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SUMMARY In this work, we introduce notions of quantum frequency
arrangements consisting of quantum frequency squares, cubes, hypercubes
and a notion of orthogonality between them. We also propose a notion
of quantum mixed orthogonal array (QMOA). By using irredundant mixed
orthogonal array proposed by Goyeneche et al. we can obtain k-uniform
states of heterogeneous systems from quantum frequency arrangements
and QMOAs. Furthermore, some examples are presented to illustrate our
method.
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1. Introduction

The phenomenon of entanglement is a remarkable feature of
quantum physics that has been identified as a key ingredient
in many areas of quantum information theory including
quantum key distribution [4], superdense coding [1], and
teleportation [2]. However, the general problem of how
to construct genuinely multipartite entangled states remains
unresolved. There has been some progress towards a so-
lution [5]-[7], [10], [20], but the task at hand is generally
considered a difficult one.

As is often the case [15], [17], combinatorics can be
useful to quantum information theory, and orthogonal arrays
(OAs) are fundamental ingredients in the construction of
other useful combinatorial objects [9]. Recently, many new
methods of constructing OAs of strength k, especially mixed
orthogonal arrays (MOAs), have been presented, and many
new classes of OAs have been obtained [3], [16], [18], [19].
It is these new developments in OAs that suggest the possi-
bility of constructing infinitely many new genuinely multi-
partite entangled states. A highly entangled quantum state
of heterogeneous multipartite systems consisting of N > 2
parties is said to be k-uniform if every reduction to k parties
is maximally mixed [6]. These states are closely related
to quantum error correction codes over mixed alphabets.
Recently, quantum Latin squares, cubes, hypercubes, and
quantum orthogonal arrays have been introduced by the
authors in [8], [11], [12], [22]. They also demonstrated that
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k-uniform states constructed from quantum Latin arrange-
ments have high persistency of entanglement,which makes
them ideal candidates for quantum information protocols.
However, these combinatorial designs were only used to
construct k-uniform states of homogeneous systems [8].
Therefore, more mathematical tools need to be discovered
to construct k-uniform states of heterogeneous systems in
[6].

In this work, we introduce notions of quantum fre-
quency arrangements consisting of quantum frequency
squares, cubes, hypercubes and a notion of orthogonality
between them. We also propose a notion of quantum mixed
orthogonal array (QMOA). By using irredundant mixed
orthogonal array which is proposed in [6] we can obtain
k-uniform states of heterogeneous systems from quantum
frequency arrangements and QMOAs. Furthermore, some
examples are presented to illustrate our method.

2. Preliminaries

Let AT be the transposition of matrix A and (d) =
0,1,...,d — DT. Let 0, and 1, denote the r x 1 vectors
of Os and 1s, respectively. If A = (a;j)mxn and B = (b;)uxo
with elements from a Galois field with binary operations (+
and -), the Kronecker product A ® B is defined as A® B =
(@ij * B)muxnv» Where a;; - B represents the u X v matrix with
entries a;j - bys (1 <7 <u,1 <5 <v). Amatrix A can often
be identified with a set of its row vectors if necessary. Let
7‘(5"1 be H;® - @ H,.

m

Definition 1: ([9]) An orthogonal array OA(r, N,dd, - - -
dy,k) is an r X N matrix, with the property that, in any
r X k submatrix, all possible combinations of k symbols
appear equally often as a row. The orthogonal array is called
symmetrical if d| = d» = --- = dy. Otherwise, the array is
called a MOA.

Definition 2: ([6]) A MOA(r, N, d d, .. .dy, k) is called ir-
redundant, written I'MOA, if every subset of N — k columns
contains a different sequence of N —k symbols in every row.

Definition 3: ([20]) Let S = {(vi,...,0); € S, i =
1,2,...,1}. The Hamming distance HD(u, v) between two
vectors u = (uy,...,u), v = (vy1,...,v) € S'is defined as
the number of positions in which they differ. The minimal
distance of a matrix A, written MD(A), is defined to be
the minimal Hamming distance between its distinct rows.
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HD(A) is used to represent all the values of the Hamming
distances between two distinct rows of A.

Definition 4: ([13]) Suppose we have physical systems A
and B, whose state is described by a density operator p*2.

The reduced density operator for system A is defined by

pa = Trp(p™?),

where Trp is a map of operators known as the partial trace
over system B. The partial trace is defined by

Trp(lai Xaz| ® [b1Xb2l) = lar){az|Tr(|by )b2)),

where |a;) and |a,) are any two vectors in the state space of
A, and |b;) and |b,) are any two vectors in the state space of
B. The trace operation appearing on the right hand side is the
usual trace operation for system B, so Tr(|b; ){b>|) = (b2|b1).

Definition 5: ([8]) A quantum orthogonal array QOA(r, N,
d, k) is an arrangement consisting of 7 rows composed by N-
partite normalized pure quantum states |¢;) € 7-{?1\’ , having
d internal levels each, such that

r—1
& " Ty, i (el = s
i,j=0

for every subset of N — k parties {iy, ..., iN—k}.

Definition 6: The 3n slices in three directions of a cubic
matrix A = {aqpy € Fila, B,y € F,} can be expressed as
frontal slice: Ay = {aap, € FjIB,y € Fu}, @ € Fy,

lateral slice: A.p. = {ausy € Fjla,y € F,}, B € Fy, and
horizontal slice: A. ., = {aap, € Fjjla,B € F,}, ¥ € F.

Lemma 1: A MOA(r,N,d; - - - dy, k) is irredundant if and
only if its minimal distance is greater than k.

Proof. It follows from the definition of I'MOA.

Lemma 2: ([9]) Taking the runsinanA = OA(r, N,d\d; - - -
dy, k) that begin with O (or any other particular symbol)
and omitting the first column yields an OA(r/d;,N — 1,
dy---dy,k — 1), denoted by Ap. Similarly, we can obtain

Ay, Ay, ..., Ag-1 are all OA(r/d\,N — 1,dy---dn,k — 1).
Then A can be written as follows.
0,74, Ag
Lrja, Ay
A= . .
(dy = Dyja, Agy-1

Lemma 3: Let A asin Lemma 2 be an I'MOA(r, N, dd> - - -
dy, k). Then A; is an I'MOA(r/d{,N—1,d, ---dy,k—1) and
MDA) > k+1fori=0,1,...,d, - 1.

Proof. It follows from Lemma 2 that A; is an OA(r/d;, N—1,
dy - -dy, k—1). By Lemma 1, we have MD(A) > k+1. Then
MD(A;) > k+1 > k. Therefore, A; is an I'MOA(r/d;, N — 1,
dy---dy,k—1)by Lemma 1.

Lemma 4: Suppose A is an ItMOA(n*,m + k,n*d™, k).
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Then,
(HIfd < n,thenm > k.
) Ifd < n,then m > k.
3)Ifd =n,thenm > k.

Proof. We only prove the second case. Assume m < k, then
after removing the first £ columns of A, the kX m subarray
contains two same rows, which is a contradiction.

Unless stated otherwise, we only consider the case of
n>d.

3. Main Results

Definition 7: A quantum frequency square of size n is an
arrangement

[Yoo) .. Won-1)
QFS(u.d)=| :
[n-10) -+ Wn-10-1)

composed of n? single-particle quantum states |1/; ) € Hy,
i,j € {0,...,n — 1}, such that each row and each column
determine n/d orthonormal bases for a qudit system.

Definition 8: A set of n? pure quantum states |if; ;) € H. @m
m > 2 arranged as

[o0) .. Woa-1)

|¢’n—.1,0> e |l//n—1.,n—1>

forms a set of m mutually orthogonal quantum frequency
squares (m MOQFS(n, d)) if the following properties hold:

(1) The set of n? states {jy; )i, j = 0,...,n — 1} are
orthogonal.

(2) The sum of every row in the array, i.e., 2;;(1) i ),
is a 1-uniform state.

(3) The sum of every column in the array, i.e.,
Zf’;ol i, ;). is a 1-uniform state.

Definition 9: A quantum mixed orthogonal array QMOA(7,
N,d\d;,...dy,k) is an arrangement consisting of » rows
composed by N-partite normalized pure quantum states
lo;) € Ha, ® - ® Hy,, such that

r—1
diy i+~ diy Z Try, v (eidlejD) = rlay  diy s
.70

for every subset of N — k parties {/i, ..., In_¢}.

Theorem 1: (1) From an I'MOA®#2, m + 2,n*d™,2), we
can construct a QMOA(®n2, m + 2,1n%d™,2) and a set of m
MOQFS(n, d).

(2) From the set of MOQFS in (1), we can define a
QMOA(#?, m + 2,n*d™,2).

(3) From the QMOA in (1), we can generate the set of
m MOQFS(n, d).

Proof. From IrMOA(n?,m + 2,n%d™,2) by a sequence of



1676

permutations of the columns, the rows, and the levels of each
factor, we can obtain A = (a,b,C), where a = (n) ® 1,
b =1,®(n), and C = (¢;j)exm fori = 0,1,--- ,n* = 1,
j=3,4,--- ,m+2.

Construction. From A, we can obtain B =
QMOA 2, m + 2,n*d™,2) and a set of m MOQFS(n,d) M
as follows.

10) [0) lco3¢04 - - - Com+2)
[0) In=1)  lca-13Cn-14---Cn-1m+2)
B . .
[n=1) 10} le-n3Cm-na - - - Co-tnm+2)
=1 n=1) e 1362 14+ €21 mia)
lco3 - - - Coms2) ©len-13 - Cnmtme2)
M=

lc-1n3 - - - Comtymme2) =+ 1C,2_ 134+ €2 1 in)

Verification. (1) Firstly, we prove B is a QMOA (n?, m+
2,n%d™, 2).

Letlp;) = laibiciz ... cimeoyand T j = Try g (X)),
where i, j = 0, L....,n2=Vand {1, o, ..., Ly, Lys1s bnsa) =
{1,2,...,m+ 2}. Since A is an IIMOA(n?, m + 2, n*d",?2),
T;;j = 0fori # j. Therefore, we will consider the following
three cases.

Case 1. If 1,2 ¢ {l;, 15, - ,L,}, then

Tii=Tr34.  me2(l@iX{ei)

={Ci3Ci4 - Cims2lCizCia ... Cim)aibi)}abil

=la;b;){a;b;|.
In the columns (a, b), each of all possible pairs as a row
occurs with frequency n?/n? = 1, then Yo" Ty; = I,2. We
have
r—1 n?-1
d["'“dl’”*z Z Ti’j = dady Z T = nZI”Z = nz]d’u1+1d/n1+z '
i,j=0 i=0

Case 2. If {1,2} C {l1, b, -+, I}, we can without loss
of generality assume that {/{, l,} = {1,2}. Then
Tii=Try g1, (o) {eil)
=(a;biciy, -+ - cig laibiciy,  ++ Ci1 )Citii Citnen X Ciilyar Cirfonsa |
= 1Cilyy Cidprsa X Cidpas Cila |

Since each of all possible pairs as a row occurs n”/d” times
: -1 2,02
in (¢, Clpn)s 2uicg Tii = n7/d” I2. We have

n’-1 n’-1
iy, D Tij=d ) Tii = d*@? | dD)p = nlp
i,j=0 i=0
= nzld, d

a1 U2

Case 3. If 1 € {l},bh,--- , L,y and 2 ¢ {[}, 1, -+ , 1y},
orl ¢ {li,lh,---,ly}and 2 € {l},]5,--- ,1,}, here we only
prove the first case. Without loss of generality we may
assume that /; = 1 and [,,,; = 2. Then

IEICE TRANS. FUNDAMENTALS, VOL.E103—-A, NO.12 DECEMBER 2020

Ti;i=Try,, ., (e {eil)
={aiCi 1, Ciy - - - Cig, |AiCi 1, Cily - - - Cig MNDiCig,, XDiCig,0]
=1biciy,., biciy

m+2 | °

Each of all possible pairs as a row in (b,c;, ,) occurs

n*/(nd) = n/d times, then 2?2251 T;; = (n/d)I,4. Thus

n’-1 n*-1
n 2
dlm+ld1m+2 Z T,"j =nd Z T,',,' = nd Elnd =n Ind
i,j=0 i=0
— 2
=n Id’m+l d’m+2 :

It follows from Definition 9 that B is a QMOA (1%, m +
2,n%d™,?2).

Secondly, we prove M is a set of m MOQFS(n, d). Here
we need to consider the three properties as follows.

A is an 'IMOA(n?, m + 2,n*d™,2), then any two rows
of the submatrix (c3,c4,...,cne2) are different. Therefore,
the n?> quantum states of M correspond to the n? rows of A,
that is, the n*> quantum states of M are pairwise orthogonal.

Taking the runs in A that begin with 0 yields a subma-

trix denoted by A;.
0 0 co3 coa ..o Coms2
A= : . X = (a1, b1,Cy),
0n=1cp13 Cn14 v Cnimi2

where a; = 0, and b; = (n). By Lemma 3, (b1,C}) is an
Ir'MOA(n,m + 1,nd™, 1) with MD > 3 and then C; is an
IrOA(n,m,d, 1). The sum of the first row in M, namely
[co3C04 -+ Comea) + -+ + [Cp13Cn-14 - - - Cn—1yms2), 1S @ 1-
uniform state. Similarly, the sum of every row in M is a
1-uniform state.

By the same argument, the sum of every column in M
is a 1-uniform state.

Therefore, M is a set of m MOQFS(n, d).

(2) Obviously, as the M in (1) is a set of m
MOQFS(n, d) constructed from A, we can obtain the B in
(1).

(3) We can easily use the B in (1) to generate the M
since B is a QMOA (1%, m + 2, n*d™, 2) constructed from A.

Example 1: We can construct a QMOA(16,m + 2, 422m 2)
and a set of m MOQFS(4, 2) for4 <m < 9.

Proof. From the OA(16, 5,4,2) in [14] and OA(4,3,2,2) =
000
011
101 ¢
110

tained by using the expansive replacement method as fol-

lows. A MOA(r,N,dd,---dy,2) is called saturated if

SN —1)=r-1[14]. L = MOA(16,11,4%2°,2) =

0 1 122223 3y

then a saturated MOA(16, 11,4%2° 2) can be ob-

(a,b,c1,¢2,...,09) =

o~ O~~~ —~,O~,O
[E Y J S Y i )
[ e Y SN e NS U )
—_—_ O, —, O R~ O

— O~ O= =000 =
OO O~ O = =N =
OSO—= == =000 Oo NN
—O— OO0 O~ —=ONW
—_——_0 = O =000 W

OO === —=0OWw
cCOoOOC—R —~ O~ O~ — W

— O, —, O, —,O~O
—_— 0000 O~ — —
o~ O~~~ —,O

o= — 000 —=O =W

SO OoOoOOoOoOoOoOO
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(1) We have HD(L) = 6,7 by Ref.[21]. Then we
can obtain an I'MOA(16,m + 2,4%2™,2) for 6 < m < 9
by Lemma 1. Thus, by Theorem 1 we can construct a
QMOA(16,m + 2, 4*2™, 2) and a set of m MOQFS(4, 2) for
6<m<0O.

(2) An IrMOAC(16, 6,4%22% 2) can be obtained from a
MOA(16, 4,4,2) and an OA(4,2,2,2) by using the ex-
pansive replacement method. Then we can generate a
QMOA(16,6,422*,2) and a set of 4 MOQFS(4,2) by The-
orem 1. Additionally, we can add a 2 level column to
the I'MOA(16, 6,4%2%,2) to obtain a MOA(16,7,4%2°,2).
It is evident that the MOA(16,7,4?25,2) is irredun-
dant.  Therefore, by Theorem 1, we can construct a
QMOA(16,7,422%,2) and a set of 5 MOQFS(4, 2).

Definition 10: A quantum frequency cube QFC(n,d) of
size n is a cubic arrangement composed of n® single-particle
quantum pure states |; jx) € Hy, i, jk € {0, ,n— 1},
such that every edge (row, column, file) determines n/d
orthogonal bases.

Definition 11: A set of n° m-qudit pure states [\/; ),
i,jok € {0,1,...,n — 1}, belonging to a composed Hilbert
space H®™", m > 3 forms m triplewise orthogonal quantum
frequency cubes (m MOQFC(n, d, 3)) if the following prop-
erties hold:

(1) The set of n® states are orthogonal.

(2) The sum of every edge in this array, i.e.,
Sico Wi X020 Wijk)s 2o Wi jx), is a l-uniform state,
respectively.

(3) The (m + 2)-qudit quantum states 3L | )k ja)
fori=0,1,...,n-1, ZZ/::I() [ jiy for j=0,1,...,n-1,
and 37710 10 ja) for k = 0,1,
states, respectively.

Theorem 2: (1) From an I'MOA®#3, m + 3,n3d™,3), we
can construct a QMOA(®3,m + 3,n3d™,3) and a set of m
MOQFC(n, d, 3).

(2) We can use the QMOA(n?, m + 3,n3d™,3) in (1) to
generate the set of m MOQFC(n, d, 3) in (1).

(3) We can define the QMOA (13, m + 3, n3d™, 3) in (1)
from the set of m MOQFC(n, d, 3) in (1).

Proof. From an IrMOA(n3,m + 3,n3d’”,3) by a se-
quence of permutations of the columns, the rows, and the
levels of each factor, we can obtain a matrix A = (a, b, ¢, C),
wherea = (M) ® 1,2, b =1, ®1,,c = 1,2 ® (n) and
C = (cij)pssm fori=0,1,--- nd = 1,j=4,--- ,m+3.

Construction. From A, we can obtain an n® x (m + 3)
matrix B and a cubic matrix M of size m. B and the u™
frontal slice of the M are as follows:

[0) 10) [0)

.,n — 1 are 2-uniform

lcoa - coms3)
[0) 0) =1 len-14-. Co1ms3)

In=1) Iln=1) 10} lcm-1nd - .- Co-tnm+3)

In=1) In—=1) In—1) |"n3—1,4 . ..L'”3711m+3>
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€2ty - - Cunentymms3? " w214+ C(u+])n27].m+3>

Then B and M are the QMOA(n3,m + 3, n3d™, 3) and
the set of m MOQFC(n, d, 3) needed, respectively.

Verification. (1) The proof that B is a QMOA(n?, m +
3,n%d™, 3) follows from the first part of the proof of the
Theorem 1.

Then we prove M is a set of m MOQFC(n, d, 3). From
Theorem 1 and Definition 11, the first two properties hold.
Here we consider the third property as follows.

Let A° be the submatrix consisting of the rows in A
which begin with 0. Then A° can be written as

A° = (&, 10, &, C°)

0 0 0 o4 Co5  ttt Coms3
0 0 1 Cla €15ttt Cimsd
On=Tn=1co 4o s " €2 ims3

where a® = 0,2,0° = W) ® 1,,c° = 1, ® (n), and C° = (cij)
corresponds to the first frontal slice in M. By Lemma 3,
®°, 0, C% is an I'MOA(1?, m + 2,n*d™,2) with MD > 4,
then ﬁio [ jx) is a 2-uniform state for i = 0, so is
the sum for each i = 1,...,n — 1. Similarly, taking the
submatrices consisting of the rows in A with the elements
J in the second column or with the elements k in the third
column, respectively, we can prove that Z;”go [N i)
and Zl’f;:lo [ )i k) are 2-uniform states for every 0 <
Jk<n-1.

Therefore, M is the set desired.

The proofs of (2) and (3) are similar to the proofs of (2)
and (3) in Theorem 1, respectively.

Definition 12: A quantum frequency hypercube with d
levels and size n in dimension k, denoted QFH(n, d, k), is an
arrangement composed of n¥ single-particle quantum states
Wi i) € Ha, i1,....0 € {0,...,n — 1}, such that all
states belonging to an edge of hypercube determine n/d
orthogonal bases.

Definition 13: Let m > k. A set of m mutually orthogonal
quantum frequency hypercubes with d levels and size n in
dimension k, namely m MOQFH(n, d, k), is a k-dimensional
it,...,ik €{0,...,n— 1}, such that the followiﬁé properties
hold:

.....

,,,,, i forevery 1 < s < k,
forms a 1-uniform state.

(3) For any 2 < v < k — 1 and every subset
{is, 0505 --->05,} € {i1,...,i}, the sum of the n° quantum
states, denoted by " is,=0 lis isy = U5, Wiy, ooody, iyt s

-
is a v-uniform state.
Theorem 3: From an I'MOA®X, m + k, n*d”, k), we can

construct a set of m MOQFH(n, d, k) and a QMOA(n*, m +
k,n*d™, k), one of which can be obtained from the other.
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Proof: This follows from the arguments analogous to the
proof of Theorem 2.

Theorem 4: The sum of rows of a QMOA(r, N,d d; - - - dy,
k) produces a k-uniform state of a quantum system com-
posed of N parties with dy, d,, .. ., dy levels respectively.

Proof: A positive operator valued measure (POVM) is a set
of positive semidefinite operators such that they sum up to
identity, determining a generalized quantum measurement
[13]. Every reduction to k columns of a QMOA(r, N, dd
---dy, k) defines a POVM, and thus the sum of its elements
produces the identity operator.

Example 2: We can construct a set of 6 MOQFC(4, 2, 3)
and a 3-uniform state of a system 43 x 29,

Proof. The frontal slices of the set of 6
MOQEFC(4, 2, 3) are as follows.

|000000) [111101) |010110) [101011)
K. = [110111) [001010) [100001) [011100)
04 =11011001) [100100) [001111) [110010) |’

|101110) [010011) [111000) [000101)

[011111) 100010 [001001) |110100)
K. | 1101000} [010101) [111110) 000011
1= 111000110y [111011) [010000) [101101) |*

[110001) 001100y [100111) [011010)

[100101) 011000y [110011) [001110)
K. = [010010) [101111) 000100y [111001)
25 = [111100) [000001) [101010) [010111) |’

[001011) (110110 [011101) |100000)

[111010) [000111) [101100) [010001)
[001101) [110000) [011011) |100110)
[100011) [011110) |110101) [001000) |"
[010100) (101001 [000010) [111111)

K. =

Then by Theorems 2 and 4, we can construct a 3-
uniform state of a system 4> x 2° as follows.

163,56 ) = 1000000000) + [001111101) +[002010110) + [003101011)
+010110111) + [011001010) + [012100001) + [013011100)
+020011001) + 021100100) + [022001111) + [023110010)
+030101110) + [031010011) + [032111000) + [033000101)
+[100011111) + [101100010) + |102001001) + [103110100)
+110101000) + [111010101) +112111110) + [113000011)
+120000110) + [121111011) + |122010000) + |123101101)
+130110001) + [131001100) + |132100111) + [133011010)
+200100101) + [201011000) + [202110011) + [203001110)
+210010010) + [211101111) +[212000100) + [213111001)
+220111100) + [221000001) + [222101010) + [223010111)
+230001011) + [231110110) + [232011101) + [233100000)
+300111010) + 301000111) + [302101100) + [303010001)
+310001101) + 311110000) + [312011011) + [313100110)
+]320100011) + [321011110) + [322110101) + [323001000)
+[330010100) + |331101001) + [332000010) + [333111111).

4. Conclusion

In this letter, we define QMOAs, MOQFS, MOQFC and
MOQFH. After setting up the quantum combinatorial tools
we present our method for constructing k-uniform states.
The further work is to find more QMOAs, MOQFS, MO-
QFC and MOQFH to construct k-uniform states of hetero-
geneous systems.
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