̃0, 0, η0)B0,

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), a⃗
( j), 0⃗2, (ã j, q̃j ),

0⃗2, η⃗ ( j))B1 for j ∈ [m],

c (m+1) = (u − κH(λ,poly)
hk (msg∥S), κ, r⃗ (m+1), 0⃗2, η⃗ (m+1))B2,

where ⃗̃u = (ũ1, . . . , ũℓ )
U
←− Fℓq , q̃0 = −ũℓ , q̃j = ⃗̃u ·

(x (χ)
ρ( j) y⃗

( j) + z⃗( j)) for j ∈ [m], u⃗ = (u1, . . . , uℓ )
U
←− Fℓq ,

s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) for j ∈ [m], u, κ, {µ j }j∈[m], {ã j }j∈[m],

η0
U
←− Fq , r⃗ (m+1), {a⃗( j) }j∈[m], {η⃗

( j) }j∈[m+1]
U
←− F2

q , and
S = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂ (Fℓq)2, ρ : [m] → [n]) is
the ASP representation of the signing policy in R (q)

z-abp under
which A has outputted the forged signature.

Observe that the only change that occurs in the joint
distribution of sk( x⃗ (χ)) and (c (0), . . . , c (m+1)) in the tran-
sition from Hyb2-χ-4 to Hyb2-χ-5 is that in Hyb2-χ-5, p̃χ,0
in the expression of k∗(χ,0) transforms to a uniformly and
independently (from all the other variables) distributed el-
ement of Fq . Clearly, in the joint distribution of sk( x⃗ (χ))
and (c (0), . . . , c (m+1)) in Hyb2-χ-4, the only variables with
which p̃χ,0 is related are {p̃χ,ι}ι∈[n] and {q̃j }j∈[0,m]. Hence,
it is enough to consider the joint distribution of these vari-
ables. First, we observe the joint distribution of the variables
p̃χ,0q̃0 = −ω̃χũℓ and p̃χ,ρ( j) q̃j = ω̃χ (⃗̃u · (x (χ)

ρ( j) y⃗
( j) + z⃗( j)))

for j ∈ [m]. By the restriction on the signing key reveal
queries imposed on A, the ASP S does not accept the sign-
ing attribute vector x⃗ (χ) . Therefore, we must have e⃗(ℓ,ℓ) <

span⟨x (χ)
ρ( j) y⃗

( j) + z⃗( j) | j ∈ [m]⟩. Hence, there must exist a
vector u⃗+ = (u+1 , . . . , u

+
ℓ ) ∈ Fℓq such that u⃗+ · e⃗(ℓ,ℓ) = u+ℓ , 0

and u⃗+ · (x (χ)
ρ( j) y⃗

( j)+ z⃗( j)) = 0 for all j ∈ [m]. Now, any vector
⃗̃u

U
←− Fℓq can be expressed as ⃗̃u = Λu⃗++u⃗++ for someΛ

U
←− Fq

and u⃗++
U
←− Fℓq . Thus, p̃χ,0q̃0 and {p̃χ,ρ( j) q̃j }j∈[m] can be

expressed as p̃χ,0q̃0 = −ω̃χ (Λu+ℓ + u++ℓ ) and p̃χ,ρ( j) q̃j =

ω̃χ (u⃗++ · (xρ( j) y⃗
( j) + z⃗( j))) for j ∈ [m]. From this rep-

resentation, it is clear that p̃χ,0q̃0 is uniformly and inde-
pendently distributed from {p̃χ,ρ( j) q̃j }j∈[m] since Λ

U
←− Fq .

Given this fact, it readily follows that p̃χ,0 is uniformly and
independently distributed from {p̃χ,ι}ι∈[n] and {q̃j }j∈[0,m].
This completes the proof of Lemma 17. ■

Lemma 18: For any stateful probabilistic adversary A,
there exists a probabilistic algorithm B2-5, whose running
time is essentially the same as that of A, such that for
any security parameter λ, ���Adv(2-χ-5)

A
(λ) − Adv(2-χ-6)

A
(λ)��� ≤

AdvP7
B2-χ-5

(λ) + 3/q for all χ ∈ [qkey], where B2-χ-5(·) =
B2-5( χ, ·) for any χ ∈ N.

Proof: Lemma 18 can be proven in a manner similar to that
of Lemma 16. ■

Lemma 19: Under the SXDLIN assumption, we have for
any PPT adversary A, for any security parameter λ,
���Adv(2-χ-6)

A
(λ) − Adv(2-χ-7)

A
(λ)��� ≤ negl (λ ) for all χ ∈ [qkey],

where negl is some negligible function.

Proof: The proof of Lemma 19 is similar to that of
Lemma 15. ■

Lemma 20: For any stateful probabilistic adversary A,
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there exists a probabilistic algorithm B2-7, whose running
time is essentially the same as that of A, such that for
any security parameter λ, ���Adv(2-χ-7)

A
(λ) − Adv(2-χ-8)

A
(λ)��� ≤

AdvP3
B2-χ-7

(λ) + 2/q for all χ ∈ [qkey], where B2-χ-7(·) =
B2-7( χ, ·) for any χ ∈ N.

Proof: Lemma 20 can be proven in a manner analogous to
that of Lemma 14. ■

Lemma 21: For any stateful probabilistic adversary A,
there exists a probabilistic algorithm B2-8, whose running
time is essentially the same as that of A, such that for
any security parameter λ, ���Adv(2-χ-8)

A
(λ) − Adv(2-χ-9)

A
(λ)��� ≤

AdvP2
B2-χ-8

(λ) + 3/q for all χ ∈ [qkey], where B2-χ-8(·) =
B2-8( χ, ·) for any χ ∈ N.

Proof: Lemma 21 can be proven in a manner analogous to
that of Lemma 13. ■

Lemma 22: For any stateful probabilistic adversaryA, for
any security parameter λ,

����Adv(2-qkey-9)
A

(λ) − Adv(3)
A

(λ)
���� ≤

1/q.

Proof: In order to prove Lemma 22, we show that the
distribution (mpk, {sk( x⃗ (h))}h∈[qkey], {sigt }t∈[qsig], (c (0), . . . ,

c (m+1))) in Hyb2-qkey-9 and that in Hyb3 are equivalent,
where mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]) is the public
parameters given to A, sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n),
k∗(h,n+1,1), k∗(h,n+1,2)) is the answer to A’s hth signing key
reveal query for h ∈ [qkey], sigt = (s∗(t,0), . . . , s∗(t,mt+1)) is
the answer to the tth signature reveal query ofA for t ∈ [qsig],
and (c (0), . . . , c (m+1)) is the verification-text used to check
the forged signature outputted by A at the end of the exper-
iment. By the definition of these hybrids, it is clear that we
only need to consider the joint distribution of the components
{k∗(h,0) }h∈[qkey], {s∗(t,0) }t∈[qsig], and c (0) . Let us start with the
joint distribution of these components in Hyb2-qkey-9. Define
new dual orthonormal bases (D0,D

∗
0) of (V0,V

∗
0) from the

original bases (B0,B
∗
0) used in Hyb2-qkey-9 as follows: Gen-

erate Λ
U
←− Fq\{0}, compute

d(0,2) = Λb(0,2), d∗(0,2) = Λ−1b∗(0,2),

and set
D0 = {b

(0,1), d(0,2), b(0,3), b(0,4) },

D∗0 = {b
∗(0,1), d∗(0,2), b∗(0,3), b∗(0,4) }.

It can be readily observed that the new bases (D0,D
∗
0) are

indeed dual orthonormal, and are distributed the same as the
original bases (B0,B

∗
0).

First, notice that for all t ∈ [qsig], the forms of s∗(t,0) in
Hyb2-qkey-9 and in Hyb3 are identical, and since the coefficient
of b∗(0,2) in the expression of s∗(t,0) generated in Hyb2-qkey-9
is 0, its form remains unaltered under this change of bases.
Now, observe that the components c (0) and {k∗(h,0) }h∈[qkey]

in Hyb2-qkey-9 can be expressed over the new bases (D0,D
∗
0)

as follows:

c (0) = (−u − uℓ,−ũℓ, 0, η0)B0

= (−u − uℓ,−ũℓΛ−1, 0, η0)D0

= (−u − uℓ, v, 0, η0)D0,

k∗(h,0) = (ωh,ℑh, φh,0, 0)B∗0
= (ωh,ℑhΛ, φh,0, 0)D∗0
= (ωh,ℑ′h, φh,0, 0)D∗0 for h ∈ [qkey],

where v = −ũℓΛ−1 and ℑ′
h
= ℑhΛ for h ∈ [qkey]. Clearly,

for all h ∈ [qkey], ℑ′
h

is uniformly and independently (from

all the other variables) distributed sinceℑh
U
←− Fq . Further, v

is uniformly and independently (from all the other variables)
distributed except when ũℓ = 0 since Λ

U
←− Fq\{0}. Thus, it

follows that c (0) and {k∗(h,0) }h∈[qkey] generated in Hyb2-qkey-9
take the form as in Hyb3 when expressed over the transformed
bases (D0,D

∗
0).

Clearly, in the view of A, both the original bases
(B0,B

∗
0) and the transformed bases (D0,D

∗
0) are consistent

with the public parameters mpk. Therefore, Hyb2-qkey-9 can
be conceptually changed to Hyb3 except when ũℓ = 0, i.e.,
except with probability 1/q. This completes the proof of
Lemma 22. ■

Lemma 23: For any stateful probabilistic adversary A,
there exists probabilistic algorithms B3 andM, whose run-
ning times are essentially the same as that ofA, such that for
any security parameter λ, ���Adv(4-(π−1))

A
(λ) − Adv(4-π)

A
(λ)��� ≤

AdvP8
B3-π

(λ) + AdvH,CR
Mπ

(λ) + 5/q for all π ∈ [qsig], where
B3-π (·) = B3(π, ·) andMπ (·) =M (π, ·) for any π ∈ N.

Proof: The proof of Lemma 23 utilizes the following well-
known result:

Lemma 24 (Lemma 3 in [38]): For any b ∈ Fq and d ∈ N,
let Cb = {(v⃗, w⃗) ∈ (Fdq\{0⃗d })2 | v⃗ · w⃗ = b}. For all (v⃗, w⃗) ∈
Cb , for all (c⃗, k⃗) ∈ Cb , we have

Pr[⃗vF = c⃗ ∧ w⃗ (F−1)⊤ = k⃗]

= Pr[⃗v (F−1)⊤ = c⃗ ∧ w⃗F = k⃗] = 1/#Cb,

where F
U
←− GL(d, Fq).

In order to prove Lemma 23, we construct below a prob-
abilistic algorithm B3 against Problem 8 using as a blackbox
sub-routine a stateful probabilistic adversary A that distin-
guishes between Hyb4-(π−1) and Hyb4-π . SupposeB3 is given
π ∈ [qsig] together with an instance of Problem 8

ϱP8
β̂
= (params, {B̃ı,B∗ı }ı∈{0,2},B1,B

∗
1, h
∗(0,β̂), f (0),

{h∗(2,ν,β̂), f (2,ν) }ν∈[2]),

where
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(params, {Bı,B∗ı }ı∈[0,2])
R
←− Gob(2, (4, 14, 8));

B̃0 = {b
(0,1), b(0,3), b(0,4) };

B̃2 = {b
(2,1), b(2,2), b(2,5), . . . , b(2,8) };

ϑ, <, δ, τ, ξ0 U
←− Fq, {ξ⃗

(ν) }ν∈[2]
U
←− F2

q, X
U
←− GL(2, Fq),

Y = (X−1)⊤;
h∗(0,0) = (ϑ, 0, ξ0, 0)B∗0, h

∗(0,1) = (ϑ, <, ξ0, 0)B∗0 ;

f (0) = (δ, τ, 0, 0)B0 ;

h∗(2,ν,0) = (ϑe⃗(2,ν), 0⃗2, ξ⃗ (ν), 0⃗2)B∗2
h∗(2,ν,1) = (ϑe⃗(2,ν), <e⃗(2,ν)X, ξ⃗ (ν), 0⃗2)B∗2
f (2,ν) = (δe⃗(2,ν), τe⃗(2,ν)Y, 0⃗2, 0⃗2)B2




for ν ∈ [2].

B3 interacts with A as follows:

1. At first, B3 sets

B̂0 = {b
(0,1), b(0,4) },

B̂∗0 = {b
∗(0,3) },

B̂1 = {b
(1,1), . . . , b(1,4), b(1,13), b(1,14) },

B̂∗1 = {b
∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12) },

B̂2 = {b
(2,1), b(2,2), b(2,7), b(2,8) },

B̂∗2 = {b
∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6) },

using {B̃ı,B∗ı }ı∈{0,2}, B1, and B∗1, which are part of the
given Problem 8 instance. It also samples a hashing key
hk

R
←− KGen() for a hash function family H associated

with Gbpg and the polynomial poly (· ), where poly (λ )
represents the length of the bit string formed by con-
catenating a message belonging to M and the binary
representation of an ASP representing a signing policy
predicate in R (q)

z-abp. It providesA with the public param-
eters mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]).

2. For all h ∈ [qkey], in response to the hth signing
key reveal query of A for some x⃗ (h) ∈ Fnq , B3

gives A a signing key sk( x⃗ (h)) = (k∗(h,0), . . . , k∗(h,n),
k∗(h,n+1,1), k∗(h,n+1,2)), where it generates k∗(h,0) as in
Eq. (12), while k∗(h,1), . . . , k∗(h,n), k∗(h,n+1,1), k∗(h,n+1,2)

as in Eq. (4) using {B∗ı }ı∈[0,2] of the given Problem 8
instance.

3. For t ∈ [qsig], in response to the tth signature reveal query
of A for some triple (msgt, St, x⃗ (t)) ∈ M × R (q)

z-abp × F
n
q ,

B3 hands A a signature sigt = (s∗(t,0), . . . , s∗(t,mt+1))
whose components are computed as follows:

a. (t < π) B3 computes s∗(t,0), s∗(t,mt+1) as in Eq. (14),
while s∗(t,1), . . . , s∗(t,mt ) as in Eq. (5) using {B∗ı }ı∈[0,2]
included within the given Problem 8 instance.

b. (t = π)B3 computes s∗(π,1), . . . , s∗(π,Mπ ) as in Eq. (5),
while it computes

s∗(π,0) = h∗(0,β̂),

s∗(π,mπ+1) = h∗(2,1,β̂) + H(λ,poly)
hk (msgπ ∥Sπ )h∗(2,2,β̂),

where h∗(0,β̂), {h∗(2,ν,β̂) }ν∈[2] are taken from the given
Problem 8 instance.

c. (t > π)B3 computes s∗(t,0), . . . , s∗(t,mt+1) as in Eq. (5)
using {B∗ı }ı∈[0,2] of the given Problem 8 instance.

4. WhenA outputs a forgery sig on some message msg ∈ M
under some signing policyS = (U = {( y⃗ ( j), z⃗( j))}j∈[m] ⊂

(Fℓq)2, ρ : [m] → [n]) ∈ R (q)
z-abp, B3 computes the

verification-text (c (0), . . . , c (m+1)) as

c (0) = −uℓb(0,1) − (θ†1 f
(0) + θ†2b

(0,1)) + η0b
(0,4),

c ( j) = (µ j (ρ( j),−1), (s′j, s j ), (s̃′j, s̃ j ),

0⃗2, r⃗ ( j), 0⃗2, η⃗ ( j))B1 for j ∈ [m],

c (m+1) = (θ†1 f
(2,1) + θ†2b

(2,1))−

H(λ,poly)
hk (msg∥S)(θ‡1 f

(2,1) + θ‡2b
(2,1))+

(θ‡1 f
(2,2) + θ‡2b

(2,2)) +
∑
ν∈[2]
η (m+1)
ν b(2,6+ν),

where u⃗ = (u1, . . . , uℓ ), ⃗̃u = (ũ1, . . . , ũℓ )
U
←− Fℓq ,

s j = u⃗ · y⃗ ( j) , s′j = u⃗ · z⃗( j) , s̃ j = ⃗̃u · y⃗ ( j) , s̃′j =

⃗̃u · z⃗( j) for j ∈ [m], {θ†ν, θ‡ν }ν∈[2], {µ j }j∈[m], η0
U
←− Fq ,

{r⃗ ( j) }j∈[m], {η⃗
( j) }j∈[m+1]

U
←− F2

q , and {B̃ı }ı∈{0,2},B1, f
(0),

{ f (2,ν) }ν∈[2] are taken from the given Problem 8 instance.
B3 then verifies the validity of the forged signature out-
putted byA using the above verification-text, and outputs
1 if the verification succeeds, and 0 otherwise.

We now argue that the above simulation of A’s view
by B3 given π ∈ [qkey] and a Problem 8 instance ϱP8

β̂
for β̂ ∈

{0, 1} is coincides with that in Hyb4-(π−1) or Hyb4-π according
as β̂ = 0 or 1. It is immediate that in order to argue this, it is
enough to consider the joint distribution of (c (0), . . . , c (m+1))
and sigπ , where (c (0), . . . , c (m+1)) is the verification-text
generated by B3 to verify the forged signature outputted
by A and sigπ = (s∗(π,0), . . . , s∗(π,mπ+1)) is B3’s response
to the πth signature reveal query of A. Also, a part of
the verification-text, namely, (c (1), . . . , c (m)) and a part of
the signature sigπ , namely, (s∗(π,1), . . . , s∗(π,mπ )) are clearly
identically distributed to those in Hyb4-(π−1) and in Hyb4-π .
Therefore, we only need to consider the joint distribution of
c (0), c (m+1), s∗(π,0) , and s∗(π,mπ+1) .

When β̂ = 0, it is straightforward to verify that the joint
distribution of c (0), c (m+1), s∗(π,0) , and s∗(π,mπ+1) coincides
with that in Hyb4-(π−1) except when ϑ or τ used in the given
Problem 8 instance is 0, i.e., except with probability 2/q.

When β̂ = 1, c (0), c (m+1), s∗(π,0) , and s∗(π,mπ+1) simu-
lated by B3 take the form

c (0) = (−uℓ − (δθ†1 + θ
†

2),−τθ†1, 0, η0)B0

= (−uℓ − u, v, 0, η0)B0,
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c (m+1) = ((δθ†1 + θ
†

2) − (δθ‡1 + θ
‡

2)H(λ,poly)
hk (msg∥S),

δθ‡1 + θ
‡

2, (τθ
†

1 − τθ
‡

1H(λ,poly)
hk (msg∥S), τθ‡1)Y,

0⃗2, η⃗ (m+1))B2

= (u − κH(λ,poly)
hk (msg∥S), κ, r⃗ (m+1),

0⃗2, η⃗ (m+1))B2,

s∗(π,0) = (ϑ, <, ξ0, 0)B∗0
= (ω̂π, ζπ,0, υ̂π,0, 0)B∗0,

s∗(π,mπ+1) = (ϑ(1,H(λ,poly)
hk (msgπ ∥Sπ )),

<(1,H(λ,poly)
hk (msgπ ∥Sπ ))X, ξ⃗ (1)+

H(λ,poly)
hk (msgπ ∥Sπ ) ξ⃗ (2), 0⃗2)B∗2

= (ω̂π (1,H(λ,poly)
hk (msgπ ∥Sπ )),

ζ⃗ (π,mπ+1), ⃗̂υ
(π,mπ+1)

, 0⃗2)B∗2,

where u = δθ†1 + θ
†

2, v = τθ†1, κ = δθ‡1 + θ
‡

2, r⃗ (M+1) = (τθ†1 −
τθ‡1H(λ,poly)

hk (msg∥S), τθ‡1)Y , ω̂π = ϑ, ζ0 = <, ζ⃗ (π,mπ+1) =

<(1,H(λ,poly)
hk (msg∥S))X , υ̂π,0 = ξ0, and ⃗̂υ

(π,mπ+1)
= ξ⃗ (1) +

H(λ,poly)
hk (msgπ ∥Sπ )γ⃗ (2) .

Clearly, ω̂π is uniformly and independently (from all the
other variables) distributed in Fq\{0} except with probability
1/q since ϑ

U
←− Fq . Similarly, u, κ, v, and ζπ,0 are uniformly

and independently (from all the other variables) distributed
in Fq except when τ = 0, i.e., except with probability 1/q
respectively since θ†2, θ

‡

2, θ
†

1, <
U
←− Fq . Now, observe that

since (msg, S) , (msgπ, Sπ ) by the restriction imposed on
A in the experiment, r⃗ (m+1) · ζ⃗ (π,mπ+1) = Λ<τθ‡1+<τθ†1 with
Λ = H(λ,poly)

hk (msgπ ∥Sπ ) − H(λ,poly)
hk (msg∥S) , 0 except with

probability AdvH,CR
M

(λ) for some probabilistic algorithmM
with essentially the same running time as that ofA. Hence,
r⃗ (m+1) · ζ⃗ (π,mπ+1) is uniformly and independently (from all
the other variables) distributed in Fq except with probability
AdvH,CR

M
(λ) when τ and < is non-zero since θ‡1

U
←− Fq . More-

over, from Lemma 24, the pair of vectors (r⃗ (m+1), ζ⃗ (π,mπ+1))
is uniformly distributed in C

Λ<τθ‡1+<τθ†1 . Hence, it follows

that r⃗ (m+1) and ζ⃗ (π,mπ+1) are uniformly and independently
(from all the other variables) distributed in F2

q except with
probability AdvH,CR

M
(λ) provided τ and < is non-zero.

Therefore, it follows that the joint distribution of
c (0), c (m+1), s∗(π,0) , and s∗(π,mπ+1) is the same as that in
Hyb4-π except with probability AdvH,CR

M
(λ)+3/q in this case.

This completes the proof of Lemma 23 ■

Lemma 25: For any stateful probabilistic adversary A,
for any security parameter λ,

����Adv(4-qsig)
A

(λ) − Adv(5)
A

(λ)
���� ≤

1/q.

Proof: In order to prove Lemma 25, we show that the
distribution (mpk, {sk( x⃗ (h))}h∈[qkey], {sigt }t∈[qsig], (c (0), . . . ,

c (m+1))) in Hyb4-qsig and that in Hyb5 are equiv-
alent, where mpk = (hk, params, {B̂ı, B̂∗ı }ı∈[0,2]) is
the public parameters given to A, sk( x⃗ (h)) =

(k∗(h,0), . . . , k∗(h,n), k∗(h,n+1,1), k∗(h,n+1,2)) is the answer to
the hth signing key reveal query of A, sigt = (s∗(t,0), . . . ,
s∗(t,mt+1)) is the answer to the tth signature reveal query ofA,
and (c (0), . . . , c (m+1)) is the verification-text used to check
the forged signature outputted by A at the end of the ex-
periment. By the definition of these hybrids, it is clear that
we only need to consider the components {k∗(h,0) }h∈[qkey],
{s∗(t,0) }t∈[qsig], and c (0) . Let us start with the joint distribu-
tion of these components in Hyb4-qsig . Define new dual or-
thonormal bases (D0,D

∗
0) of (V0,V

∗
0) from the original bases

(B0,B
∗
0) used in Hyb4-qsig as follows: Generate Λ

U
←− Fq ,

compute

d(0,2) = b(0,2) + Λb(0,1), d∗(0,1) = b∗(0,1) − Λb∗(0,2),

and set
D0 = {b

(0,1), d(0,2), b(0,3), b(0,4) },

D∗0 = {d
∗(0,1), b∗(0,2), b∗(0,3), b∗(0,4) }.

It can be readily observed that the new bases (D0,D
∗
0) are

indeed dual orthonormal, and are distributed the same as the
original bases (B0,B

∗
0).

Now, observe that the components c (0) , {k∗(h,0) }h∈[qkey],
and {s∗(t,0) }t∈[qsig] in Hyb4-qsig can be expressed over the new
bases (D0,D

∗
0) as follows:

c (0) = (−u − uℓ, v, 0, η0)B0

= (−u − uℓ − vΛ, v, 0, η0)D0

= (w, v, 0, η0)D0,

k∗(h,0) = (ωh,ℑh, φh,0, 0)B∗0
= (ωh,ℑh + ωhΛ, φh,0, 0)D∗0
= (ωh,ℑ′h, φh,0, 0)D∗0 for h ∈ [qkey],

s∗(t,0) = (ω̂t, ζt,0, υ̂t,0, 0)B∗0
= (ω̂t, ζt,0 + ω̂tΛ, υ̂t,0, 0)D∗0
= (ω̂t, ζ

′
t,0, υ̂t,0, 0)D∗0 for t ∈ [qsig],

where w = −u − uℓ − vΛ, ℑ′
h
= ℑh + ωhΛ for h ∈ [qkey],

and ζ ′
t,0 = ζt,0 + ω̂tΛ for t ∈ [qsig]. Clearly, for all h ∈

[qkey], ℑ′
h

is uniformly and independently (from all the other

variables) distributed since ℑh
U
←− Fq . Similarly, for all

t ∈ [qsig], ζ ′
t,0 is uniformly and independently (from all the

other variables) distributed since ζt,0
U
←− Fq . Finally, w

is uniformly and independently (of all the other variables)
distributed except when v = 0, i.e., except with probability
1/q sinceΛ

U
←− Fq . Thus, it follows that c (0) , {k∗(h,0) }h∈[qkey],

and {s∗(t,0) }t∈[qsig] generated in Hyb4-qsig take the form as in
Hyb5 when expressed over the transformed bases (D0,D

∗
0)

except with probability 1/q.
Clearly, in the view of A, both the original bases
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(B0,B
∗
0) and the transformed bases (D0,D

∗
0) are consistent

with the public parameters mpk. Therefore, Hyb4-qsig can be
conceptually changed to Hyb5 except with probability 1/q.
This completes the proof of Lemma 25. ■

Lemma 26: For any stateful probabilistic adversaryA, for
any security parameter λ, Adv(5)

A
(λ) = 1/q.

Proof: Let the forged signature outputted by A in Hyb5 be
sig = (s∗(0), . . . , s∗(m+1)). If the coefficient of b∗(0,1) in
the expression of s∗(0) is 0, then e(b(0,1), s∗(0)) = 1GT holds,
and the verification fails by the specification of the algorithm
ABS.Verify. On the other hand, if the coefficient of b∗(0,1)

in the expression of s∗(0) is non-zero, then due to the fact
that in Hyb5 the coefficient w of b(0,1) in the expression of
the component c (0) of the verification-text used to verify
the forgery is uniformly and independently distributed from
all the other variables, the verification also fails except with
probability 1/q. Hence, it follows that Adv(5)

A
(λ) = 1/q.

This completes the proof of Lemma 26. ■
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