LETTER

Quantum Frequency Arrangements, Quantum Mixed Orthogonal Arrays and Entangled States*

Shanqi PANG †, Member, Ruining ZHANG †, and Xiao ZHANG $^{\dagger \text { à) }}$, , Nonmembers

Abstract

SUMMARY In this work, we introduce notions of quantum frequency arrangements consisting of quantum frequency squares, cubes, hypercubes and a notion of orthogonality between them. We also propose a notion of quantum mixed orthogonal array (QMOA). By using irredundant mixed orthogonal array proposed by Goyeneche et al. we can obtain k-uniform states of heterogeneous systems from quantum frequency arrangements and QMOAs. Furthermore, some examples are presented to illustrate our method. key words: quantum frequency arrangements, quantum mixed orthogonal array, irredundant orthogonal array, k-uniform states

1. Introduction

The phenomenon of entanglement is a remarkable feature of quantum physics that has been identified as a key ingredient in many areas of quantum information theory including quantum key distribution [4], superdense coding [1], and teleportation [2]. However, the general problem of how to construct genuinely multipartite entangled states remains unresolved. There has been some progress towards a solution [5]-[7], [10], [20], but the task at hand is generally considered a difficult one.

As is often the case [15], [17], combinatorics can be useful to quantum information theory, and orthogonal arrays (OAs) are fundamental ingredients in the construction of other useful combinatorial objects [9]. Recently, many new methods of constructing OAs of strength k, especially mixed orthogonal arrays (MOAs), have been presented, and many new classes of OAs have been obtained [3], [16], [18], [19]. It is these new developments in OAs that suggest the possibility of constructing infinitely many new genuinely multipartite entangled states. A highly entangled quantum state of heterogeneous multipartite systems consisting of $N>2$ parties is said to be k-uniform if every reduction to k parties is maximally mixed [6]. These states are closely related to quantum error correction codes over mixed alphabets. Recently, quantum Latin squares, cubes, hypercubes, and quantum orthogonal arrays have been introduced by the authors in [8], [11], [12], [22]. They also demonstrated that

[^0]k-uniform states constructed from quantum Latin arrangements have high persistency of entanglement, which makes them ideal candidates for quantum information protocols. However, these combinatorial designs were only used to construct k-uniform states of homogeneous systems [8]. Therefore, more mathematical tools need to be discovered to construct k-uniform states of heterogeneous systems in [6].

In this work, we introduce notions of quantum frequency arrangements consisting of quantum frequency squares, cubes, hypercubes and a notion of orthogonality between them. We also propose a notion of quantum mixed orthogonal array (QMOA). By using irredundant mixed orthogonal array which is proposed in [6] we can obtain k-uniform states of heterogeneous systems from quantum frequency arrangements and QMOAs. Furthermore, some examples are presented to illustrate our method.

2. Preliminaries

Let A^{T} be the transposition of matrix A and $(d)=$ $(0,1, \ldots, d-1)^{T}$. Let 0_{r} and 1_{r} denote the $r \times 1$ vectors of $0 s$ and $1 s$, respectively. If $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{u \times v}$ with elements from a Galois field with binary operations (+ and \cdot), the Kronecker product $A \otimes B$ is defined as $A \otimes B=$ $\left(a_{i j} \cdot B\right)_{m u \times n v}$, where $a_{i j} \cdot B$ represents the $u \times v$ matrix with entries $a_{i j} \cdot b_{r s}(1 \leq r \leq u, 1 \leq s \leq v)$. A matrix A can often be identified with a set of its row vectors if necessary. Let $\mathcal{H}_{d}^{\otimes m}$ be $\underbrace{\mathcal{H}_{d} \otimes \cdots \otimes \mathcal{H}_{d}}_{m}$.

Definition 1: ([9]) An orthogonal array $\mathrm{OA}\left(r, N, d_{1} d_{2} \cdots\right.$ $\left.d_{N}, k\right)$ is an $r \times N$ matrix, with the property that, in any $r \times k$ submatrix, all possible combinations of k symbols appear equally often as a row. The orthogonal array is called symmetrical if $d_{1}=d_{2}=\cdots=d_{N}$. Otherwise, the array is called a MOA.

Definition 2: ([6]) $\mathrm{A} \operatorname{MOA}\left(r, N, d_{1} d_{2} \ldots d_{N}, k\right)$ is called irredundant, written IrMOA, if every subset of $N-k$ columns contains a different sequence of $N-k$ symbols in every row.

Definition 3: ([20]) Let $S^{l}=\left\{\left(v_{1}, \ldots, v_{l}\right) \mid v_{i} \in S, i=\right.$ $1,2, \ldots, l\}$. The Hamming distance $\operatorname{HD}(u, v)$ between two vectors $u=\left(u_{1}, \ldots, u_{l}\right), v=\left(v_{1}, \ldots, v_{l}\right) \in S^{l}$ is defined as the number of positions in which they differ. The minimal distance of a matrix A, written $\operatorname{MD}(A)$, is defined to be the minimal Hamming distance between its distinct rows.
$\operatorname{HD}(A)$ is used to represent all the values of the Hamming distances between two distinct rows of A.

Definition 4: ([13]) Suppose we have physical systems A and B, whose state is described by a density operator $\rho^{A B}$. The reduced density operator for system A is defined by

$$
\rho_{A} \equiv \operatorname{Tr}_{B}\left(\rho^{A B}\right)
$$

where Tr_{B} is a map of operators known as the partial trace over system B. The partial trace is defined by

$$
\operatorname{Tr}_{B}\left(\left|a_{1}\right\rangle\left\langle a_{2}\right| \otimes\left|b_{1}\right\rangle\left\langle b_{2}\right|\right) \equiv\left|a_{1}\right\rangle\left\langle a_{2}\right| \operatorname{Tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)
$$

where $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$ are any two vectors in the state space of A, and $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$ are any two vectors in the state space of B. The trace operation appearing on the right hand side is the usual trace operation for system B, so $\operatorname{Tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)=\left\langle b_{2} \mid b_{1}\right\rangle$.

Definition 5: ([8]) A quantum orthogonal array $\mathrm{QOA}(r, N$, d, k) is an arrangement consisting of r rows composed by N partite normalized pure quantum states $\left|\varphi_{j}\right\rangle \in \mathcal{H}_{d}^{\otimes N}$, having d internal levels each, such that

$$
d^{k} \sum_{i, j=0}^{r-1} \operatorname{Tr}_{i_{1}, \ldots, i_{N-k}}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right|\right)=r \mathbb{I}_{d^{k}}
$$

for every subset of $N-k$ parties $\left\{i_{1}, \ldots, i_{N-k}\right\}$.
Definition 6: The $3 n$ slices in three directions of a cubic matrix $A=\left\{a_{\alpha \beta \gamma} \in F_{d}^{w} \mid \alpha, \beta, \gamma \in F_{n}\right\}$ can be expressed as frontal slice: $A_{\alpha,,:,}=\left\{a_{\alpha \beta \gamma} \in F_{d}^{w} \mid \beta, \gamma \in F_{n}\right\}, \alpha \in F_{n}$, lateral slice: $A_{:, \beta,:}=\left\{a_{\alpha \beta \gamma} \in F_{d}^{w} \mid \alpha, \gamma \in F_{n}\right\}, \beta \in F_{n}$, and horizontal slice: $A_{:,,, \gamma}=\left\{a_{\alpha \beta \gamma} \in F_{d}^{w} \mid \alpha, \beta \in F_{n}\right\}, \gamma \in F_{n}$.
Lemma 1: $\mathrm{A} \operatorname{MOA}\left(r, N, d_{1} \cdots d_{N}, k\right)$ is irredundant if and only if its minimal distance is greater than k.
Proof. It follows from the definition of IrMOA.
Lemma 2: ([9]) Taking the runs in an $A=\mathrm{OA}\left(r, N, d_{1} d_{2} \ldots\right.$ $\left.d_{N}, k\right)$ that begin with 0 (or any other particular symbol) and omitting the first column yields an $\mathrm{OA}\left(r / d_{1}, N-1\right.$, $d_{2} \cdots d_{N}, k-1$), denoted by A_{0}. Similarly, we can obtain $A_{1}, A_{2}, \ldots, A_{d_{1}-1}$ are all $\mathrm{OA}\left(r / d_{1}, N-1, d_{2} \cdots d_{N}, k-1\right)$. Then A can be written as follows.

$$
A=\left(\begin{array}{cc}
0_{r / d_{1}} & A_{0} \\
1_{r / d_{1}} & A_{1} \\
\vdots & \vdots \\
\left(d_{1}-1\right)_{r / d_{1}} & A_{d_{1}-1}
\end{array}\right)
$$

Lemma 3: Let A as in Lemma 2 be an $\operatorname{IrMOA}\left(r, N, d_{1} d_{2} \ldots\right.$ $\left.d_{N}, k\right)$. Then A_{i} is an $\operatorname{IrMOA}\left(r / d_{1}, N-1, d_{2} \cdots d_{N}, k-1\right)$ and $\operatorname{MD}\left(A_{i}\right) \geq k+1$ for $i=0,1, \ldots, d_{1}-1$.
Proof. It follows from Lemma 2 that A_{i} is an $\mathrm{OA}\left(r / d_{1}, N-1\right.$, $\left.d_{2} \cdots d_{N}, k-1\right)$. By Lemma 1, we have $\operatorname{MD}(A) \geq k+1$. Then $\operatorname{MD}\left(A_{i}\right) \geq k+1>k$. Therefore, A_{i} is an $\operatorname{IrMOA}\left(r / d_{1}, N-1\right.$, $\left.d_{2} \cdots d_{N}, k-1\right)$ by Lemma 1.
Lemma 4: Suppose A is an $\operatorname{IrMOA}\left(n^{k}, m+k, n^{k} d^{m}, k\right)$.

Then,
(1) If $d \leq n$, then $m \geq k$.
(2) If $d<n$, then $m>k$.
(3) If $d=n$, then $m \geq k$.

Proof. We only prove the second case. Assume $m \leq k$, then after removing the first k columns of A, the $n^{k} \times m$ subarray contains two same rows, which is a contradiction.

Unless stated otherwise, we only consider the case of $n>d$.

3. Main Results

Definition 7: A quantum frequency square of size n is an arrangement

$$
\operatorname{QFS}(n, d)=\left(\begin{array}{ccc}
\left|\psi_{0,0}\right\rangle & \ldots & \left|\psi_{0, n-1}\right\rangle \\
\vdots & & \vdots \\
\left|\psi_{n-1,0}\right\rangle & \ldots & \left|\psi_{n-1, n-1}\right\rangle
\end{array}\right)
$$

composed of n^{2} single-particle quantum states $\left|\psi_{i, j}\right\rangle \in \mathcal{H}_{d}$, $i, j \in\{0, \ldots, n-1\}$, such that each row and each column determine n / d orthonormal bases for a qudit system.
Definition 8: A set of n^{2} pure quantum states $\left|\psi_{i, j}\right\rangle \in \mathcal{H}_{d}^{\otimes m}$, $m>2$ arranged as

$$
\left(\begin{array}{ccc}
\left|\psi_{0,0}\right\rangle & \ldots & \left|\psi_{0, n-1}\right\rangle \\
\vdots & & \vdots \\
\left|\psi_{n-1,0}\right\rangle & \ldots & \left|\psi_{n-1, n-1}\right\rangle
\end{array}\right)
$$

forms a set of m mutually orthogonal quantum frequency squares $(m \operatorname{MOQFS}(n, d))$ if the following properties hold:
(1) The set of n^{2} states $\left\{\left|\psi_{i, j}\right\rangle \mid i, j=0, \ldots, n-1\right\}$ are orthogonal.
(2) The sum of every row in the array, i.e., $\sum_{j=0}^{n-1}\left|\psi_{i, j}\right\rangle$, is a 1 -uniform state.
(3) The sum of every column in the array, i.e., $\sum_{i=0}^{n-1}\left|\psi_{i, j}\right\rangle$, is a 1-uniform state.
Definition 9: A quantum mixed orthogonal array $\mathrm{QMOA}(r$, $\left.N, d_{1} d_{2} \ldots d_{N}, k\right)$ is an arrangement consisting of r rows composed by N-partite normalized pure quantum states $\left|\varphi_{j}\right\rangle \in \mathcal{H}_{d_{1}} \otimes \cdots \otimes \mathcal{H}_{d_{N}}$, such that

$$
d_{l_{N-k+1}} \cdots d_{l_{N}} \sum_{i, j=0}^{r-1} \operatorname{Tr}_{l_{1}, \ldots, l_{N-k}}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right|\right)=r \mathbb{I}_{d_{l_{N-k+1}} \cdots d_{l_{N}}}
$$

for every subset of $N-k$ parties $\left\{l_{1}, \ldots, l_{N-k}\right\}$.
Theorem 1: (1) From an $\operatorname{IrMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$, we can construct a $\operatorname{QMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$ and a set of m $\operatorname{MOQFS}(n, d)$.
(2) From the set of MOQFS in (1), we can define a $\operatorname{QMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$.
(3) From the QMOA in (1), we can generate the set of $m \operatorname{MOQFS}(n, d)$.
Proof. From $\operatorname{IrMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$ by a sequence of
permutations of the columns, the rows, and the levels of each factor, we can obtain $A=(a, b, C)$, where $a=(n) \otimes 1_{n}$, $b=1_{n} \otimes(n)$, and $C=\left(c_{i j}\right)_{n^{2} \times m}$ for $i=0,1, \cdots, n^{2}-1$, $j=3,4, \cdots, m+2$.

Construction. From A, we can obtain $B=$ $\operatorname{QMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$ and a set of $m \operatorname{MOQFS}(n, d) M$ as follows.

Verification. (1) Firstly, we prove B is a $\mathrm{QMOA}\left(n^{2}, m+\right.$ $2, n^{2} d^{m}, 2$).

Let $\left|\varphi_{i}\right\rangle=\left|a_{i} b_{i} c_{i, 3} \ldots c_{i, m+2}\right\rangle$ and $T_{i, j}=\operatorname{Tr}_{l_{1}, \ldots, l_{m}}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{j}\right|\right)$, where $i, j=0,1, \ldots, n^{2}-1$ and $\left\{l_{1}, l_{2}, \ldots, l_{m}, l_{m+1}, l_{m+2}\right\}=$ $\{1,2, \ldots, m+2\}$. Since A is an $\operatorname{IrMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$, $T_{i, j}=0$ for $i \neq j$. Therefore, we will consider the following three cases.

Case 1. If $1,2 \notin\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$, then

$$
\begin{aligned}
T_{i, i} & =\operatorname{Tr}_{3,4, \ldots, m+2}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right) \\
& =\left\langle c_{i, 3} c_{i, 4} \ldots c_{i, m+2} \mid c_{i, 3} c_{i, 4} \ldots c_{i, m+2}\right\rangle\left|a_{i} b_{i}\right\rangle\left\langle a_{i} b_{i}\right| \\
& =\left|a_{i} b_{i}\right\rangle\left\langle a_{i} b_{i}\right| .
\end{aligned}
$$

In the columns (a, b), each of all possible pairs as a row occurs with frequency $n^{2} / n^{2}=1$, then $\sum_{i=0}^{n^{2}-1} T_{i, i}=I_{n^{2}}$. We have

$$
d_{l_{m+1}} d_{l_{m+2}} \sum_{i, j=0}^{r-1} T_{i, j}=d_{a} d_{b} \sum_{i=0}^{n^{2}-1} T_{i, i}=n^{2} I_{n^{2}}=n^{2} I_{d_{l_{m+1}} d_{m+2}}
$$

Case 2. If $\{1,2\} \subseteq\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$, we can without loss of generality assume that $\left\{l_{1}, l_{2}\right\}=\{1,2\}$. Then

$$
\begin{aligned}
T_{i, i} & =\operatorname{Tr}_{l_{1}, l_{2}, \ldots, l_{m}}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right) \\
& =\left\langle a_{i} b_{i} c_{i, l_{3}}^{\cdots c_{i, l_{m}}\left|a_{i} b_{i} c_{i, l_{3}} \cdots c_{i, l_{m}}\right\rangle\left|c_{i, l_{m+1}} c_{i, l_{m+2}}\right\rangle\left\langle c_{i, l_{m+1}} c_{i, l_{m+2}}\right|}\right. \\
& =\left|c_{i, l_{m+1}} c_{i, l_{m+2}}\right\rangle\left\langle c_{i, l_{m+1}} c_{i, l_{m+2}}\right| .
\end{aligned}
$$

Since each of all possible pairs as a row occurs n^{2} / d^{2} times in $\left(c_{l_{m+1}}, c_{l_{m+2}}\right), \sum_{i=0}^{n^{2}-1} T_{i, i}=n^{2} / d^{2} I_{d^{2}}$. We have

$$
\begin{aligned}
d_{l_{m+1}} d_{l_{m+2}} \sum_{i, j=0}^{n^{2}-1} T_{i, j} & =d^{2} \sum_{i=0}^{n^{2}-1} T_{i, i}=d^{2}\left(n^{2} / d^{2}\right) I_{d^{2}}=n^{2} I_{d^{2}} \\
& =n^{2} I_{d_{l_{m+1}}} d_{l_{m+2}}
\end{aligned}
$$

Case 3. If $1 \in\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$ and $2 \notin\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$, or $1 \notin\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$ and $2 \in\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$, here we only prove the first case. Without loss of generality we may assume that $l_{1}=1$ and $l_{m+1}=2$. Then

$$
\begin{aligned}
T_{i, i} & =\operatorname{Tr}_{l_{1}, \ldots, l_{m}}\left(\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right) \\
& =\left\langle a_{i} c_{i, l_{2}} c_{i, l_{3}} \ldots c_{i, l_{m}} \mid a_{i} c_{i, l_{2}} c_{i, l_{3}} \ldots c_{i, l_{m}}\right\rangle\left|b_{i} c_{i, l_{m+2}}\right\rangle\left\langle b_{i} c_{i, l_{m+2}}\right| \\
& =\left|b_{i} c_{i, l_{m+2}}\right\rangle\left\langle b_{i} c_{i, l_{m+2}}\right| .
\end{aligned}
$$

Each of all possible pairs as a row in $\left(b, c_{l_{m+2}}\right)$ occurs $n^{2} /(n d)=n / d$ times, then $\sum_{i=0}^{n^{2}-1} T_{i, i}=(n / d) I_{n d}$. Thus

$$
\begin{aligned}
d_{l_{m+1}} d_{l_{m+2}} \sum_{i, j=0}^{n^{2}-1} T_{i, j} & =n d \sum_{i=0}^{n^{2}-1} T_{i, i}=n d \frac{n}{d} I_{n d}=n^{2} I_{n d} \\
& =n^{2} I_{d_{l_{m+1}}} d_{l_{m+2}}
\end{aligned}
$$

It follows from Definition 9 that B is a $\operatorname{QMOA}\left(n^{2}, m+\right.$ $2, n^{2} d^{m}, 2$).

Secondly, we prove M is a set of $m \operatorname{MOQFS}(n, d)$. Here we need to consider the three properties as follows.
A is an $\operatorname{IrMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$, then any two rows of the submatrix $\left(c_{3}, c_{4}, \ldots, c_{m+2}\right)$ are different. Therefore, the n^{2} quantum states of M correspond to the n^{2} rows of A, that is, the n^{2} quantum states of M are pairwise orthogonal.

Taking the runs in A that begin with 0 yields a submatrix denoted by A_{1}.

$$
A_{1}=\left(\begin{array}{cccccc}
0 & 0 & c_{0,3} & c_{0,4} & \ldots & c_{0, m+2} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & n-1 & c_{n-1,3} & c_{n-1,4} & \ldots & c_{n-1, m+2}
\end{array}\right)=\left(a_{1}, b_{1}, C_{1}\right),
$$

where $a_{1}=0_{n}$ and $b_{1}=(n)$. By Lemma 3, $\left(b_{1}, C_{1}\right)$ is an $\operatorname{IrMOA}\left(n, m+1, n d^{m}, 1\right)$ with MD ≥ 3 and then C_{1} is an $\operatorname{IrOA}(n, m, d, 1)$. The sum of the first row in M, namely $\left|c_{0,3} c_{0,4} \ldots c_{0, m+2}\right\rangle+\cdots+\left|c_{n-1,3} c_{n-1,4} \ldots c_{n-1, m+2}\right\rangle$, is a $1-$ uniform state. Similarly, the sum of every row in M is a 1-uniform state.

By the same argument, the sum of every column in M is a 1 -uniform state.

Therefore, M is a set of $m \operatorname{MOQFS}(n, d)$.
(2) Obviously, as the M in (1) is a set of m $\operatorname{MOQFS}(n, d)$ constructed from A, we can obtain the B in (1).
(3) We can easily use the B in (1) to generate the M since B is a $\operatorname{QMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$ constructed from A.
Example 1: We can construct a $\operatorname{QMOA}\left(16, m+2,4^{2} 2^{m}, 2\right)$ and a set of $m \operatorname{MOQFS}(4,2)$ for $4 \leq m \leq 9$.
Proof. From the $\mathrm{OA}(16,5,4,2)$ in [14] and $\mathrm{OA}(4,3,2,2)=$ $\left(\begin{array}{l}000 \\ 011 \\ 101 \\ 110\end{array}\right)$,
tained by using the expansive replacement method as follows. $\mathrm{A} \operatorname{MOA}\left(r, N, d_{1} d_{2} \cdots d_{N}, 2\right)$ is called saturated if $\sum_{i=1}^{N}\left(d_{i}-1\right)=r-1[14] . L=\operatorname{MOA}\left(16,11,4^{2} 2^{9}, 2\right)=$
$\left(a, b, c_{1}, c_{2}, \ldots, c_{9}\right)=\left(\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right)^{T}$
(1) We have $\operatorname{HD}(L)=6,7$ by Ref.[21]. Then we can obtain an $\operatorname{IrMOA}\left(16, m+2,4^{2} 2^{m}, 2\right)$ for $6 \leq m \leq 9$ by Lemma 1. Thus, by Theorem 1 we can construct a $\operatorname{QMOA}\left(16, m+2,4^{2} 2^{m}, 2\right)$ and a set of $m \operatorname{MOQFS}(4,2)$ for $6 \leq m \leq 9$.
(2) $\mathrm{An} \operatorname{IrMOA}\left(16,6,4^{2} 2^{4}, 2\right)$ can be obtained from a $\operatorname{MOA}(16,4,4,2)$ and an $\mathrm{OA}(4,2,2,2)$ by using the expansive replacement method. Then we can generate a $\operatorname{QMOA}\left(16,6,4^{2} 2^{4}, 2\right)$ and a set of $4 \operatorname{MOQFS}(4,2)$ by Theorem 1. Additionally, we can add a 2 level column to the $\operatorname{IrMOA}\left(16,6,4^{2} 2^{4}, 2\right)$ to obtain a $\operatorname{MOA}\left(16,7,4^{2} 2^{5}, 2\right)$. It is evident that the $\operatorname{MOA}\left(16,7,4^{2} 2^{5}, 2\right)$ is irredundant. Therefore, by Theorem 1, we can construct a $\operatorname{QMOA}\left(16,7,4^{2} 2^{5}, 2\right)$ and a set of $5 \operatorname{MOQFS}(4,2)$.
Definition 10: A quantum frequency cube $\operatorname{QFC}(n, d)$ of size n is a cubic arrangement composed of n^{3} single-particle quantum pure states $\left|\psi_{i, j, k}\right\rangle \in \mathcal{H}_{d}, i, j, k \in\{0, \cdots, n-1\}$, such that every edge (row, column, file) determines n / d orthogonal bases.
Definition 11: A set of $n^{3} m$-qudit pure states $\left|\psi_{i, j, k}\right\rangle$, $i, j, k \in\{0,1, \ldots, n-1\}$, belonging to a composed Hilbert space $\mathcal{H}_{d}^{\otimes m}, m>3$ forms m triplewise orthogonal quantum frequency cubes $(m \operatorname{MOQFC}(n, d, 3))$ if the following properties hold:
(1) The set of n^{3} states are orthogonal.
(2) The sum of every edge in this array, i.e., $\sum_{k=0}^{n-1}\left|\psi_{i, j, k}\right\rangle, \sum_{j=0}^{n-1}\left|\psi_{i, j, k}\right\rangle, \sum_{i=0}^{n-1}\left|\psi_{i, j, k}\right\rangle$, is a 1-uniform state, respectively.
(3) The $(m+2)$-qudit quantum states $\sum_{j, k=0}^{n-1}|j\rangle|k\rangle\left|\psi_{i, j, k}\right\rangle$ for $i=0,1, \ldots, n-1, \sum_{i, k=0}^{n-1}|i\rangle|k\rangle\left|\psi_{i, j, k}\right\rangle$ for $j=0,1, \ldots, n-1$, and $\sum_{i, j=0}^{n-1}|i\rangle|j\rangle\left|\psi_{i, j, k}\right\rangle$ for $k=0,1, \ldots, n-1$ are 2 -uniform states, respectively.
Theorem 2: (1) From an $\operatorname{IrMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$, we can construct a $\operatorname{QMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$ and a set of m $\operatorname{MOQFC}(n, d, 3)$.
(2) We can use the $\mathrm{QMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$ in (1) to generate the set of $m \operatorname{MOQFC}(n, d, 3)$ in (1).
(3) We can define the $\operatorname{QMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$ in (1) from the set of $m \operatorname{MOQFC}(n, d, 3)$ in (1).

Proof. From an $\operatorname{IrMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$ by a sequence of permutations of the columns, the rows, and the levels of each factor, we can obtain a matrix $A=(a, b, c, C)$, where $a=(n) \otimes 1_{n^{2}}, b=1_{n} \otimes(n) \otimes 1_{n}, c=1_{n^{2}} \otimes(n)$ and $C=\left(c_{i j}\right)_{n^{3} \times m}$ for $i=0,1, \cdots, n^{3}-1, j=4, \cdots, m+3$.

Construction. From A, we can obtain an $n^{3} \times(m+3)$ matrix B and a cubic matrix M of size $m . B$ and the $u^{\text {th }}$ frontal slice of the M are as follows:

$$
B=\left(\begin{array}{cccc}
|0\rangle & |0\rangle & |0\rangle & \left|c_{0,4} \ldots c_{0, m+3}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
|0\rangle & |0\rangle & |n-1\rangle & \left|c_{n-1,4} \ldots c_{n-1, m+3}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
|n-1\rangle & |n-1\rangle & |0\rangle & \left|c_{(n-1) n, 4} \ldots c_{(n-1) n, m+3}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
|n-1\rangle & |n-1\rangle & |n-1\rangle & \left|c_{n^{3}-1,4} \ldots c_{n^{3}-1, m+3}\right\rangle
\end{array}\right) \text {, }
$$

Then B and M are the $\operatorname{QMOA}\left(n^{3}, m+3, n^{3} d^{m}, 3\right)$ and the set of $m \operatorname{MOQFC}(n, d, 3)$ needed, respectively.

Verification. (1) The proof that B is a $\operatorname{QMOA}\left(n^{3}, m+\right.$ $3, n^{3} d^{m}, 3$) follows from the first part of the proof of the Theorem 1.

Then we prove M is a set of $m \operatorname{MOQFC}(n, d, 3)$. From Theorem 1 and Definition 11, the first two properties hold. Here we consider the third property as follows.

Let A^{0} be the submatrix consisting of the rows in A which begin with 0 . Then A^{0} can be written as

$$
\begin{aligned}
A^{0} & =\left(a^{0}, b^{0}, c^{0}, C^{0}\right) \\
& =\left(\begin{array}{ccccccc}
0 & 0 & 0 & c_{0,4} & c_{0,5} & \cdots & c_{0, m+3} \\
0 & 0 & 1 & c_{1,4} & c_{1,5} & \cdots & c_{1, m+3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & n-1 & n-1 & c_{n^{2}-1,4} & c_{n^{2}-1,5} & \cdots & c_{n^{2}-1, m+3}
\end{array}\right),
\end{aligned}
$$

where $a^{0}=0_{n^{2}}, b^{0}=(n) \otimes 1_{n}, c^{0}=1_{n} \otimes(n)$, and $C^{0}=\left(c_{i j}\right)$ corresponds to the first frontal slice in M. By Lemma 3, $\left(b^{0}, c^{0}, C^{0}\right)$ is an $\operatorname{IrMOA}\left(n^{2}, m+2, n^{2} d^{m}, 2\right)$ with $M D \geq 4$, then $\sum_{j, k=0}^{n-1}|j\rangle|k\rangle\left|\psi_{i, j, k}\right\rangle$ is a 2 -uniform state for $i=0$, so is the sum for each $i=1, \ldots, n-1$. Similarly, taking the submatrices consisting of the rows in A with the elements j in the second column or with the elements k in the third column, respectively, we can prove that $\sum_{i, k=0}^{n-1}|i\rangle|k\rangle\left|\psi_{i, j, k}\right\rangle$ and $\sum_{i, j=0}^{n-1}|i\rangle|j\rangle\left|\psi_{i, j, k}\right\rangle$ are 2 -uniform states for every $0 \leq$ $j, k \leq n-1$.

Therefore, M is the set desired.
The proofs of (2) and (3) are similar to the proofs of (2) and (3) in Theorem 1, respectively.
Definition 12: A quantum frequency hypercube with d levels and size n in dimension k, denoted $\mathrm{QFH}(n, d, k)$, is an arrangement composed of n^{k} single-particle quantum states $\left|\psi_{i_{1}, \ldots, i_{k}}\right\rangle \in \mathcal{H}_{d}, i_{1}, \ldots, i_{k} \in\{0, \ldots, n-1\}$, such that all states belonging to an edge of hypercube determine n / d orthogonal bases.
Definition 13: Let $m>k$. A set of m mutually orthogonal quantum frequency hypercubes with d levels and size n in dimension k, namely $m \operatorname{MOQFH}(n, d, k)$, is a k-dimensional arrangement composed of $n^{k} m$-qudit states $\left|\psi_{i_{1}, \ldots, i_{k}}\right\rangle \in \mathcal{H}_{d}^{\otimes m}$, $i_{1}, \ldots, i_{k} \in\{0, \ldots, n-1\}$, such that the following properties hold:
(1) The set of n^{k} states $\left\{\left|\psi_{i_{1}, \ldots, i_{k}}\right\rangle \in \mathcal{H}_{d}\right\}$ are orthogonal.
(2) The sum of n states belonging to the same edge of the hypercube, i.e. $\sum_{i_{s}=0}^{n-1}\left|\psi_{i_{1}, \ldots, i_{s}, \ldots, i_{k}}\right\rangle$, for every $1 \leq s \leq k$, forms a 1-uniform state.
(3) For any $2 \leq v \leq k-1$ and every subset $\left\{i_{s_{1}}, i_{s_{2}}, \ldots, i_{s_{v}}\right\} \subseteq\left\{i_{1}, \ldots, i_{k}\right\}$, the sum of the n^{v} quantum states, denoted by $\sum_{i_{s_{1}}, i_{s_{2}}, \ldots, i_{s_{v}}=0}^{n-1}\left|i_{s_{1}} i_{s_{2}} \cdots i_{s_{v}} \psi_{i_{1}, \ldots, i_{s_{1}}, \ldots, i_{s_{v}}, \ldots, i_{k}}\right\rangle$, is a v-uniform state.
Theorem 3: From an $\operatorname{IrMOA}\left(n^{k}, m+k, n^{k} d^{m}, k\right)$, we can construct a set of $m \operatorname{MOQFH}(n, d, k)$ and a $\operatorname{QMOA}\left(n^{k}, m+\right.$ $k, n^{k} d^{m}, k$), one of which can be obtained from the other.

Proof: This follows from the arguments analogous to the proof of Theorem 2.

Theorem 4: The sum of rows of a $\operatorname{QMOA}\left(r, N, d_{1} d_{2} \cdots d_{N}\right.$, k) produces a k-uniform state of a quantum system composed of N parties with $d_{1}, d_{2}, \ldots, d_{N}$ levels respectively.
Proof: A positive operator valued measure (POVM) is a set of positive semidefinite operators such that they sum up to identity, determining a generalized quantum measurement [13]. Every reduction to k columns of a $\operatorname{QMOA}\left(r, N, d_{1} d_{2}\right.$ $\left.\cdots d_{N}, k\right)$ defines a POVM, and thus the sum of its elements produces the identity operator.
Example 2: We can construct a set of $6 \operatorname{MOQFC}(4,2,3)$ and a 3 -uniform state of a system $4^{3} \times 2^{6}$.

Proof. The frontal slices of the set of 6 $\operatorname{MOQFC}(4,2,3)$ are as follows.

$$
\begin{aligned}
& K_{0,,::}=\left(\begin{array}{llll}
|000000\rangle & |111101\rangle & |010110\rangle & |101011\rangle \\
|110111\rangle & |001010\rangle & |100001\rangle & |011100\rangle \\
|011001\rangle & |100100\rangle & |001111\rangle & |110010\rangle \\
|101110\rangle & |010011\rangle & |111000\rangle & |000101\rangle
\end{array}\right), \\
& K_{1,,:}=\left(\begin{array}{cccc}
|011111\rangle & |100010\rangle & |001001\rangle & |110100\rangle \\
|101000\rangle & |010101\rangle & |111110\rangle & |000011\rangle \\
|000110\rangle & |111011\rangle & |010000\rangle & |101101\rangle \\
|110001\rangle & |001100\rangle & |100111\rangle & |011010\rangle
\end{array}\right), \\
& K_{2,,:}=\left(\begin{array}{c|c|c|c}
|100101\rangle & |011000\rangle & |110011\rangle & |001110\rangle \\
|010010\rangle & |101111\rangle & |000100\rangle & |111001\rangle \\
|111100\rangle & |000001\rangle & |101010\rangle & |010111\rangle \\
|001011\rangle & |110110\rangle & |011101\rangle & |100000\rangle
\end{array}\right), \\
& K_{3,,:}=\left(\left.\begin{array}{cc|c|}
|111010\rangle & |000111\rangle & |101100\rangle \\
|001101\rangle & |110000\rangle & |011011\rangle \\
|10011\rangle\rangle \\
|100011\rangle & |011110\rangle & |110101\rangle \\
|0010000\rangle \\
|0100\rangle & |101001\rangle & |000010\rangle
\end{array} \right\rvert\, \begin{array}{lll}
|111111\rangle
\end{array}\right) .
\end{aligned}
$$

Then by Theorems 2 and 4, we can construct a 3uniform state of a system $4^{3} \times 2^{6}$ as follows.

$$
\begin{aligned}
\left|\phi_{4^{3} \times 2^{6}}\right\rangle= & |000000000\rangle+|001111101\rangle+|002010110\rangle+|003101011\rangle \\
& +|010110111\rangle+|011001010\rangle+|012100001\rangle+|013011100\rangle \\
& +|020011001\rangle+|021100100\rangle+|022001111\rangle+|023110010\rangle \\
& +|030101110\rangle+|031010011\rangle+|032111000\rangle+|033000101\rangle \\
& +|100011111\rangle+|101100010\rangle+|102001001\rangle+|103110100\rangle \\
& +|110101000\rangle+|111010101\rangle+|112111110\rangle+|113000011\rangle \\
& +|120000110\rangle+|121111011\rangle+|122010000\rangle+|123101101\rangle \\
& +|130110001\rangle+|131001100\rangle+|132100111\rangle+|133011010\rangle \\
& +|200100101\rangle+|201011000\rangle+|202110011\rangle+|203001110\rangle \\
& +|210010010\rangle+|211101111\rangle+|212000100\rangle+|213111001\rangle \\
& +|220111100\rangle+|221000001\rangle+|222101010\rangle+|223010111\rangle \\
& +|230001011\rangle+|231110110\rangle+|232011101\rangle+|233100000\rangle \\
& +|300111010\rangle+|301000111\rangle+|302101100\rangle+|303010001\rangle \\
& +|310001101\rangle+|311110000\rangle+|312011011\rangle+|313100110\rangle \\
& +|320100011\rangle+|321011110\rangle+|322110101\rangle+|323001000\rangle \\
& +|330010100\rangle+|331101001\rangle+|332000010\rangle+|333111111\rangle .
\end{aligned}
$$

4. Conclusion

In this letter, we define QMOAs, MOQFS, MOQFC and MOQFH. After setting up the quantum combinatorial tools we present our method for constructing k-uniform states. The further work is to find more QMOAs, MOQFS, MOQFC and MOQFH to construct k-uniform states of heterogeneous systems.

References

[1] C.H. Bennett and S.J. Wiesner, "Communication via one- and twoparticle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett., vol.69, no.20, pp.2881-2884, 1992.
[2] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Posen channels," Phys. Rev. Lett., vol.70, no.13, pp.1895-1899, 1993.
[3] J. Du, Q. Wen, J. Zhang, and X. Liao, "New construction of symmetric orthogonal arrays of strength t," IEICE Trans. Fundamentals, vol.E96-A, no.9, pp.1901-1904, Sept. 2013.
[4] A.K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett., vol.67, no.6, pp.661-663, 1991.
[5] K. Feng, L. Jin, C. Xing, and C. Yuan, "Multipartite entangled states, symmetric matrices, and error-correcting codes," IEEE Trans. Inf. Theory, vol.63, no.9, pp.5618-5627, 2017.
[6] D. Goyeneche, J. Bielawski, and K. Życzkowski, "Multipartite entanglement in heterogeneous systems," Phys. Rev. A, vol.94, no.1, p.012346, 2016.
[7] D. Goyeneche and K. Życzkowski, "Genuinely multipartite entangled states and orthogonal arrays," Phys. Rev. A, vol.90, no.2, p.022316, 2014.
[8] D. Goyeneche, Z. Raissi, S. Di Martino, and K. Życzkowski, "Entanglement and quantum combinatorial designs," Phys. Rev. A, vol.97, no.6, p.062326, 2018.
[9] A.S. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, 1999.
[10] M. Li and Y. Wang, " k-uniform quantum states arising from orthogonal arrays," Phys. Rev. A, vol.99, no.4, p.042332, 2019.
[11] B. Musto, "Constructing mutually unbiased bases from quantum Latin squares," EPTCS, vol.236, pp.108-126, 2017.
[12] B. Musto and J. Vicary, "Quantum Latin squares and unitary error bases," arXiv:1504.02715v2, 2016.
[13] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[14] S. Pang, Construction Methods of Orthogonal Arrays and Their Applications, Doctor's Thesis, Xidian Univ. Xian, China, 2004 (in Chinese).
[15] S. Pang, M. Feng, X. Wang, and J. Wang, "Construction of permutations and bent functions," IEICE Trans. Fundamentals, vol.E101-A, no.3, pp.604-607, March 2018.
[16] S. Pang, X. Lin, and J. Wang, "Construction of asymmetric orthogonal arrays of strength t from orthogonal partition of small orthogonal arrays," IEICE Trans. Fundamentals, vol.E101-A, no.8, pp.12671272, Aug. 2018.
[17] S. Pang, X. Wang, J. Wang, J. Du, and M. Feng, "Construction and count of 1-resilient rotation symmetric Boolean functions," Inform. Sci, vol.450, pp.336-342, 2018.
[18] S. Pang, Y. Wang, G. Chen, and J. Du, "The existence of a class of mixed orthogonal arrays," IEICE Trans. Fundamentals, vol.E99-A, no.4, pp.863-868, April 2016.
[19] S. Pang, Y. Wang, J. Du, and W. Xu, "Iterative constructions of orthogonal arrays of strength t and orthogonal partitions," IEICE Trans. Fundamentals, vol.E100-A, no.1, pp.308-311, Jan. 2017.
[20] S. Pang, X. Zhang, X. Lin, and Q. Zhang, "Two- and three-uniform states from irredundant orthogonal arrays," npj Quantum Inf., vol.5, no.52, pp.1-10, 2019.
[21] S. Pang, X. Zhang, and Q. Zhang, "The Hamming distances of saturated asymmetrical orthogonal arrays with strength 2, , Comm. Statist. Theory Methods, vol.49, no.16, pp.3895-3910, 2019. DOI: 10.1080/03610926.2019.15 91452.
[22] A.J. Scott, "Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions," Phys. Rev. A, vol.69, no.5, p. $052330,2004$.

[^0]: Manuscript received January 16, 2020.
 Manuscript revised April 29, 2020.
 Manuscript publicized June 8, 2020.
 ${ }^{\dagger}$ The authors are with the College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China.
 *This work was supported by the National Natural Science Foundation of China (grant no. 11971004).
 a) E-mail: zhangxiao28176@163.com

 DOI: 10.1587/transfun.2020EAL2007

