
1006
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.8 AUGUST 2021

PAPER
Minimax Design of Sparse IIR Filters Using Sparse Linear
Programming

Masayoshi NAKAMOTO†a), Member and Naoyuki AIKAWA††b), Senior Member

SUMMARY Recent trends in designing filters involve development of
sparse filters with coefficients that not only have real but also zero values.
These sparse filters can achieve a high performance through optimizing the
selection of the zero coefficients and computing the real (non-zero) coef-
ficients. Designing an infinite impulse response (IIR) sparse filter is more
challenging than designing a finite impulse response (FIR) sparse filter.
Therefore, studies on the design of IIR sparse filters have been rare. In this
study, we consider IIR filters whose coefficients involve zero value, called
sparse IIR filter. First, we formulate the design problem as a linear pro-
graming problem without imposing any stability condition. Subsequently,
we reformulate the design problem by altering the error function and pre-
pare several possible denominator polynomials with stable poles. Finally,
by incorporating these methods into successive thinning algorithms, we
develop a new design algorithm for the filters. To demonstrate the effec-
tiveness of the proposed method, its performance is compared with that of
other existing methods.
key words: infinite impulse response (IIR) filters, sparse filter, zero coeffi-
cients, sparse linear programming, minimax design

1. Introduction

Digital filters are essential tools in the field of signal pro-
cessing [1]–[4]. The Finite impulse response (FIR) [5]–
[13] and infinite impulse response (IIR) filters [14]–[20] are
some of the most common filters. Although the design of
IIR filters is generally more complicated than that of FIR
filters, IIR filters can achieve a higher performance than that
of FIR filters. In a digital circuit, these filters comprise mul-
tipliers (non-zero filter coefficients), adders, and delay ele-
ments. Further, the performance of a filter strongly depends
on the number of multipliers (or non-zero filter coefficients).

We assume x is the vector of the filter coefficients, and
K presents the number of elements in x, i.e., the number
of multipliers of the filter is K. Further, to obtain a filter
with a higher performance, a large K (more multipliers) is
required. These filters are designed such that the filter co-
efficients are all real, i.e., x ∈ RK , are usually approached.
Meanwhile, the recent trend is to design sparse filters whose
coefficients not only have real but also zero values. That is,
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Fig. 1 Inclusive relationship between SK+ν and RK .

the strategy of the sparse filter design is to determine the el-
ement of x with zero coefficients. When zeros are included
among the elements of x for a sparse filter, the number of
non-zero elements in x can be increased to be identical to
that of the corresponding vector for a non-sparse equivalent
filter. In addition, we assume ν is a non-negative integer,
and SK+ν is a set of K + ν real values, where ν elements are
zeros. That is, for sparse filter design, we consider x ∈ SK+ν.
When the number of multipliers is K, the search space SK+ν

is always larger than RK and includes RK , where SK+ν = RK

if and only if ν = 0. Figure 1 illustrates an inclusive rela-
tionship between SK+ν and RK . Consequently, it is expected
that the solution from the space SK+ν is better than that of
the space RK .

With respect to the design of sparse filters, researchers
have focused on the design of FIR filters [21]–[32], the main
reason being the highly complicated design of IIR filters
compared with that of FIR filters, which is because of the
non-linearity of the design problem caused by the presence
of a denominator polynomial. Hence, there have been lim-
ited studies on the design of sparse IIR filters [33], [34]. For
instance, a recent study [34] employed second-order cone
programming (SOCP) [1] to design an IIR filter. Because
of the stability constraint, sparse optimization of denomina-
tor coefficients is difficult. Therefore, sparse optimization of
the numerator coefficients was introduced in [34]. Addition-
ally, the design examples are limited to the case of second-
order denominator polynomial.

In this study, we consider the minimax design of sparse
IIR filters based on linear programming problems. This
consists of multiple steps and includes sparse optimization
(sparse linear programming). Since the denominator coeffi-
cients affect the stability constraint, the proposed method
considers the sparse optimization of denominator coeffi-
cients, similar to [34]. Further, a method that can design
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denominator coefficients of any order is required. Our pro-
posed method can design denominator coefficients of an ar-
bitrary order. First, we formulated the design problem as a
function of linear programming without imposing the sta-
bility condition. By solving the problem, we obtain an in-
conclusive denominator coefficient. Next, if there are un-
stable poles of the inconclusive denominator, we rearrange
the unstable poles. According to the procedure, we compute
several possible denominator polynomials. Thereafter, we
modify the error function and re-formulate the design prob-
lem for each denominator polynomial. Finally, we search
the numerator coefficients that contain zero value elements
based on the sparse linear programming by changing the de-
nominator coefficients.

The remainder of this paper is organized as follows.
Section 2 presents a formulation for the minimax design of
IIR filters using the linearized error function. In Sect. 3, we
propose a new design algorithm for IIR filters based on lin-
ear programming, where the error function is switched be-
fore computing the numerator coefficients. Subsequently,
we present sparse linear programming for the numera-
tor coefficients while varying the denominator coefficients.
Moreover, to demonstrate the effectiveness of the proposed
method, we compare its performance with that of the cor-
responding non-sparse and sparse IIR filters, which is de-
signed using another method in Sect. 4. Section 5 concludes
this paper.

2. Problem Formulation

Consider the desired response expressed as

Hd(ω) = G(ω)e− jτ(ω), ∀ω ∈ Ω (1)

where G(ω) is a gain response, τ(ω) is a phase response, and
j2 = −1. Further, Ω is a frequency region of interest and a
closed subset of [0, π].

In this work, we try to solve the problem to approxi-
mate Hd(ω) with the rational transfer function H(ω), which
is given as

H(ω; a, b) =
B(ω; b)
A(ω; a)

(2)

where A(ω; a) for a ∈ Rm+1 is the denominator polynomial
of order m, and B(ω; b) for b ∈ Rn+1 is the numerical poly-
nomial of order n. The vectors a and b are the denominator
and numerator coefficient vectors, respectively, defined as:

a =
[
a0, a1, · · · , am

]
, a0 = 1 (3)

b =
[
b0, b1, · · · , bn

]
. (4)

In (2), A(ω; a) and B(ω; b) are respectively written as

A(ω; a) = a ·
[
1, e− jω, · · · , e− jmω]T (5)

B(ω; b) = b ·
[
1, e− jω, · · · , e− jnω]T (6)

where the superscript T indicates the transposition of the

matrix (vector).
Now, define the weighted error function as

E(ω) = W(ω)
∣∣∣Hd(ω) − H(ω; a, b)

∣∣∣, ∀ω ∈ Ω (7)

where W(ω) is the weighting function and W(ω) ≥ 0. We set
W(ω) = 0 in the transition band. Assuming that δ is a posi-
tive real number such that E(ω) ≤ δ, we wish to determine a
and b that minimize δ. However, since the minimization of
δ is a difficult task, we focus on the linearized error function
defined as

ε(ω) = W(ω)
∣∣∣Hd(ω)A(ω; a) − B(ω; b)

∣∣∣, ∀ω ∈ Ω. (8)

Instead of E(ω) ≤ δ, we solve the problem to determine a
and b that minimize δ0 with

ε(ω) ≤ δ0. (9)

Substituting (1)–(6) into (8), we have

ε(ω) =W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω) + j
{
−G(ω)

m∑
k=0

ak

· sin
[
kω + τ(ω)

]
+

n∑
l=0

bl sin(lω)
}∣∣∣∣∣

≤W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω)
∣∣∣∣∣ + W(ω)

∣∣∣∣∣G(ω)
m∑

k=0

ak

· sin
[
kω + τ(ω)

]
−

n∑
l=0

bl sin(lω)
∣∣∣∣∣. (10)

Now, we impose the constraints

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω)
∣∣∣∣∣

≤
δ0

2
(11)

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak sin
[
kω + τ(ω)

]
−

n∑
l=0

bl sin(lω)
∣∣∣∣∣

≤
δ0

2
(12)

to achieve (9). The aim of this work is to find a and b that
minimizes δ0. Hence, δ0 is the evaluation value of the solu-
tion (or filter).

Chottera and Jullien [14] established that the linear pro-
gramming that minimizes δ0 with the constraints (11) and
(12) as well as the positive realness constraint is embedded
in a linear program to achieve stability.
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3. Design Scheme

3.1 Computation of Possible Denominator Coefficients

We aim at solving the problem of minimizing δ0 under a sta-
bility constraint and with zero values of the numerator co-
efficients. We utilize the approach established in [20]. The
design procedure of [20] consisted of three steps. First, a
temporary denominator was designed with a numerator of
order n without imposing the stability condition. Second,
the poles were moved such that the maximum pole radius
was within or on a circle with a specified radius. Third, the
numerator coefficients of the filter were modified to cancel
the degradation due to the pole movement.

However, the numerator coefficients in the final step
are modified again because of the sparse optimization of the
numerator coefficients. Hence, n in (11) and (12) may not
necessarily be equal to the order of the numerator coeffi-
cients at the final step. Hence, we modify (11) and (12) to

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak cos
[
kω + τ(ω)

]
−

µ∑
l=0

bl cos(lω)
∣∣∣∣∣

≤
δ0

2
(13)

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ak sin
[
kω + τ(ω)

]
−

µ∑
l=0

bl sin(lω)
∣∣∣∣∣

≤
δ0

2
(14)

where µ is a positive integer. Furthermore, µ is a temporary
order, not the definitive order, of the numerator polynomial.
The following procedure is implemented by the sequential
assignment of µ.

The number of grid points over [0, π] is denoted by L.
Subsequently, ω is taken from a finite and dense frequency
grid Ωd = {ω1, ω2, · · ·ωL}. According to (13) and (14) the
problem can be formulated as

min
a,b

δ0 (15a)

subject to aP + bQ(µ)
−
δ0

2
u ≤ 0 (15b)

a · p0 = 1 (15c)

where P is an (m + 1)× 4L matrix, Q(µ) is a (µ+ 1)× 4L ma-
trix, u is a 4L-dimensional row vector u = [ 1, 1, · · · , 1 ],
and p0 is an (m + 1)-dimensional column vector p0 =

[ 1, 0, 0, · · · , 0 ]T . P is expressed as

P =


p(0)

1 −p(0)
1 p(0)

2 −p(0)
2

p(1)
1 −p(1)

1 p(1)
2 −p(1)

2
...

...
...

...

p(m)
1 −p(m)

1 p(m)
2 −p(m)

2

 (16)

where

p(k)
1 =



W(ω1)G(ω1) cos
[
kω1 + τ(ω1)

]
W(ω2)G(ω2) cos

[
kω2 + τ(ω2)

]
...

W(ωL)G(ωL) cos
[
kωL + τ(ωL)

]



T

p(k)
2 =



W(ω1)G(ω1) sin
[
kω1 + τ(ω1)

]
W(ω2)G(ω2) sin

[
kω2 + τ(ω2)

]
...

W(ωL)G(ωL) sin
[
kωL + τ(ωL)

]



T

for k = 0, 1, · · · m. Further, Q(µ) is represented by

Q(µ) =


q(0)

1 −q(0)
1 q(0)

2 −q(0)
2

q(1)
1 −q(1)

1 q(1)
2 −q(1)

2
...

...
...

...

q(µ)
1 −q(µ)

1 q(µ)
2 −q(µ)

2

 (17)

where

q(l)
1 = −



W(ω1) cos(lω1)

W(ω2) cos(lω2)
...

W(ωL) cos(lωL)



T

q(l)
2 = −



W(ω1) sin(lω1)

W(ω2) sin(lω2)
...

W(ωL) sin(lωL)



T

for l = 0, 1, · · · µ.
By solving the problem (15), we obtain a and b. In

addition, the elements of a represent the temporary coeffi-
cients of the denominator polynomial. Notably, in the next
step, a is changed, and b is ignored.

Therefore, we design the denominator polynomial with
a specified maximum pole radius rc based on the elements
of a. The poles ρ(µ)

k = |ρ
(µ)
k |e

jθ(µ)
k are obtained by solving the

problem (15), and ρ̃(µ)
k is the new pole for k = 1, 2, · · · , m.

Based on [20], the influence due to the movement of poles
is minimized by setting new poles as

ρ̃
(µ)
k =


rc
ρ

(µ)
k

|ρ
(µ)
k |
, if |ρ(µ)

k | > rc

ρ
(µ)
k , otherwise

(18)

for k = 1, 2, · · · , m. With the new poles obtained by (18),
we have
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m∏
k=1

(1 − ρ̃(µ)
k e− jω) =

m∑
k=0

ã(µ)
k e− jkω, ã(µ)

0 = 1 (19)

where ã(µ)
0 , ã(µ)

1 , · · · , ã(µ)
m are new denominator coefficients.

Now, define

ã(µ)
=

[̃
a(µ)

0 , ã(µ)
1 , ã(µ)

2 , · · · , ã(µ)
m

]
. (20)

The elements of (20) correspond to the possible values
of the denominator coefficients. The maximum pole radius
of ã(µ) is rc. We observe that specifying the maximum pole
radius as in [16] is beneficial to the design of an IIR filter
because robust stability can be achieved.

3.2 Modification of Error Function

The numerator coefficients are optimized by fixing the de-
nominator coefficients. Substituting (20) into (5), a denomi-
nator polynomial is obtained A(ω; ã(µ)). In order to simplify
the notation, we write

Ã(ω) =

m∑
k=0

ãk e− jkω, ã0 = 1 (21)

as a substitute of A(ω; ã(µ)). Furthermore, there are several
different values of Ã(ω) that correspond to the index µ.

Subsequently, we redefine the error function after com-
puting (20) as

Ẽ(ω) =
W(ω)∣∣∣Ã(ω)

∣∣∣ ∣∣∣Hd(ω)Ã(ω) − B(ω; b)
∣∣∣, ∀ω ∈ Ω (22)

with ∣∣∣Ã(ω)
∣∣∣ =

[{ m∑
k=0

ãk cos(kω)
}2

+

{ m∑
k=0

ãk sin(kω)
}2] 1

2

.

(23)

Ẽ(ω) is a re-weighted version of ε(ω). Furthermore, the nu-
merator coefficients are determined to minimize δ̃ such that
Ẽ(ω) ≤ δ̃. Consequently, the error function is changed as
ε(ω) → Ẽ(ω). In particular, ε(ω) is the linearized error
function. Moreover, Ẽ(ω) is a true error function that is not
linearized.

3.3 Reformulation of the Design Problem

Since the error function was changed, we re-formulate the
design problem to determine b for minimizing δ̃.

Recalling (21) and (22), we have

Ẽ(ω) =
W(ω)∣∣∣Ã(ω)

∣∣∣
∣∣∣∣∣G(ω)

m∑
k=0

ãk cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω) + j
{
−G(ω)

m∑
k=0

ãk

· sin
[
kω + τ(ω)

]
+

n∑
l=0

bl sin(lω)
}∣∣∣∣∣

≤
W(ω)∣∣∣Ã(ω)

∣∣∣
∣∣∣∣∣G(ω)

m∑
k=0

ãk cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω)
∣∣∣∣∣ +

W(ω)∣∣∣Ã(ω)
∣∣∣
∣∣∣∣∣G(ω)

m∑
k=0

ãk

· sin
[
kω + τ(ω)

]
−

n∑
l=0

bl sin(lω)
∣∣∣∣∣. (24)

Similar to the previous stage, we let

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ãk cos
[
kω + τ(ω)

]
−

n∑
l=0

bl cos(lω)
∣∣∣∣∣

≤
δ̃

2

∣∣∣Ã(ω)
∣∣∣ (25)

W(ω)
∣∣∣∣∣G(ω)

m∑
k=0

ãk sin
[
kω + τ(ω)

]
−

n∑
l=0

bl sin(lω)
∣∣∣∣∣

≤
δ̃

2

∣∣∣Ã(ω)
∣∣∣ (26)

such that Ẽ(ω) ≤ δ̃.
By substituting (25) and (26) into (24), and discretizing

ω as in the case of problem (15), the design problem can be
expressed as

min
b

δ̃ (27a)

subject to bQ(n)
−
δ̃

2
ũ ≤ − p̃ (27b)

where δ̃ is the evaluation value of b. Here, ũ is 4L-
dimensional row vector as follows.

ũ =
[
|Ã(ω1)|, |Ã(ω2)|, · · · |Ã(ωL)|,

|Ã(ω1)|, |Ã(ω2)|, · · · |Ã(ωL)|,

|Ã(ω1)|, |Ã(ω2)|, · · · |Ã(ωL)|,

|Ã(ω1)|, |Ã(ω2)|, · · · |Ã(ωL)|
]
, (28)

and p̃ is 4L-dimensional row vector

p̃ = [ p̃1 − p̃1 p̃2 − p̃2 ] (29)

where

p̃1 =



m∑
k=0

W(ω1)G(ω1 )̃ak cos
[
kω1 + τ(ω1)

]
m∑

k=0

W(ω2)G(ω2 )̃ak cos
[
kω2 + τ(ω2)

]
...

m∑
k=0

W(ωL)G(ωL )̃ak cos
[
kωL + τ(ωL)

]



T
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p̃2 =



m∑
k=0

W(ω1)G(ω1 )̃ak sin
[
kω1 + τ(ω1)

]
m∑

k=0

W(ω2)G(ω2 )̃ak sin
[
kω2 + τ(ω2)

]
...

m∑
k=0

W(ωL)G(ωL )̃ak sin
[
kωL + τ(ωL)

]



T

.

The denominator coefficients are fixed in the problem (27).
By solving the problem (27), the numerator coefficients can
be computed.

3.4 Sparse Linear Programming

The number of multipliers of the non-sparse filter is m+n+1
because of a ∈ Rm+1, b ∈ Rn+1, and a0 = 1. At this stage,
we assume that the order of the numerator coefficients is

n+ = n + ν (30)

where ν is a positive integer. In this work, we consider ν a
redundant order. If the coefficients of the sparse filter con-
tain ν zero coefficients, the number of multipliers will be
m + n + 1, which is the same as that of the non-sparse filter.
Hence, we attempt to obtain the coefficients ã and b̃, where
ã ∈ Rm+1 and b̃ ∈ Rn+ν+1 are subject to b̃ containing ν zero
coefficients.

In this section, we utilize sparse linear programming
for the design of the numerator coefficients with zero coef-
ficients with possible denominator coefficients (20).

We write a vector of the numerator coefficients with ν
redundant order as

b̃ =
[̃
b0, b̃1, · · · , b̃n, b̃n+1, b̃n+2, · · · b̃n+ν

]
. (31)

Now, let i be the index of the thinning operator. The
thinning operator changes the real coefficient to zero value
step by step. Therefore, the thinning operator with i = 0
indicates that all coefficients are non-zero. At the first step
(i = 0), problem (27) can be rewritten as

min
b̃

δ̃ (32a)

subject to b̃Q(n+ν)
−
δ̃

2
ũ ≤ − p̃ (32b)

by replacing b→ b̃ and n→ n + ν.
Hereafter, we assume i = 1, 2, · · · ν. Let L̃ be the num-

ber of grid points over [0, π] to evaluate the performance
of the filter. In addition, we choose L̃ such that L̃ >> L.
Then, ω is taken from a finite and dense frequency grid
Ω̃d = {ω1, ω2, · · ·ωL̃}. We write a complex error as

e(ω) = Hd(ω) − H(ω; ã, b̃), ∀ω ∈ Ω̃d (33)

where we define e(ω) ≡ 0 in the transition band. We use

Fig. 2 Flowchart of the overall design algorithm.

emax = max
ω∈Ω̃d

|e(ω)| (34)

as an evaluation value of the following algorithm. Hence,
we attempt to obtain the combination of ν zero coefficients
that minimized (34). Afterwards, we employ the successive
thinning algorithm presented in [24] for sparse optimiza-
tion of the numerator coefficients. It contains two rules: the
smallest coefficients rule (SCR) and the minimum-increase
rule (MIR).

Moreover, we demonstrate how to compute the nu-
merator coefficients with several zero coefficients. Let IS
be a set of index of the zero coefficients, and IR be a set
of index of the non-zero coefficients. Hence, IS ∪ IR =

{0, 1, · · · n + ν} and IS ∩ IR = {}, where the sets are initially
IR = {0, 1, · · · n + ν} and IS = {}.

At this point, let k(i) be the index of the zero coefficients
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Table 1 Relation between rc, e∗max and µ of e∗max in Example 1.

Rule of Search rc e∗max µ of e∗max
0.92 0.004380 17

SCR 0.94 0.003254 17
0.96 0.002574 18
0.92 0.004434 17

MIR 0.94 0.003015 17
0.96 0.002388 17

Fig. 3 Magnitude (dB, the upper graph) and group delays in the pass-
band (the lower graph) of the responses of the sparse IIR filter designed
using our method and the corresponding non-sparse IIR filter designed us-
ing the method introduced in [19] in Example 1.

selected at the ith step. Moreover, assume that s(i) is an (n +

ν+1)-dimensional column vector. s(i)
k is the (k+1)th element

of s(i) and

s(i)
k =

{
1, if k = k(i)

0, otherwise (35)

for k = 0, 1, · · · n + ν. At the ith step, an (n + ν + 1) × i
matrix S(i) is recursively computed as

S(i) =
[
S(i−1) s(i)] (36)

where S(0) = s(0).
The sparse optimization problem at the ith step is pre-

sented as

Fig. 4 Magnitude of the complex error of the sparse IIR filter designed
using our method and the corresponding non-sparse IIR filter designed us-
ing the method introduced in [19] in Example 1.

Table 2 Filter coefficients of our filter in Example 1.

ã0 = 1.0000e+0 ã1 = −1.5986e−1 ã2 = 1.2328e+0
ã3 = −7.5519e−2 ã4 = 2.8731e−1
b̃0 = −1.6376e−3 b̃1 = 0.0000e+0 b̃2 = 0.0000e+0
b̃3 = 2.8597e−3 b̃4 = −4.1613e−3 b̃5 = −5.9249e − 3
b̃6 = 3.2946e − 3 b̃7 = 1.2178e − 2 b̃8 = −7.0507e − 3
b̃9 = −3.5737e − 2 b̃10 = 1.3397e − 2 b̃11 = 2.0119e − 1
b̃12 = 4.5608e − 1 b̃13 = 6.0490e − 1 b̃14 = 5.4322e − 1
b̃15 = 3.3602e − 1 b̃16 = 1.3451e − 1 b̃17 = 2.7346e − 2
b̃18 = 0.0000e+0 b̃19 = 0.0000e+0 b̃20 = 0.0000e+0

Table 3 Relation between rc, e∗max and µ of e∗max in Example 2.

Rule of Search rc e∗max µ of e∗max
0.92 0.04225 19

SCR 0.94 0.04151 20
0.96 0.03482 19
0.92 0.03863 21

MIR 0.94 0.03323 21
0.96 0.02824 21

min
b̃

δ̃ (37a)

subject to b̃Q(n+ν)
−
δ̃

2
ũ ≤ − p̃ (37b)

b̃S(i) = 0 (37c)

where 0 is the zero vector of an appropriate size.
In the SCR, the thinning coefficient is selected as

k(i) = arg min
k∈IR
|̃bk |. (38)

On the other hand, if we use the MIR, the thinning coeffi-
cient is selected as

k(i) = arg min
k∈IR

emax. (39)

The computation order with the SCR is O(ν), and that with
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Fig. 5 Magnitude (dB, the upper graph) and group delays in the pass-
band (the lower graph) of the responses of the sparse IIR filter designed
using our method and the corresponding non-sparse IIR filter designed us-
ing the method introduced in [19] in Example 2.

the MIR is O(nν) for the ν step procedure.
Next, the following procedure is performed:

IS + {k(i)} → IS (40)

IR − {k(i)} → IR. (41)

Finally, the overall procedure of the proposed method
is shown in Fig. 2, wherein e∗max is the minimum value
of emax. In addition, the best value of µ is not obvious.
Therefore, we obtain it via trial and error by changing as
µ = µl, µl + 1, · · · µu, where µl and µu are the values of the
lower and upper bounds of µ, respectively. In Fig. 2, µl and
µu are values decided by the user. That is, the sparse opti-
mization of the numerator coefficients is performed for each
of the denominator coefficients of Eq. (20).

4. Design Examples

To evaluate the performance of our proposed method, we
present design examples in this section. The design algo-

Fig. 6 Magnitude of the complex error of the sparse IIR filter designed
using our method and the corresponding non-sparse IIR filter designed us-
ing the method introduced in [19] in Example 2.

Table 4 Filter coefficients of our filter in Example 2.

ã0 = 1.0000e+0 ã1 = 2.1764e+0 ã2 = 5.7815e+0
ã3 = 8.7422e+0 ã4 = 1.2615e+1 ã5 = 1.3896e+1
ã6 = 1.3582e+1 ã7 = 1.1014e+1 ã8 = 7.6683e+0
ã9 = 4.4735e+0 ã10 = 2.1630e+0 ã11 = 8.4034e−1
ã12 = 2.4907e−1 ã13 = 5.0808e−2 ã14 = 5.4597e−3
b̃0 = 0.0000e+0 b̃1 = 6.0020e−3 b̃2 = 1.3309e−2
b̃3 = 1.7701e−2 b̃4 = 1.8327e−2 b̃5 = 9.0104e−3
b̃6 = 1.0007e−2 b̃7 = 0.0000e+0 b̃8 = 0.0000e+0
b̃9 = 0.0000e+0 b̃10 = 0.0000e+0 b̃11 = −1.7912e−1
b̃12 = 9.1054e−2 b̃13 = −4.8588e−1 b̃14 = 1.8072e−1
b̃15 = −5.0145e−1 b̃16 = 1.2153e−1 b̃17 = −2.3225e−1
b̃18 = 2.7260e−2 b̃19 = −4.0710e−2

rithm is implemented using the MATLAB† software pack-
age. The weight function is always set to W(ω) = 1 except
in the transition band. In addition, the number of grid points
over [0, π] are always equal to L = 200 and L̃ = 2001. To
investigate a suitable range of µ, we set the range of µ to be
wide enough as µl = 1 and µu = 50.

To conduct the first comparison, we need to select an
equivalent non-sparse filter. As mentioned earlier, several
design methods are proposed, similar to that in [14]–[20].
We select the method of [19] as this is the latest minimax
approach for designing a non-sparse IIR filter. In addition,
its effectiveness is demonstrated using various design exam-
ples. Therefore, the method of [19] and its design examples
provide a decent benchmark to evaluate the performance of
the sparse filters. Subsequently, our design method is com-
pared with the existing design method of a sparse IIR filter
introduced in [34].

4.1 Comparison with Equivalent Non-Sparse IIR Filters
[19]

Example 1: We consider a low-pass filter whose desired

†MATLAB is a trademark of The Math Works Inc.
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Table 5 Relation between rc, e∗max and µ of e∗max in Example 3.

Rule of Search rc e∗max µ of e∗max
0.92 0.006660 50

SCR 0.94 0.005662 46
0.96 0.004955 41
0.92 0.006083 50

MIR 0.94 0.005477 45
0.96 0.004419 41

Fig. 7 Magnitude (the upper graph) and group delays in the pass-band
(the lower graph) of the responses of the sparse IIR filter designed using
our method and the corresponding non-sparse IIR filter designed using the
method introduced in [19] in Example 3.

response is given by

Hd(ω) =

{
e− j12ω, 0 ≤ ω ≤ 0.4π
0, 0.56π ≤ ω < π.

The orders of the sparse IIR filter are m = 4, n+ = 20, and
ν = 5. We design the IIR filters with rc = 0.92, 0.94, and
0.96. Table 1 summarizes e∗max and its µ. In that case, the op-
timal solution is obtained with rc = 0.96 and µ = 17 using
the MIR. The magnitude (dB) and the group delays of the
responses of the optimal solution are shown in Fig. 3. More-
over, Fig. 4 indicates the magnitude of the complex error of
our filter (solid line) and that of the equivalent non-sparse
IIR filter with m = 4, and n = 15 (denoted by the dotted

Fig. 8 Magnitude of the complex error of the sparse IIR filter designed
using our method and the corresponding non-sparse IIR filter designed us-
ing the method introduced in [19] in Example 3.

Table 6 Filter coefficients of our filter in Example 3.

ã0 = 1.0000e+0 ã1 = −2.0954e−2 ã2 = 2.5927e+0
ã3 = −3.6053e−2 ã4 = 2.2306e+0 ã5 = −1.5429e−2
ã6 = 6.3643e−1
b̃0 = 0.0000e+0 b̃1 = 3.5432e−3 b̃2 = 9.8895e−4
b̃3 = 4.0409e−3 b̃4 = 0.0000e+0 b̃5 = 5.0196e−3
b̃6 = 0.0000e+0 b̃7 = 0.0000e+0 b̃8 = −2.3884e−3
b̃9 = 6.1194e−3 b̃10 = 3.0845e−3 b̃11 = −1.5119e−2
b̃12 = −1.5897e−2 b̃13 = 9.1572e−2 b̃14 = 3.7624e−1
b̃15 = 8.0152e−1 b̃16 = 1.2002e+0 b̃17 = 1.3688e+0
b̃18 = 1.1998e+0 b̃19 = 7.4314e−1 b̃20 = 6.6899e−1
b̃21 = −3.4232e−1 b̃22 = 6.7210e−1 b̃23 = −7.0085e−1
b̃24 = 5.6452e−1 b̃25 = −3.5319e−1 b̃26 = 1.6222e−1
b̃27 = −4.0294e−2 b̃28 = 0.0000e+0 b̃29 = 7.8202e−3

line) [19].
Table 2 presents the filter coefficients of our filter. The

number of non-zero coefficients of the non-sparse IIR filter
is 20, which is identical to that of the sparse filter.

Example 2: We design a half-band high-pass filter. The
desired response is given by

Hd(ω) =

{
0, 0 ≤ ω ≤ 0.475π
e− j12ω, 0.525π ≤ ω < π.

The orders of the sparse IIR filters are set as m = 14, n+ =

19, and ν = 5. Similar to Example 1, we design the IIR
filters with rc = 0.92, 0.94, and 0.96. Table 3 shows the
relationship between e∗max and its µ. In that case, the optimal
solution is computed with rc = 0.96 and µ = 21 using the
MIR.

The magnitude (dB) and the group delays of the re-
sponses of the optimal case are shown in Fig. 5. Further-
more, Fig. 6 shows the comparison of the magnitude of
the complex error of the sparse IIR filter designed by our
method (denoted by the solid line), and the equivalent non-
sparse IIR filter with m = 14 and n = 14 (denoted by the
dotted line) [19]. The filter coefficients of our filter are sum-
marized in Table 4.
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Table 7 Relation between rc, e∗max and µ of e∗max in Example 4 (a).

Rule of Search rc e∗max µ of e∗max
0.92 0.047254 28

SCR 0.94 0.034563 35
0.96 0.024335 28
0.92 0.04459 23

MIR 0.94 0.03176 28
0.96 0.02246 42

Fig. 9 Magnitude (dB, the upper graph) and group delays in the pass-
band (the lower graph) of the responses of the sparse IIR filter designed
using our method and the method introduced in [34] in Example 4 (a).

Example 3: Next, we consider a two-band filter whose
desired response is as follows.

Hd(ω) =

{
e− j14.3ω, 0 ≤ ω ≤ 0.46π
0.5e− j20ω, 0.54π ≤ ω < π.

The orders of the sparse IIR filter are m = 6, n+ = 29, and
ν = 5. This is a decent benchmark problem as the gains
and the group delays are different in each band. Table 5
summarizes e∗max and its µ with rc = 0.92, 0.94, and 0.96.
The optimal solution is achieved using the MIR when rc =

0.96 and µ = 41.
The magnitude and group delays of the responses in the

best case are illustrated in Fig. 7. Moreover, Fig. 8 shows the

Fig. 10 Magnitude of the complex error of the sparse IIR filter designed
using our method and the method introduced in [34] in Example 4 (a).

Table 8 Filter coefficients of our filter in Example 4 (a).

ã0 = 1.0000e+0 ã1 = −4.4981e−1 ã2 = 9.2160e−1
b̃0 = 6.046e−3 b̃1 = 1.2950e−2 b̃2 = −3.1172e−3
b̃3 = 0.0000e+0 b̃4 = 0.0000e+0 b̃5 = 0.0000e+0
b̃6 = 0.0000e+0 b̃7 = −5.1709e−3 b̃8 = −1.2388e−2
b̃9 = 2.3958e−3 b̃10 = 1.4842e−2 b̃11 = 0.0000e+0
b̃12 = −2.6532e−2 b̃13 = −2.9997e−2 b̃14 = 4.5997e−2
b̃15 = 2.0150e−1 b̃16 = 3.5007e−1 b̃17 = 4.0323e−1
b̃18 = 3.2565e−1 b̃19 = 1.6740e−1 b̃20 = 3.8576e−2
b̃21 = −2.0830e−2 b̃22 = −2.2070e−2 b̃23 = 7.5102e−3
b̃24 = 0.0000e+0 b̃25 = 9.9574e−3 b̃26 = −1.1429e−2

Table 9 Relation between rc, e∗max and µ of e∗max in Example 4 (b).

Rule of Search rc e∗max µ of e∗max
0.92 0.047329 26

SCR 0.94 0.034878 27
0.96 0.025001 28
0.92 0.044482 25

MIR 0.94 0.031681 26
0.96 0.023706 50

comparison between the sparse IIR filter designed using the
proposed method (denoted by the solid line) and the equiva-
lent non-sparse IIR filter with m = 6 and n = 24 (denoted by
the dotted line) [19]. Table 6 indicates the filter coefficients
of our designed filter.

4.2 Comparison with the Sparse IIR Filters [34]

Example 4: We consider the sparse IIR filter presented in
[34]. The desired response is given by

Hd(ω) =

{
e− j16ω, 0 ≤ ω ≤ 0.4π
0, 0.45π ≤ ω < π.

The orders of the filter are m = 2 and n+ = 26 with cases of
(a) ν = 6 and (b) ν = 8 such that the orders and the numbers
of zero coefficients of both filters are equal.

Similar to previous examples, we design the filter with
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Fig. 11 Magnitude (dB, the upper graph) and group delays in the pass-
band (the lower graph) of the responses of the sparse IIR filter designed
using our method and the method introduced in [34] in Example 4 (b).

Fig. 12 Magnitude of the complex error of the sparse IIR filter designed
using our method and the method introduced in [34] in Example 4 (b).

rc = 0.92, 0.94, and 0.96 in the case of (a). e∗max of the
optimal solution and its µ are summarized in Table 7. In
that case, the optimal solution is obtained with rc = 0.96

Table 10 Filter coefficients of our filter in Example 4 (b).

ã0 = 1.0000e+0 ã1 = −4.4887e−1 ã2 = 9.2160e−1
b̃0 = 6.8797e−3 b̃1 = 1.0780e−2 b̃2 = 0.0000e+0
b̃3 = 0.0000e+0 b̃4 = 0.0000e+0 b̃5 = 8.4060e−3
b̃6 = 0.0000e+0 b̃7 = 0.0000e+0 b̃8 = −4.1003e−3
b̃9 = 0.0000e+0 b̃10 = 2.1260e−2 b̃11 = 0.0000e+0
b̃12 = −2.5776e−2 b̃13 = −3.1625e−2 b̃14 = 4.9402e−2
b̃15 = 1.9643e−1 b̃16 = 3.5427e−1 b̃17 = 4.0246e−1
b̃18 = 3.2660e−1 b̃19 = 1.6847e−1 b̃20 = 4.3032e−2
b̃21 = −2.5501e−2 b̃22 = −1.1525e−2 b̃23 = 0.0000e+0
b̃24 = 9.0602e−3 b̃25 = 5.9189e−3 b̃26 = −8.6887e−3

Fig. 13 Relation between µ and emax when using the SCR (the upper
graph) and MIR (the lower graph) in Example 1.

and µ = 42 using the MIR.
The magnitude (dB) and group delays of the responses

of our filter are shown in Fig. 9. Furthermore, Fig. 10
demonstartes the comparison of the magnitude of the com-
plex error in the case of (a) ν = 6 between our filter (denoted
by the solid line) and the sparse IIR filter designed in [34]
(denoted by the dotted line). The filter coefficients of our
filter are presented in Table 8.

In the case of (b), e∗max and its µ are summarized in
Table 9. The optimal solution is computed with rc = 0.96
and µ = 50 using the MIR. The magnitude in dB and group
delays of the responses of our filter are shown in Fig. 11.
Similar to the case (a), Fig. 12 shows the comparison of the
magnitude of the complex error of the filters in the case (b)
ν = 8. The filter coefficients of our filter are summarized in
Table 10.
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Fig. 14 Relation between µ and emax when using the SCR (the upper
graph) and MIR (the lower graph) in Example 2.

Fig. 15 Relation between µ and emax when using the SCR (the upper
graph) and MIR (the lower graph) in Example 3.

Fig. 16 Relation between µ and emax when using the SCR (the upper
graph) and MIR (the lower graph) in Example 4 (a).

Fig. 17 Relation between µ and emax when using the SCR (the upper
graph) and MIR (the lower graph) in Example 4 (b).
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Table 11 Relation between ν and e∗max with rc = 0.96 in Example 1.

ν e∗max when using the SCR e∗max when using the MIR
1 0.004642 0.004642
2 0.002574 0.002388
3 0.002574 0.002388
4 0.002574 0.002388
5 0.002574 0.002388
6 0.002574 0.002388
7 0.002574 0.002388
8 0.002574 0.002388
9 0.002574 0.002388

10 0.002574 0.002388

Table 12 Relation between ν and e∗max with rc = 0.96 in Example 2.

ν e∗max when using the SCR e∗max when using the MIR
1 0.04282 0.04195
2 0.03870 0.03796
3 0.03482 0.03405
4 0.03563 0.02917
5 0.03482 0.02824
6 0.03563 0.02330
7 0.03425 0.02202
8 0.03106 0.02521
9 0.03106 0.02510

10 0.03106 0.02510

4.3 Discussion

The results of all the examples indicate that the peak error
of our proposed method is smaller than that of the exist-
ing methods. Hence, from the results of Examples 1–3, we
demonstrated the superiority of the sparse IIR filter against
the non-sparse filter. Moreover, we confirmed the effective-
ness of our design algorithm compared with the IIR sparse
filter introduced in [34]. In addition, according to Tables 1,
3, 5, 7, 9, the peak error, except for the transition region, in-
creases as rc increases. However, the peak in the transition
region will increase as rc increases.

Furthermore, µ is used to obtain a better performance
of the filter. Figures 13–17 show the relationship between µ
and emax with a straight line µ = n+ in Examples 1–4, where
rc = 0.92, 0.94, and 0.96. In Fig. 13, the upper graph is for
the SCR and the lower graph is for the MIR. It is natural to
set µ = n+ because the conclusive order of the numerator
polynomial is n+. However, the results show that µ = n+ is
not optimal. Moreover, from the results of Examples 1–4,
it is evident that the performance is not acceptable when µ
is sufficiently lower than n+. Further, when µ is sufficiently
higher than n+, the performance is not acceptable or emax is
converged. Hence, it is advisable to search for µ around n+

so as to obtain a decent value of µ. Consequently, we may
achieve a better solution of µ if we search within a wider
range. However, a dramatic improvement is not gained as it
can be time consuming.

Further, we investigate how e∗max is changed when ν in-
creases. Tables 11–13 summarize e∗max for ν = 1, 2, · · · 10
with rc = 0.96 in Examples 1–3. Tables 11–13 and Tables 1,
3, 5, 7, 9 indicate that using the sparse linear programming

Table 13 Relation between ν and e∗max with rc = 0.96 in Example 3.

ν e∗max when using the SCR e∗max when using the MIR
1 0.01136 0.01046
2 0.01086 0.01027
3 0.006473 0.006146
4 0.006473 0.006265
5 0.004955 0.004419
6 0.004955 0.004419
7 0.004136 0.003578
8 0.004136 0.003578
9 0.004136 0.003693

10 0.004136 0.003722

with the MIR is usually better than the SCR. However, the
computation cost with the MIR is approximately n+ times
of that of the SCR. Moreover, better solutions are generated
when ν is increased. However, in Table 13 (when using the
MIR), the solution with ν = 10 is worse than that of ν = 7
because the algorithm cannot find a sound solution. That is,
when ν is large, the search space will be extremely large.
Accordingly, the algorithm cannot search the solution in ev-
ery part of the space.

5. Conclusions

We proposed the minimax design for the IIR filter with zero
coefficients (known as sparse IIR filter). To confirm the ef-
fectiveness of the proposed method, we compared our sparse
IIR filter with not only corresponding non-sparse IIR fil-
ters but also sparse IIR filters designed using the existing
methods. In conclusion, we have demonstrated the utility
of the proposed algorithm for the minimax design of IIR
filters. Thus, the proposed method can be used to design
high-performance IIR filters.
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