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LETTER
Quantum Frequency Arrangements, Quantum Mixed Orthogonal
Arrays and Entangled States∗

Shanqi PANG†, Member, Ruining ZHANG†, and Xiao ZHANG†a), Nonmembers

SUMMARY In this work, we introduce notions of quantum frequency
arrangements consisting of quantum frequency squares, cubes, hypercubes
and a notion of orthogonality between them. We also propose a notion
of quantum mixed orthogonal array (QMOA). By using irredundant mixed
orthogonal array proposed by Goyeneche et al. we can obtain k-uniform
states of heterogeneous systems from quantum frequency arrangements
and QMOAs. Furthermore, some examples are presented to illustrate our
method.
key words: quantum frequency arrangements, quantum mixed orthogonal
array, irredundant orthogonal array, k-uniform states

1. Introduction

The phenomenon of entanglement is a remarkable feature of
quantum physics that has been identified as a key ingredient
in many areas of quantum information theory including
quantum key distribution [4], superdense coding [1], and
teleportation [2]. However, the general problem of how
to construct genuinely multipartite entangled states remains
unresolved. There has been some progress towards a so-
lution [5]–[7], [10], [20], but the task at hand is generally
considered a difficult one.

As is often the case [15], [17], combinatorics can be
useful to quantum information theory, and orthogonal arrays
(OAs) are fundamental ingredients in the construction of
other useful combinatorial objects [9]. Recently, many new
methods of constructing OAs of strength k, especially mixed
orthogonal arrays (MOAs), have been presented, and many
new classes of OAs have been obtained [3], [16], [18], [19].
It is these new developments in OAs that suggest the possi-
bility of constructing infinitely many new genuinely multi-
partite entangled states. A highly entangled quantum state
of heterogeneous multipartite systems consisting of N > 2
parties is said to be k-uniform if every reduction to k parties
is maximally mixed [6]. These states are closely related
to quantum error correction codes over mixed alphabets.
Recently, quantum Latin squares, cubes, hypercubes, and
quantum orthogonal arrays have been introduced by the
authors in [8], [11], [12], [22]. They also demonstrated that

Manuscript received January 16, 2020.
Manuscript revised April 29, 2020.
Manuscript publicized June 8, 2020.
†The authors are with the College of Mathematics and In-

formation Science, Henan Normal University, Xinxiang, 453007,
China.

∗This work was supported by the National Natural Science
Foundation of China (grant no. 11971004).

a) E-mail: zhangxiao28176@163.com
DOI: 10.1587/transfun.2020EAL2007

k-uniform states constructed from quantum Latin arrange-
ments have high persistency of entanglement,which makes
them ideal candidates for quantum information protocols.
However, these combinatorial designs were only used to
construct k-uniform states of homogeneous systems [8].
Therefore, more mathematical tools need to be discovered
to construct k-uniform states of heterogeneous systems in
[6].

In this work, we introduce notions of quantum fre-
quency arrangements consisting of quantum frequency
squares, cubes, hypercubes and a notion of orthogonality
between them. We also propose a notion of quantum mixed
orthogonal array (QMOA). By using irredundant mixed
orthogonal array which is proposed in [6] we can obtain
k-uniform states of heterogeneous systems from quantum
frequency arrangements and QMOAs. Furthermore, some
examples are presented to illustrate our method.

2. Preliminaries

Let AT be the transposition of matrix A and (d) =

(0, 1, . . . , d − 1)T . Let 0r and 1r denote the r × 1 vectors
of 0s and 1s, respectively. If A = (ai j)m×n and B = (bi j)u×v
with elements from a Galois field with binary operations (+
and ·), the Kronecker product A ⊗ B is defined as A ⊗ B =

(ai j · B)mu×nv, where ai j · B represents the u × v matrix with
entries ai j · brs (1 ≤ r ≤ u, 1 ≤ s ≤ v). A matrix A can often
be identified with a set of its row vectors if necessary. Let
H⊗m

d beHd ⊗ · · · ⊗ Hd︸            ︷︷            ︸
m

.

Definition 1: ([9]) An orthogonal array OA(r,N, d1d2 · · ·

dN , k) is an r × N matrix, with the property that, in any
r × k submatrix, all possible combinations of k symbols
appear equally often as a row. The orthogonal array is called
symmetrical if d1 = d2 = · · · = dN . Otherwise, the array is
called a MOA.

Definition 2: ([6]) A MOA(r,N, d1d2 . . . dN , k) is called ir-
redundant, written IrMOA, if every subset of N − k columns
contains a different sequence of N − k symbols in every row.

Definition 3: ([20]) Let S l = {(v1, . . . , vl)|vi ∈ S , i =

1, 2, . . . , l}. The Hamming distance HD(u, v) between two
vectors u = (u1, . . . , ul), v = (v1, . . . , vl) ∈ S l is defined as
the number of positions in which they differ. The minimal
distance of a matrix A, written MD(A), is defined to be
the minimal Hamming distance between its distinct rows.
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HD(A) is used to represent all the values of the Hamming
distances between two distinct rows of A.

Definition 4: ([13]) Suppose we have physical systems A
and B, whose state is described by a density operator ρAB.
The reduced density operator for system A is defined by

ρA ≡ TrB(ρAB),

where TrB is a map of operators known as the partial trace
over system B. The partial trace is defined by

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|),

where |a1〉 and |a2〉 are any two vectors in the state space of
A, and |b1〉 and |b2〉 are any two vectors in the state space of
B. The trace operation appearing on the right hand side is the
usual trace operation for system B, so Tr(|b1〉〈b2|) = 〈b2|b1〉.

Definition 5: ([8]) A quantum orthogonal array QOA(r,N,
d, k) is an arrangement consisting of r rows composed by N-
partite normalized pure quantum states |ϕ j〉 ∈ H

⊗N
d , having

d internal levels each, such that

dk
r−1∑

i, j=0

Tri1,...,iN−k (|ϕi〉〈ϕ j|) = rIdk

for every subset of N − k parties {i1, . . . , iN−k}.

Definition 6: The 3n slices in three directions of a cubic
matrix A = {aαβγ ∈ Fw

d |α, β, γ ∈ Fn} can be expressed as
frontal slice: Aα,:,: = {aαβγ ∈ Fw

d |β, γ ∈ Fn}, α ∈ Fn,
lateral slice: A:,β,: = {aαβγ ∈ Fw

d |α, γ ∈ Fn}, β ∈ Fn, and
horizontal slice: A:,:,γ = {aαβγ ∈ Fw

d |α, β ∈ Fn}, γ ∈ Fn.

Lemma 1: A MOA(r,N, d1 · · · dN , k) is irredundant if and
only if its minimal distance is greater than k.

Proof. It follows from the definition of IrMOA.

Lemma 2: ([9]) Taking the runs in an A = OA(r,N, d1d2 · · ·

dN , k) that begin with 0 (or any other particular symbol)
and omitting the first column yields an OA(r/d1,N − 1,
d2 · · · dN , k − 1), denoted by A0. Similarly, we can obtain
A1, A2, . . ., Ad1−1 are all OA(r/d1,N − 1, d2 · · · dN , k − 1).
Then A can be written as follows.

A =


0r/d1 A0
1r/d1 A1
...

...
(d1 − 1)r/d1 Ad1−1

 .
Lemma 3: Let A as in Lemma 2 be an IrMOA(r,N, d1d2 · · ·

dN , k). Then Ai is an IrMOA(r/d1,N−1, d2 · · · dN , k−1) and
MD(Ai) ≥ k + 1 for i = 0, 1, . . . , d1 − 1.

Proof. It follows from Lemma 2 that Ai is an OA(r/d1, N−1,
d2 · · · dN , k−1). By Lemma 1, we have MD(A) ≥ k+1. Then
MD(Ai) ≥ k +1 > k. Therefore, Ai is an IrMOA(r/d1,N−1,
d2 · · · dN , k − 1) by Lemma 1.

Lemma 4: Suppose A is an IrMOA(nk,m + k, nkdm, k).

Then,
(1) If d ≤ n, then m ≥ k.
(2) If d < n, then m > k.
(3) If d = n, then m ≥ k.

Proof. We only prove the second case. Assume m ≤ k, then
after removing the first k columns of A, the nk × m subarray
contains two same rows, which is a contradiction.

Unless stated otherwise, we only consider the case of
n > d.

3. Main Results

Definition 7: A quantum frequency square of size n is an
arrangement

QFS(n, d) =


|ψ0,0〉 . . . |ψ0,n−1〉
...

...
|ψn−1,0〉 . . . |ψn−1,n−1〉


composed of n2 single-particle quantum states |ψi, j〉 ∈ Hd,
i, j ∈ {0, . . . , n − 1}, such that each row and each column
determine n/d orthonormal bases for a qudit system.

Definition 8: A set of n2 pure quantum states |ψi, j〉 ∈ H
⊗m
d ,

m > 2 arranged as
|ψ0,0〉 . . . |ψ0,n−1〉
...

...
|ψn−1,0〉 . . . |ψn−1,n−1〉

 ,
forms a set of m mutually orthogonal quantum frequency
squares (m MOQFS(n, d)) if the following properties hold:

(1) The set of n2 states {|ψi, j〉|i, j = 0, . . . , n − 1} are
orthogonal.

(2) The sum of every row in the array, i.e.,
∑n−1

j=0 |ψi, j〉,
is a 1-uniform state.

(3) The sum of every column in the array, i.e.,∑n−1
i=0 |ψi, j〉, is a 1-uniform state.

Definition 9: A quantum mixed orthogonal array QMOA(r,
N, d1d2 . . . dN , k) is an arrangement consisting of r rows
composed by N-partite normalized pure quantum states
|ϕ j〉 ∈ Hd1 ⊗ · · · ⊗ HdN , such that

dlN−k+1 · · · dlN

r−1∑
i, j=0

Trl1,...,lN−k (|ϕi〉〈ϕ j|) = rIdlN−k+1 ···dlN
,

for every subset of N − k parties {l1, . . . , lN−k}.

Theorem 1: (1) From an IrMOA(n2,m + 2, n2dm, 2), we
can construct a QMOA(n2,m + 2, n2dm, 2) and a set of m
MOQFS(n, d).

(2) From the set of MOQFS in (1), we can define a
QMOA(n2,m + 2, n2dm, 2).

(3) From the QMOA in (1), we can generate the set of
m MOQFS(n, d).

Proof. From IrMOA(n2,m + 2, n2dm, 2) by a sequence of
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permutations of the columns, the rows, and the levels of each
factor, we can obtain A = (a, b,C), where a = (n) ⊗ 1n,
b = 1n ⊗ (n), and C = (ci j)n2×m for i = 0, 1, · · · , n2 − 1,
j = 3, 4, · · · ,m + 2.

Construction. From A, we can obtain B =

QMOA(n2,m + 2, n2dm, 2) and a set of m MOQFS(n, d) M
as follows.

B =



|0〉 |0〉 |c0,3c0,4 . . . c0,m+2〉

.

.

.
.
.
.

.

.

.
|0〉 |n − 1〉 |cn−1,3cn−1,4 . . . cn−1,m+2〉

.

.

.
.
.
.

.

.

.
|n − 1〉 |0〉 |c(n−1)n,3c(n−1)n,4 . . . c(n−1)n,m+2〉

.

.

.
.
.
.

.

.

.
|n − 1〉 |n − 1〉 |cn2−1,3cn2−1,4 . . . cn2−1,m+2〉


,

M =


|c0,3 . . . c0,m+2〉 · · · |cn−1,3 . . . cn−1,m+2〉

.

.

.
.
.
.

|c(n−1)n,3 . . . c(n−1)n,m+2〉 · · · |cn2−1,3 . . . cn2−1,m+2〉

 .

Verification. (1) Firstly, we prove B is a QMOA(n2,m+

2, n2dm, 2).
Let |ϕi〉 = |aibici,3 . . . ci,m+2〉 and Ti, j = Trl1,...,lm (|ϕi〉〈ϕ j|),

where i, j = 0, 1, . . . , n2 − 1 and {l1, l2, . . . , lm, lm+1, lm+2} =

{1, 2, . . . ,m + 2}. Since A is an IrMOA(n2,m + 2, n2dm, 2),
Ti, j = 0 for i , j. Therefore, we will consider the following
three cases.

Case 1. If 1, 2 < {l1, l2, · · · , lm}, then

Ti,i = Tr3,4,...,m+2(|ϕi〉〈ϕi|)
= 〈ci,3ci,4 . . . ci,m+2|ci,3ci,4 . . . ci,m+2〉|aibi〉〈aibi|

= |aibi〉〈aibi|.

In the columns (a, b), each of all possible pairs as a row
occurs with frequency n2/n2 = 1, then

∑n2−1
i=0 Ti,i = In2 . We

have

dlm+1 dlm+2

r−1∑
i, j=0

Ti, j = dadb

n2−1∑
i=0

Ti,i = n2In2 = n2Idlm+1 dlm+2
.

Case 2. If {1, 2} ⊆ {l1, l2, · · · , lm}, we can without loss
of generality assume that {l1, l2} = {1, 2}. Then

Ti,i = Trl1,l2,...,lm (|ϕi〉〈ϕi|)
= 〈aibici,l3 · · · ci,lm |aibici,l3 · · · ci,lm〉|ci,lm+1 ci,lm+2〉〈ci,lm+1 ci,lm+2 |

= |ci,lm+1 ci,lm+2〉〈ci,lm+1 ci,lm+2 |.

Since each of all possible pairs as a row occurs n2/d2 times
in (clm+1 , clm+2 ),

∑n2−1
i=0 Ti,i = n2/d2 Id2 . We have

dlm+1 dlm+2

n2−1∑
i, j=0

Ti, j = d2
n2−1∑
i=0

Ti,i = d2(n2/d2)Id2 = n2Id2

= n2Idlm+1 dlm+2
.

Case 3. If 1 ∈ {l1, l2, · · · , lm} and 2 < {l1, l2, · · · , lm},
or 1 < {l1, l2, · · · , lm} and 2 ∈ {l1, l2, · · · , lm}, here we only
prove the first case. Without loss of generality we may
assume that l1 = 1 and lm+1 = 2. Then

Ti,i = Trl1,...,lm (|ϕi〉〈ϕi|)
= 〈aici,l2 ci,l3 . . . ci,lm |aici,l2 ci,l3 . . . ci,lm〉|bici,lm+2〉〈bici,lm+2 |

= |bici,lm+2〉〈bici,lm+2 |.

Each of all possible pairs as a row in (b, clm+2 ) occurs
n2/(nd) = n/d times, then

∑n2−1
i=0 Ti,i = (n/d)Ind. Thus

dlm+1 dlm+2

n2−1∑
i, j=0

Ti, j = nd
n2−1∑
i=0

Ti,i = nd
n
d

Ind = n2Ind

= n2Idlm+1 dlm+2
.

It follows from Definition 9 that B is a QMOA(n2,m +

2, n2dm, 2).
Secondly, we prove M is a set of m MOQFS(n, d). Here

we need to consider the three properties as follows.
A is an IrMOA(n2,m + 2, n2dm, 2), then any two rows

of the submatrix (c3, c4, . . . , cm+2) are different. Therefore,
the n2 quantum states of M correspond to the n2 rows of A,
that is, the n2 quantum states of M are pairwise orthogonal.

Taking the runs in A that begin with 0 yields a subma-
trix denoted by A1.

A1 =


0 0 c0,3 c0,4 . . . c0,m+2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 n − 1 cn−1,3 cn−1,4 . . . cn−1,m+2

 = (a1, b1,C1),

where a1 = 0n and b1 = (n). By Lemma 3, (b1,C1) is an
IrMOA(n,m + 1, ndm, 1) with MD ≥ 3 and then C1 is an
IrOA(n,m, d, 1). The sum of the first row in M, namely
|c0,3c0,4 . . . c0,m+2〉 + · · · + |cn−1,3cn−1,4 . . . cn−1,m+2〉, is a 1-
uniform state. Similarly, the sum of every row in M is a
1-uniform state.

By the same argument, the sum of every column in M
is a 1-uniform state.

Therefore, M is a set of m MOQFS(n, d).
(2) Obviously, as the M in (1) is a set of m

MOQFS(n, d) constructed from A, we can obtain the B in
(1).

(3) We can easily use the B in (1) to generate the M
since B is a QMOA(n2,m + 2, n2dm, 2) constructed from A.

Example 1: We can construct a QMOA(16,m + 2, 422m, 2)
and a set of m MOQFS(4, 2) for 4 ≤ m ≤ 9.

Proof. From the OA(16, 5, 4, 2) in [14] and OA(4, 3, 2, 2) =
000
011
101
110

, then a saturated MOA(16, 11, 4229, 2) can be ob-

tained by using the expansive replacement method as fol-
lows. A MOA(r,N, d1d2 · · · dN , 2) is called saturated if∑N

i=1(di − 1) = r − 1 [14]. L = MOA(16, 11, 4229, 2) =

(a, b, c1, c2, . . . , c9) =



0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1



T
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(1) We have HD(L) = 6, 7 by Ref. [21]. Then we
can obtain an IrMOA(16,m + 2, 422m, 2) for 6 ≤ m ≤ 9
by Lemma 1. Thus, by Theorem 1 we can construct a
QMOA(16,m + 2, 422m, 2) and a set of m MOQFS(4, 2) for
6 ≤ m ≤ 9.

(2) An IrMOA(16, 6, 4224, 2) can be obtained from a
MOA(16, 4, 4, 2) and an OA(4, 2, 2, 2) by using the ex-
pansive replacement method. Then we can generate a
QMOA(16, 6, 4224, 2) and a set of 4 MOQFS(4, 2) by The-
orem 1. Additionally, we can add a 2 level column to
the IrMOA(16, 6, 4224, 2) to obtain a MOA(16, 7, 4225, 2).
It is evident that the MOA(16, 7, 4225, 2) is irredun-
dant. Therefore, by Theorem 1, we can construct a
QMOA(16, 7, 4225, 2) and a set of 5 MOQFS(4, 2).

Definition 10: A quantum frequency cube QFC(n, d) of
size n is a cubic arrangement composed of n3 single-particle
quantum pure states |ψi, j,k〉 ∈ Hd, i, j, k ∈ {0, · · · , n − 1},
such that every edge (row, column, file) determines n/d
orthogonal bases.

Definition 11: A set of n3 m-qudit pure states |ψi, j,k〉,
i, j, k ∈ {0, 1, . . . , n − 1}, belonging to a composed Hilbert
space H⊗m

d , m > 3 forms m triplewise orthogonal quantum
frequency cubes (m MOQFC(n, d, 3)) if the following prop-
erties hold:

(1) The set of n3 states are orthogonal.
(2) The sum of every edge in this array, i.e.,∑n−1

k=0 |ψi, j,k〉,
∑n−1

j=0 |ψi, j,k〉,
∑n−1

i=0 |ψi, j,k〉, is a 1-uniform state,
respectively.

(3) The (m + 2)-qudit quantum states
∑n−1

j,k=0 | j〉|k〉|ψi, j,k〉

for i = 0, 1, . . . , n−1,
∑n−1

i,k=0 |i〉|k〉|ψi, j,k〉 for j = 0, 1, . . . , n−1,
and
∑n−1

i, j=0 |i〉| j〉|ψi, j,k〉 for k = 0, 1, . . . , n − 1 are 2-uniform
states, respectively.

Theorem 2: (1) From an IrMOA(n3,m + 3, n3dm, 3), we
can construct a QMOA(n3,m + 3, n3dm, 3) and a set of m
MOQFC(n, d, 3).

(2) We can use the QMOA(n3,m + 3, n3dm, 3) in (1) to
generate the set of m MOQFC(n, d, 3) in (1).

(3) We can define the QMOA(n3,m + 3, n3dm, 3) in (1)
from the set of m MOQFC(n, d, 3) in (1).

Proof. From an IrMOA(n3,m + 3, n3dm, 3) by a se-
quence of permutations of the columns, the rows, and the
levels of each factor, we can obtain a matrix A = (a, b, c,C),
where a = (n) ⊗ 1n2 , b = 1n ⊗ (n) ⊗ 1n, c = 1n2 ⊗ (n) and
C = (ci j)n3×m for i = 0, 1, · · · , n3 − 1, j = 4, · · · ,m + 3.

Construction. From A, we can obtain an n3 × (m + 3)
matrix B and a cubic matrix M of size m. B and the uth

frontal slice of the M are as follows:

B =



|0〉 |0〉 |0〉 |c0,4 . . . c0,m+3〉

.

.

.
.
.
.

.

.

.
.
.
.

|0〉 |0〉 |n − 1〉 |cn−1,4 . . . cn−1,m+3〉

.

.

.
.
.
.

.

.

.
.
.
.

|n − 1〉 |n − 1〉 |0〉 |c(n−1)n,4 . . . c(n−1)n,m+3〉

.

.

.
.
.
.

.

.

.
.
.
.

|n − 1〉 |n − 1〉 |n − 1〉 |cn3−1,4 . . . cn3−1,m+3〉


,

Mu,:,: =


|cun2 ,4 . . . cun2 ,m+3〉 · · · |cun2+n−1,4 . . . cun2+n−1,m+3〉

.

.

.
.
.
.

|cun2+(n−1)n,4 . . . cun2+(n−1)n,m+3〉 · · · |c(u+1)n2−1,4 . . . c(u+1)n2−1,m+3〉

 .
Then B and M are the QMOA(n3,m + 3, n3dm, 3) and

the set of m MOQFC(n, d, 3) needed, respectively.
Verification. (1) The proof that B is a QMOA(n3,m +

3, n3dm, 3) follows from the first part of the proof of the
Theorem 1.

Then we prove M is a set of m MOQFC(n, d, 3). From
Theorem 1 and Definition 11, the first two properties hold.
Here we consider the third property as follows.

Let A0 be the submatrix consisting of the rows in A
which begin with 0. Then A0 can be written as

A0 = (a0, b0, c0,C0)

=


0 0 0 c0,4 c0,5 · · · c0,m+3
0 0 1 c1,4 c1,5 · · · c1,m+3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 n − 1 n − 1 cn2−1,4 cn2−1,5 · · · cn2−1,m+3

 ,

where a0 = 0n2 , b0 = (n) ⊗ 1n, c0 = 1n ⊗ (n), and C0 = (ci j)
corresponds to the first frontal slice in M. By Lemma 3,
(b0, c0,C0) is an IrMOA(n2,m + 2, n2dm, 2) with MD ≥ 4,
then

∑n−1
j,k=0 | j〉|k〉|ψi, j,k〉 is a 2-uniform state for i = 0, so is

the sum for each i = 1, . . . , n − 1. Similarly, taking the
submatrices consisting of the rows in A with the elements
j in the second column or with the elements k in the third
column, respectively, we can prove that

∑n−1
i,k=0 |i〉|k〉|ψi, j,k〉

and
∑n−1

i, j=0 |i〉| j〉|ψi, j,k〉 are 2-uniform states for every 0 ≤
j, k ≤ n − 1.

Therefore, M is the set desired.
The proofs of (2) and (3) are similar to the proofs of (2)

and (3) in Theorem 1, respectively.

Definition 12: A quantum frequency hypercube with d
levels and size n in dimension k, denoted QFH(n, d, k), is an
arrangement composed of nk single-particle quantum states
|ψi1,...,ik〉 ∈ Hd, i1, . . . , ik ∈ {0, . . . , n − 1}, such that all
states belonging to an edge of hypercube determine n/d
orthogonal bases.

Definition 13: Let m > k. A set of m mutually orthogonal
quantum frequency hypercubes with d levels and size n in
dimension k, namely m MOQFH(n, d, k), is a k-dimensional
arrangement composed of nk m-qudit states |ψi1,...,ik〉 ∈ H

⊗m
d ,

i1, . . . , ik ∈ {0, . . . , n − 1}, such that the following properties
hold:

(1) The set of nk states {|ψi1,...,ik〉 ∈ Hd} are orthogonal.
(2) The sum of n states belonging to the same edge of

the hypercube, i.e.
∑n−1

is=0 |ψi1,...,is,...,ik〉, for every 1 ≤ s ≤ k,
forms a 1-uniform state.

(3) For any 2 ≤ v ≤ k − 1 and every subset
{is1 , is2 , . . . , isv } ⊆ {i1, . . . , ik}, the sum of the nv quantum
states, denoted by

∑n−1
is1 ,is2 ,...,isv=0 |is1 is2 · · · isvψi1,...,is1 ,...,isv ,...,ik〉,

is a v-uniform state.

Theorem 3: From an IrMOA(nk,m + k, nkdm, k), we can
construct a set of m MOQFH(n, d, k) and a QMOA(nk,m +

k, nkdm, k), one of which can be obtained from the other.
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Proof: This follows from the arguments analogous to the
proof of Theorem 2.

Theorem 4: The sum of rows of a QMOA(r,N, d1d2 · · · dN ,
k) produces a k-uniform state of a quantum system com-
posed of N parties with d1, d2, . . ., dN levels respectively.

Proof: A positive operator valued measure (POVM) is a set
of positive semidefinite operators such that they sum up to
identity, determining a generalized quantum measurement
[13]. Every reduction to k columns of a QMOA(r,N, d1d2
· · · dN , k) defines a POVM, and thus the sum of its elements
produces the identity operator.

Example 2: We can construct a set of 6 MOQFC(4, 2, 3)
and a 3-uniform state of a system 43 × 26.

Proof. The frontal slices of the set of 6
MOQFC(4, 2, 3) are as follows.

K0,:,: =


|000000〉 |111101〉 |010110〉 |101011〉
|110111〉 |001010〉 |100001〉 |011100〉
|011001〉 |100100〉 |001111〉 |110010〉
|101110〉 |010011〉 |111000〉 |000101〉

 ,

K1,:,: =


|011111〉 |100010〉 |001001〉 |110100〉
|101000〉 |010101〉 |111110〉 |000011〉
|000110〉 |111011〉 |010000〉 |101101〉
|110001〉 |001100〉 |100111〉 |011010〉

 ,

K2,:,: =


|100101〉 |011000〉 |110011〉 |001110〉
|010010〉 |101111〉 |000100〉 |111001〉
|111100〉 |000001〉 |101010〉 |010111〉
|001011〉 |110110〉 |011101〉 |100000〉

 ,

K3,:,: =


|111010〉 |000111〉 |101100〉 |010001〉
|001101〉 |110000〉 |011011〉 |100110〉
|100011〉 |011110〉 |110101〉 |001000〉
|010100〉 |101001〉 |000010〉 |111111〉

 .
Then by Theorems 2 and 4, we can construct a 3-

uniform state of a system 43 × 26 as follows.

|φ43×26 〉 = |000000000〉 + |001111101〉 + |002010110〉 + |003101011〉

+|010110111〉 + |011001010〉 + |012100001〉 + |013011100〉

+|020011001〉 + |021100100〉 + |022001111〉 + |023110010〉

+|030101110〉 + |031010011〉 + |032111000〉 + |033000101〉

+|100011111〉 + |101100010〉 + |102001001〉 + |103110100〉

+|110101000〉 + |111010101〉 + |112111110〉 + |113000011〉

+|120000110〉 + |121111011〉 + |122010000〉 + |123101101〉

+|130110001〉 + |131001100〉 + |132100111〉 + |133011010〉

+|200100101〉 + |201011000〉 + |202110011〉 + |203001110〉

+|210010010〉 + |211101111〉 + |212000100〉 + |213111001〉

+|220111100〉 + |221000001〉 + |222101010〉 + |223010111〉

+|230001011〉 + |231110110〉 + |232011101〉 + |233100000〉

+|300111010〉 + |301000111〉 + |302101100〉 + |303010001〉

+|310001101〉 + |311110000〉 + |312011011〉 + |313100110〉

+|320100011〉 + |321011110〉 + |322110101〉 + |323001000〉

+|330010100〉 + |331101001〉 + |332000010〉 + |333111111〉.

4. Conclusion

In this letter, we define QMOAs, MOQFS, MOQFC and
MOQFH. After setting up the quantum combinatorial tools
we present our method for constructing k-uniform states.
The further work is to find more QMOAs, MOQFS, MO-
QFC and MOQFH to construct k-uniform states of hetero-
geneous systems.
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