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LETTER
Improvement of Final Exponentiation for Pairings on BLS Curves
with Embedding Degree 15

Yuki NANJO†a), Student Member, Masaaki SHIRASE††b), Takuya KUSAKA†c),
and Yasuyuki NOGAMI†d), Members

SUMMARY To be suitable in practice, pairings are typically carried
out by two steps, which consist of the Miller loop and final exponentiation.
To improve the final exponentiation step of a pairing on the BLS family
of pairing-friendly elliptic curves with embedding degree 15, the authors
provide a new representation of the exponent. The proposal can achieve a
more reduction of the calculation cost of the final exponentiation than the
previous method by Fouotsa et al.
key words: pairing-based cryptography, BLS curves, final exponentiation

1. Introduction

Pairings on elliptic curves enable innovative protocols, e.g.,
ID-based encryption [1], group signature authentication [2],
searchable encryption [3], attribute-based encryption [4],
and homomorphic encryption [5]. The elliptic curves on
which pairings are defined are typically chosen from fam-
ilies of pairing-friendly elliptic curves, e.g., Barreto-Lynn-
Scott (BLS) family [6], Barreto-Naehrig family [7], Kachisa-
Schaefer-Scott family [8], and so on. One of the important
facts is that these families have fixed polynomial formulas
of a field characteristic p and group order r in terms of an
integer parameter u where is chosen as both p and r are
primes. These families also have a specific embedding de-
gree k where is the smallest integer such that r | (pk − 1). In
this paper, the authors focus on the BLS curves with k = 15
and try to improve the pairings on those curves, which are
suggested for the pairings at the 128-bit security level in the
recent works [9] and [10].

To be useful in cryptography, the pairings are typically
carried out by two steps, which are the Miller loop and extra
exponentiation in a finite field of order pk to bring the output
of the Miller loop to the unique value. This extra exponenti-
ation is called a final exponentiation and that becomes more
of a computational bottleneckwith a large embedding degree
k. In fact, the exponent of the final exponentiation is specif-
ically given as (pk − 1)/r . Since p and r are fixed by the
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polynomials corresponding to the families, Scott et al. gave
a systematic method to find short vectorial addition chains to
compute the final exponentiation in [11]. In [12], Fuentes et
al. also presented a lattice-based method for determining a
multiple of the exponent which results in at least as efficient
final exponentiation as the method by Scott et al. [11].

For the BLS curves with k = 15, in [9], Fouotsa et
al. found one of the best multiples of the exponent by using
the lattice-based method [12] and provided the steps of com-
puting the final exponentiation as a state-of-the-art method.
In contrast, in this paper, the authors present another com-
putation method with a new multiple of the exponent which
results in more efficient final exponentiation than the pre-
vious method [9]. Indeed, the authors obtain that by using
the property of the polynomial parameterization of p for the
BLS family, which is also used for expanding the exponent
for the BLS curves with k = 27 in [13] by Zhang et al. The
authors also confirm that the proposal results in reducing at
least two multiplications in a finite field of order p15 and
two inversions in a cyclotomic subgroup from the previous
method [9] for the pairing at the 128-bit security level.

The rest of this paper is organized as follows: Section 2
provides a brief fundamental of the final exponentiation.
Section 3 describes the previous and proposed computations
of the final exponentiation for the pairing on the BLS curves
with k = 15. Section 4 presents the sample operation counts
for the final exponentiation. Finally, Sect. 5 draws the con-
clusion.

2. The Final Exponentiation

The pairings such that the Tate pairing and its variants are
typically computed by two steps, i.e., the Miller loop and
final exponentiation. The final exponentiation step is given
as a powering (pk − 1)/r in the finite field of order pk . To
achieve fast computation, the exponent is typically broken
into two parts as follows [14]:

(pk − 1)/r = [(pk − 1)/Φk (p)] · [Φk (p)/r], (1)

where Φk (·) is the k-th cyclotomic polynomial. The expo-
nentiation by the first part is inexpensive and is called as a
easy part, however, that of the second part, i.e, d = Φk (p)/r ,
is more difficult to compute and is called as a hard part.

Since p and r are fixed by polynomials in base an in-
teger u corresponding to the families, several optimizations
can be available for the hard part computation. In [11],
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Scott et al. gave a systematic method to reduce the com-
putational complexity of the hard part by representing d
to the polynomial in base p from the observation that p-th
powering in the finite field is efficiently computed by the
Frobenius endomorphism. In the context, d can be rep-
resented as d = d0 + d1p + · · · + dn−1pn−1 where n is
the value of the Euler’s totient function by k and di for
0 ≤ i ≤ (n − 1) are polynomial coefficients in base u. As-
suming f is an element after raising to the power of the easy
part, one can find short vectorial addition chains to compute
f 7→ f d = f d0 · ( f d1 )p · · · ( f dn−1 )p

n−1 . In [12], Fuentes et
al. proposed to use a multiple d ′ of d such that r - d ′ and
presented a lattice-basedmethod for determining d ′ such that
f 7→ f d

′ can be computed at least as efficiently as f 7→ f d

applied [11]. An efficient d ′ can be found by constructing a
rational matrix M ′ with dimensions deg(p) × n · deg(p) and
applying LLL algorithm [15] to M ′.

3. The BLS Family of Pairing-Friendly Elliptic Curves
with k = 15

The BLS family of pairing-friendly elliptic curves with k =
15 are parameterized as the following characteristic p and
group order r .

p = m(u) · Φ15(u) + u, (2)
r = Φ15(u), (3)

where m(u) = (u − 1)2/3 · (u2 + u + 1), Φ15(·) is the fif-
teenth cyclotomic polynomial, and u is an integer making
p and r being primes such that u ≡ 1 (mod 3). The above
parameterization is also found by Duan et al. in [16].

With the above, one can find an efficient representation
of (p15 − 1)/r or multiple of that which results in a fast
final exponentiation in the finite field of degree p15, which
is denoted as Fp15 . In the following, the authors review the
state-of-the-art method by Fouotsa et al. [9] in Sect. 3.1 and
describe our proposed method in Sect. 3.2.

3.1 State-of-the-Art Method

In [9], Fouotsa et al. proposed to decompose the exponent as

(p15 − 1)/r = [(p5 − 1)] · [Φ3(p5)/r], (4)

where Φ3(·) is the third cyclotomic polynomial. The first
and second parts are corresponding to the easy and hard
part, respectively. Note that they dared to use the above de-
composition, however, the exponent is typically decomposed
as shown in Eq. (1).

For d̃ = Φ3(p5)/r , they found one of the best multiple
d̃ ′ of d̃ by the lattice-based method [12]. In the context, they
found d̃ ′ = 3u3 · d̃ which is represented as a polynomial in
base p given as d̃ ′ = d̃ ′0 + d̃ ′1p + · · · + d̃ ′9p9 where d̃ ′i for
0 ≤ i ≤ 9 are polynomial coefficients given as follows:

d̃ ′0 = −u6 + u5 + u3 − u2, (5a)
d̃ ′1 = −u5 + u4 + u2 − u, (5b)

d̃ ′2 = −u4 + u3 + u − 1, (5c)
d̃ ′3 = u11−2u10+u9+u6−2u5+u4−u3+u2+u+2, (5d)
d̃ ′4 = u11−u10−u9+u8+u6−u5−u4+u3−u2+2u+2, (5e)
d̃ ′5 = u11 − u10 − u8 + u7 + 3, (5f)
d̃ ′6 = u10 − u9 − u7 + u6, (5g)
d̃ ′7 = u9 − u8 − u6 + u5, (5h)
d̃ ′8 = u8 − u7 − u5 + u4 (5i)
d̃ ′9 = u7 − u6 − u4 + u3. (5j)

These polynomials verify the following relations.

d̃ ′2 = −(u − 1)2·(u2 + u + 1), d̃ ′1 = ud̃ ′2,

d̃ ′0 = ud̃ ′1, d̃ ′9 = −ud̃ ′0,

d̃ ′8 = ud̃ ′9, d̃ ′7 = ud̃ ′8,

d̃ ′6 = ud̃ ′7, d̃ ′5 = ud̃ ′6 + 3,
d̃ ′4 = v−(d̃ ′1 + d̃ ′7), d̃ ′3 = v−(d̃ ′0 + d̃ ′6 + d̃ ′9),

where v = d̃ ′2 + d̃ ′5 + d̃ ′8.
From the above, for an element f̃ after raising to the

power of the easy part (p5 − 1), the exponentiation by the
hard part f̃ 7→ f̃ d̃

′ is given by f̃ d̃
′

= µ0 · µ
p
1 · µ

p2

2 · µ
p3

3 · µ
p4

4 ·

µ
p5

5 · µ
p6

6 · µ
p7

7 · µ
p8

8 · µ
p9

9 where µi = f̃ d̃
′
i for 0 ≤ i ≤ 9 are

computed by the following sequence of operations.

t0 = ( f̃ u−1)u−1, t1 = tu0 , t2 = tu1 , µ2 = (t0 · t1 · t2)−1,

µ1 = µ
u
2, µ0 = µ

u
1, µ9 = (µu0 )−1, µ8 = µ

u
9,

µ7 = µ
u
8, µ6 = µ

u
7, µ5 = µ

u
6 · f̃ 2 · f̃ , t3 = µ2 · µ5 · µ8,

µ4 = t3 · (µ1 · µ7)−1, µ3 = t3 · (µ0 · µ6 · µ9)−1,

where ti for 0 ≤ i ≤ 3 are variables.
Applying the abovemethod, the calculation cost of pow-

ering the easy part is one p5-Frobenius endomorphism, one
inversion, and one multiplication in Fp15 . Besides, the calcu-
lation cost of powering the hard part is two exponentiations
by (u−1), nine exponentiations by u, twenty multiplications,
one squaring, one p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius
endomorphisms, and four inversions in Fp15 . Since f̃ is in
the cyclotomic subgroup of order Φ3(p5) = p10 + p5 + 1, the
inversion in the hard part is efficiently computed as shown
in App. C. 1 in [9].

3.2 Proposed Method

Unlike Fouotsa et al.’s method [9], the authors decompose
the exponent according to Eq. (1) as follows:

(p15 − 1)/r = [(p5−1) · (p2+p+1)] · [Φ15(p)/r], (6)

where the first and second parts are easy and hard parts
of the final exponentiation, respectively. With the above
decomposition, the authors propose to represent a multiple
of d = Φ15(p)/r as a polynomial in base p which are derived
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by the following process.
Since p is parameterized by p = m(u) · r + u, the hard

part d is represented as a polynomial in base r such that
d = Φ15(m(u)·r+u)/r . Since the constant termof numerator
of d in base r is Φ15(u) = r , the denominator of d is easily
canceled. Then, the polynomial d in base r can be converted
to a polynomial in base p by replacing r with (p − u)/m(u)
in a straightforward way. Note that in [13], Zhang et al. also
expanded the polynomial of the hard part for the BLS curves
with k = 27 by using the property of the characteristic of
the form p = m(u) · r + u which leads to a recursion relation
pi+1 = m(u) · r · pi + u · pi where i is a positive integer.

As a result, the authors found that d = d0 + d1p+ · · · +
d7p7 where polynomial coefficients di for 0 ≤ i ≤ 7 are
given as follows:

d0 = m(u) · (u7 − u6 + u4 − u3 + u2 − 1) + 1, (7a)
d1 = m(u) · (u6 − u5 + u3 − u2 + u), (7b)
d2 = m(u) · (u5 − u4 + u2 − u + 1), (7c)
d3 = m(u) · (u4 − u3 + u − 1), (7d)
d4 = m(u) · (u3 − u2 + 1), (7e)
d5 = m(u) · (u2 − u), (7f)
d6 = m(u) · (u − 1), (7g)
d7 = m(u), (7h)

where m(u) = (u − 1)2/3 · (u2 + u + 1). Then, it is observed
that the above polynomials already have the following simple
relations before the LLL algorithm is applied.

d7 = (u − 1)2/3 · (u2 + u + 1), d6 = (u − 1) · d7,

d5 = ud6, d4 = ud5 + d7,

d3 = ud4 − d7, d2 = ud3 + d7,

d1 = ud2, d0 = ud1 − d7 + 1,

which implies that the relations can provide one of the ef-
ficient computations for the final exponentiation. Indeed,
since there exists a denominator 3 of d7 which leads to a
cube root computation, the authors propose to use a mini-
mum multiple d ′ = 3 · d for a practical final exponentiation.
Assuming d ′ = d ′0 + d ′1p + · · · + d ′7p7 where d ′i = 3 · di

for 0 ≤ i ≤ 7, the polynomials clearly verify the following
simpler relations than that of the previous method [9].

d ′7 = (u − 1)2 · (u2 + u + 1), d ′6 = (u − 1) · d ′7,
d ′5 = ud ′6, d ′4 = ud ′5 + d ′7,
d ′3 = ud ′4 − d ′7, d ′2 = ud ′3 + d ′7,
d ′1 = ud ′2, d ′0 = ud ′1 − d ′7 + 3.

With the above, for an element f after raising to the
power of the easy part given as (p5 − 1) · (p2 + p + 1), the
exponentiation by the hard part f 7→ f d

′ is computed as
f d
′

= ν0 · ν
p
1 · ν

p2

2 · ν
p3

3 · ν
p4

4 · ν
p5

5 · ν
p6

6 · ν
p7

7 where νi = f d
′
i

for 0 ≤ i ≤ 7 are computed by the following sequence of
operations.

t0 = ( f u−1)u−1, t1 = tu0 , t2 = tu1 , ν7 = t0 · t1 · t2,

ν6 = ν
u−1
7 , ν5 = ν

u
6 , ν4 = ν

u
5 · ν7, t3 = ν

−1
7 , ν3 = ν

u
4 · t3

ν2 = ν
u
3 · ν7, ν1 = ν

u
2 , ν0 = ν

u
1 · t3 · f 2 · f ,

where ti for 0 ≤ i ≤ 3 are variables.
As a result, the calculation cost of powering the easy

part is one p, p2, p5-Frobenius endomorphisms, one inver-
sion, and three multiplications in Fp15 . The calculation cost
of powering the hard part is three exponentiations by (u−1),
eight exponentiations byu, fifteenmultiplications, one squar-
ing, one p, p2, p3, p4, p5, p6, p7-Frobenius endomorphisms
in Fp15 , and one inversion in the cyclotomic subgroup of or-
der Φ3(p5). Note that f is also an element in the cyclotomic
subgroup of order Φ3(p5).

Comparing the previous and proposed methods, the
proposed method results in reducing three multiplications,
three inversions in the cyclotomic subgroup of orderΦ3(p5),
and one p8, p9-Frobenius endomorphisms, replacing one
exponentiation by u with one exponentiation by (u − 1),
and increasing one p, p2-Frobenius endomorphisms from
the previous one. Thus, it is considered that the proposed
method can achieve more efficient final exponentiation than
the previous one.
Remark 1. One more important fact is that the derivation of
the coefficients of the polynomialΦk (p)/r in base p by using
the property that the parameterization of p can be available
for the BLS curves with an arbitrary embedding degree k.
Moreover, from the observation of Eqs. (7a) to (7h), there is
a possibility that the coefficients are systematically obtained
and those verify one of the simplest relations which leads to
an efficient final exponentiation for arbitrary BLS curves.

4. Sample Operation Counts

In this section, the authors show the operation counts for
the final exponentiation of the pairing at the 128-bit security
level. In the following, let Mi , Si , and Ii denote calculation
costs of multiplication, squaring, inversion in a finite field
of order pi where i is a positive integer. Let Ic denote a
calculation cost of an inversion in the cyclotomic subgroup
of order Φ3(p5).

The authors use the parameter u which is proposed by
Fouotsa et al. in [9] given as follows:

u = 231 + 219 + 25 + 22, (8)

where u has a 32-bit length with a Hamming weight
HW(u) = 4. The parameter provides p and r with 383-bit
and 249-bit length which is closed to the 256-bit as required
to have 128-bit security on elliptic curves, respectively.

With the square-and-multiply algorithm, the exponen-
tiation by u given in Eq. (8) in Fp15 which is appeared in the
hard part is performed by 31S15 +3M15. The exponentiation
by (u − 1) in Fp15 is also performed by 31S15 + 4M15 + Ic .
Thus, according to the calculation costs of the final exponen-
tiation given in Sect. 3, the calculation cost of the proposed
hard part is computed as 3 · (31S15+4M15+ Ic)+8 · (31S15+
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Table 1 The number of operations in Fp15 for computing single final
exponentiation of the pairing at the 128-bit security level.

Method M15 S15 I15 Ic
Frob.

p p2 p3 p4 p5 p6 p7 p8 p9

Fouotsa et al. [9] 56 342 1 6 1 1 1 1 2 1 1 1 1
This work 54 342 1 4 2 2 1 1 2 1 1 0 0

Table 2 The calculation cost of operations in Fp15 .

Operations Calculation Costs
Multiplication M15 45M1

Squaring S15 45S1
Inversion I15 126M1 + 23S1 + 1I1

Cyc. inversion Ic 27M1 + 27S1
Frobenius p5; 10M1

Frobenius p; p2; p3; p4; p6; p7; p8; p9 14M1

Table 3 The number of operations in Fp for computing single final
exponentiation of the pairing at the 128-bit security level.

Method M1 S1 I1
Fouotsa et al. [9] 2,940 15,575 1

This work 2,796 15,521 1

3M15)+15M15+1S15+1Ic = 51M15+342S15+4Ic with one
p, p2, p3, p4, p5, p6, p7-Frobenius endomorphisms. Adding
the cost of the easy part, i.e., 3M15 + 1I15 with one p, p2,
p5-Frobenius endomorphisms, the proposed final exponen-
tiation is performed by 54M15+342S15+1I15+4Ic with one
p3, p4, p6, p7 and two p, p2, p5-Frobenius endomorphisms.
In the same manner, the calculation cost of the previous one
is obtained as shown in Sect. 8.1 in [9]. The details of the
number of the operations in Fp15 for these final exponentia-
tions are summarized in Table 1. According to [9], since the
calculation costs of the operations in Fp15 can be written as
Table 2, the number of operations in a prime field Fp for the
final exponentiations are also determined as Table 3.

Comparing the operation counts of Table 1, the pro-
posed method results in reducing 2M15 + 2Ic and one p8,
p9-Frobenius endomorphisms from the previous final expo-
nentiation. Although the proposal also results in increasing
one p and p2-Frobenius endomorphisms, the reduced calcu-
lation costs are still larger than the increased ones. Moreover,
Table 3 also shows that the proposedmethod results in reduc-
ing 144M1 +54S1 from the previous ones. Thus, the authors
conclude that the proposed method clearly more effective
than the previous one.

5. Conclusion

In this paper, the authors present a newmethod of computing
the final exponentiation for the pairing on the BLS family
of pairing-friendly elliptic curves with k = 15 by using the
property of the characteristic of the BLS family. The pro-
posed method contributes more reduction of the calculation
costs of the final exponentiation than the state-of-the-art one
given by Fouotsa et al. As one of future works, the authors

would like to confirm the possibility described in Remark 1
and try to improve the final exponentiation for arbitrary BLS
curves.
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