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SUMMARY We propose a privacy-preserving machine learn-
ing scheme with encryption-then-compression (EtC) images,
where EtC images are images encrypted by using a block-based
encryption method proposed for EtC systems with JPEG com-
pression. In this paper, a novel property of EtC images is first
discussed, although EtC ones was already shown to be compress-
ible as a property. The novel property allows us to directly apply
EtC images to machine learning algorithms non-specialized for
computing encrypted data. In addition, the proposed scheme is
demonstrated to provide no degradation in the performance of
some typical machine learning algorithms including the support
vector machine algorithm with kernel trick and random forests
under the use of z-score normalization. A number of facial recog-
nition experiments with are carried out to confirm the effective-
ness of the proposed scheme.
key words: Support Vector Machine, Random forests, Machine
learning, Encryption-then-Compression, Privacy-preserving

1. Introduction

Cloud computing and edge computing have been
spreading in many fields with the development of cloud
services. However, cloud environments have serious is-
sues for end users, such as the unauthorized use of ser-
vices, data leaks, and privacy being compromised due
to unreliable providers and some accidents [1]. Because
of such a situation, various methods have been proposed
for privacy-preserving computing in cloud environ-
ments. In this paper, we propose a privacy-preserving
machine learning scheme using compressible encrypted
images, called Encryption-then-Compression (EtC) im-
ages. Machine learning requires a huge amount of data
for training a model, and moreover most of data include
sensitive personal information.

One of ways for privacy-preserving computing is to
use a perceptual image encryption method which aims
to protect visual information on plain ones. Compared
to information theory- based-encryption [2–9] such as
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multi-party computation and homomorphic encryption,
perceptual encryption methods have a number of ad-
vantages. Use of perceptual encryption allows us to
directly apply machine learning algorithms without in-
creasing computational costs. In other words, there is
no need to prepare algorithms specialized for computing
encrypted data. Therefore, privacy-preserving comput-
ing schemes with visually protected images have been
studying for secure cloud services and computing.

Some of them can produce compressible encrypted
images [10–13], but they have never considered apply-
ing encrypted images to machine learning algorithms.
In contrast, a number of methods can be applied to ma-
chine learning algorithms [14–18], but the encrypted
images are not compressible. To reduce the amount
of data, images are required to be compressed in the
transmission and the storage in general.

Consequently, we focus on EtC images as com-
pressible ones. EtC images are images encrypted by
using a block-based encryption method proposed for
EtC systems with JPEG compression [10, 11, 19]. So
far, the safety of the EtC systems has been evaluated
on the basis of the key space under the assumption of
brute-force attacks, and robustness against jigsaw puz-
zle attacks has been discussed [20,21]. In this paper, in
addition to compressible images, EtC images is shown
to have a novel property, i.e. learnable images, under
the use of z-score normalization. The novel property
allows us to securely compute typical machine learn-
ing algorithms such as support vector machine (SVM)
and random forests without any degradation in per-
formances. In an experiment, the proposed scheme is
applied to a facial recognition algorithm with classifiers
to confirm the effectiveness of the scheme under the use
of SVM and random forests.

2. Preparation

2.1 EtC image

In this paper, EtC images will be shown to have a novel
property, and the novel property allows us to carry out
privacy-preserving machine learning. EtC images are
images encrypted by the encryption method [10, 11],
which was proposed for Encryption-then-Compression
systems with JPEG compression. EtC images are ro-
bust enough against various ciphertext-only attacks, in-
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Fig. 1: EtC image [10,11]

cluding jigsaw puzzle solver attacks [20,21].
The procedure of generating EtC images is sum-

marized here (See Fig.1).
1) Transform a color image in the RGB color space
(IRGB) with X × Y pixels into an image (IY CbCr) in
the YCbCr color space, where the color space transfor-
mation is carried out on the basis of the transformation
in [22].
2) Split IY CbCr into three channels that can be repre-
sented as iY , iCb, and iCr. Then, integrate the three
channels for generating a grayscale-based image (Ig)
with X × (3× Y ) pixels (See Fig.1).
3) Divide Ig into blocks with BxBy pixels, and permute
randomly the divided blocks by using a random integer
generated by a secret key K1.
4) Rotate and invert randomly each block by using a
random integer generated by a key K2.
5) Apply negative-positive transformation to each block
by using a random binary integer generated by a key
K3. In this step, a transformed pixel value in the ith
block Bi, p

′ is computed by{
p′ = p (r(i) = 0)

p′ = 255− p (r(i) = 1)
, (1)

where r(i) is a random binary integer generated by K3

under the probability P (r(i)) = 0.5, and p is the pixel
value of an original image with 8 bpp.

In this paper, images encrypted with the above
steps are referred to as EtC images. Steps 1 and 2 are
skipped when grayscale images are encrypted.

2.2 Scenario

Figure 2 illustrates the scenario used in this paper. EtC
images aim to protect visual information that allow us
to identify an individual, the time and the location of
the taken photograph as well as most other perceptual
image encryption methods. In the training task, client
i, i = 1, ..., N prepares training images Ii,j , j = 1, ...,M .

Next, the client creates encrypted images Îi,j by using
a secret key set Bi = {Ki1 ,Ki2 ,Ki3} and sends the
encrypted ones to a cloud server, where the dimension-
ality of the encrypted images may be reduced in order
to avoid the effects of the curse of dimensionality [23].
Finally, the cloud server carries out learning with the

Fig. 2: Privacy-preserving machine learning

encrypted data for a classification problem.
In the testing task, client i creates an encrypted

image with Bi as a query and sends the image to the
server. The server carries out a classification problem
with a model prepared in advance. Finally, the server
returns a result to client i.

Cloud servers are not trusted in general, so there
are some security issues with cloud environments such
as the unauthorized use of services, data leaks, and
privacy being compromised. Because of such a situa-
tion, we propose a privacy-preserving machine learning
scheme in this paper. In this scenario, cloud servers
are not given secret keys and cannot obtain any visual
information.

3. Proposed privacy-preserving machine learn-
ing

In this paper, we propose a privacy-preserving machine
learning scheme using EtC images. A novel property of
EtC images is shown here, and the property is applied
to privacy-preserving machine learning.

3.1 Novel property of EtC images

Let us transform a grayscale image Ii,j with X × Y
pixels into a vector Ti,j = {pi,j(0), . . . , pi,j(d − 1)}T ∈
Rd, d = X × Y , where pi,j(k), k = 0, 1, . . . , d − 1 is a
pixel value of Ii,j .

A. Block scrambling, block rotation and inversion
As shown in Fig.1, block scrambling, and block

rotation and inversion are carried out for permuting
pixels. Those operations are easily shown to be repre-
sented as a permutation matrix. For example, a per-
mutation matrix Qi is given as, for d = 3,

Qi =

 1 0 0
0 0 1
0 1 0

 , (2)

where Qi has only one element of 1 in each row or each
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column, and others are 0, so Qi becomes an orthogonal
matrix. The orthogonal matrix meets the equation

QT
i Qi = E, (3)

where E is an identity matrix, and T indicates trans-
pose.

A encrypted vector T̂i,j is computed by using Qi

as

T̂i,j = QiTi,j . (4)

Therefore, T̂i,j = {p̂i,j(0), . . . , p̂i,j(d − 1)}T in Eq.(4)
meets the properties in Eqs.(5) and (6), due to the or-
thogonality of Qi [15], where p̂i,j(k) corresponds to a
pixel value of an EtC image generated under the use
of block scrambling, and block rotation and inversion
operations.
Property1: Conservation of Euclidean distances

‖Ti,j − Ts,t‖2 = ‖T̂i,j − T̂s,t‖2. (5)

Property2: Conservation of inner products

〈Ti,j ,Ts,t〉 = 〈T̂i,j , T̂s,t〉. (6)

Ts,t is a transformed vector from image Is,t where
Is,t, t ∈ {1, 2, . . . ,M} is an image of client s, s ∈
{1, 2, . . . , N}.

B. Negative-positive transformation
Next, let us consider the influence of negative-

positive transformation. In the case of using the trans-
formation in Eq.(1), the relation between a pixel value
p′i,j(k) = 255 − pi,j(k) and another p′s,t(k) = 255 −
ps,t(k) is given by

‖p′i,j(k)− p′s,t(k)‖2 = ‖pi,j(k)− ps,t(k)‖2. (7)

This relation shows that the Euclidean distance be-
tween pi,j(k) and ps,t(k) is preserved. However, since
the relation

p′i,j(k) · p′s,t(k) = (255− pi,j(k)) · (255− ps,t(k))

6= pi,j(k) · ps,t(k), (8)

the inner product is not preserved. Consequently, the
negative-positive transformation operation preserves
only Euclidean distance between pi,j(k) and ps,t(k).

C. Negative-positive transformation with z-score nor-
malization

Next, we consider using z-score normalization [24],
which is a well-known data normalization method for
machine learning. In z-score normalization, a value
pi,j(k) is replaced with zi like

zi,j(k) = (pi,j(k)− P̄ )/S, (9)

where P̄ is the mean value of data, and S is the stan-
dard deviation given by

S =

√∑N
i=1(pi,j(k)− P̄ )2

N
. (10)

Therefore, in negative-positive transformation, Eq.(9)
is given as

z′i,j(k) = −
p′i,j(k)− P̄ ′

k

S′

=
(255− pi,j(k))− (255− P̄k)

S′

= −pi,j(k)− P̄k

S
= −zi,j(k), (11)

where

P̄k =
1

N ×M

N∑
i=1

M∑
j=1

pi,j(k) (12)

P̄ ′
k =

1

N ×M

N∑
i=1

M∑
j=1

p′i,j(k) = 255− P̄k (13)

S′ =

√∑N
i=1

∑M
j=1((255− pi,j(k))− (255− P̄k))2

N ×M

=

√∑N
i=1

∑M
j=1(−pi,j(k) + P̄k)2

N ×M
= S. (14)

Eq.(11) means that the normalized value z′i,j(k) of
p′i,j(k) becomes the sign inverted value of the normal-
ized value zi,j(k) of pi,j(k). A sign inversion matrix
can be expressed as an orthogonal matrix, so the inner
product is preserved under the use of z-score normal-
ization.

Hence, in the case of applying z-score normaliza-
tion to EtC images, negative-positive transformation
allows us to maintain the inner products. As a result,
EtC images can maintain not only the Euclidean dis-
tance but also the inner products under the use of z-
score normalization.

3.2 Privacy-preserving machine learning

A. SVM with kernel trick
We first focus on SVM as an example of machine

learning algorithms. In SVM computing, we input a
feature vector x to the discriminant function as

f(x) = sign(ωTx + b) (15)

with

sign(u) =

{
1 (u > 1)

−1 (u ≤ 0)
,

where ω is a weight parameter vector, and b is a bias.
SVM has also a technique called ”kernel trick”.
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When the kernel trick is applied to Eq.(15), the equa-
tion is given by

f(x) = sign(ωTφ(x) + b). (16)

The function φ(x) : Rd −→ F maps an input vector
x on high dimensional feature space F , where d is the
number of the dimensions of features. The kernel func-
tion of two vectors xi, xj is defined as

K(xi,xj) = 〈φ(xi), φ(xj)〉, (17)

where 〈·, ·〉 is an inner product.
Typical kernel functions such as the radial basis

function (RBF) kernel, linear one and polynomial one
are based on the distance or the inner products between
two vectors. For example, RBF kernel is based on the
Euclidean distance and polynomial kernel is based on
the inner products, as

K(xi,xj) = exp(−γ‖xi − xj‖2) (18)

K(xi,xj) = (1 + 〈xi,xj〉)l, (19)

where γ is a hyperparameter for deciding the complex-
ity of boundary determination, and l is a parameter for
deciding the degree of the polynomial.

In the case of using the RBF kernel, the following
relation is satisfied from property 1 and Eq.(18):

K(T̂i,j , T̂s,t) = exp(−γ‖T̂i,j − T̂s,t‖2)

= K(Ti,j ,Ts,t). (20)

Eq. (20) meets that EtC images do not have any in-
fluence on the kernel function. Therefore, when using
kernel functions based on the Euclidean distance, EtC
images provide the same result as that of plain images.

In addition, from property 2, we can also use a
kernel based on the inner products between two vectors
under the use of z-score normalization. The polynomial
kernel and linear kernel are in this class.

Next, we consider binary classification. A dual
problem for implementing a SVM classifier with en-
crypted images is expressed as

max
α

−1

2

∑
i,s∈N
j,t∈M

αi,jαs,tyi,jys,t〈φ(T̂i,j), φ(T̂s,t)〉+
∑
i,s∈N
j,t∈M

αi,j


s.t.

∑
i,s∈N
j,t∈M

αi,jyi,j = 0, 0 ≤ αi,j ≤ C, (21)

where yi,j and ys,t ∈ {+1,−1} are correct labels
for each piece of training data, αi,j and αs,t are
dual variables and C is a regular coefficient. If
we use a kernel function described above, the inner
product K(T̂i,j , T̂s,t) = 〈φ(T̂i,j), φ(T̂s,t)〉 is equal to

K(Ti,j ,Ts,t). Therefore, even in the case of using en-
crypted images, the dual problem with encrypted im-
ages is reduced to the same problem as that of the plain
images. This conclusion means that the use of the en-
crypted ones has no influence on the performance of the
SVM classifier.

B. Other machine learning algorithms
In addition to SVM, the proposed method can be

applied to other machine learning algorithms based on
the Euclidean distance or the inner products. For ex-
ample, EtC images can be applied to the k-nearest
neighbor (kNN) algorithm and random forests as well.
The kNN algorithm is based on the Euclidean dis-
tance between training data xi and testing data x like
‖xi − x‖2, and the output is a class membership. An
object is classified by a plurality vote of its neighbors
with the object being assigned to the class most com-
mon among its k nearest neighbors, where k is a positive
integer. Therefore, we obtain the same result as plain
images under the use of the kNN algorithm, as well as
for SVM.

We can also apply the proposed method to random
forests. Random forests [25] offers results determined
by the relative relationship of feature vector elements
among images. When the relative relationship between
two images is not changed, or all relation are inverted,
random forests can provide the same result as plain im-
ages. EtC images have this property under key condi-
tion 1, so we can obtain the same result as plain images
even under the use of random forests.

3.3 Relation among keys

As shown in Fig.2, an encrypted image Îi,j is generated
from Ii,j by using a key set Bi. Two relations among
keys are summarized, here.

A. Key condition 1 (B1 = B2 = . . . = BN )
The first key choice is to use a common key for all

clients, namely, B1 = B2 = . . . = BN . In this case, all
encrypted images satisfy the properties described in 3.1
and 3.2, so the SVM classifier has the same performance
as that of using the original images.

B. Key condition 2 (B1 6= B2 6= . . . 6= BN )
The second key choice is to use a different key for

each client, namely, B1 6= B2 6= . . . 6= BN . In this case,
the properties are satisfied only among images with a
common key. This key condition allows us to enhance
the robustness of security against various attacks as
discussed later.

4. Experiment and Discussion

The proposed scheme was applied to facial recognition
experiments that were carried out with SVM and ran-
dom forests.
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(a) Original image (b) EtC image

Fig. 3: Example of facial images

Table 1: Machine spec
Processor Intel Core i5-6500 3.20GHz

Memory 8 GB

OS Ubuntu 16.04 LTS

Software MATLAB R2018a

4.1 Experimental setup

We used the Extended Yale Face Database B [26],
which consists of 38 × 64 = 2432 frontal facial images
with 192 × 160 pixels for N = 38 persons. M = 64
images for each person were divided into half randomly
for training data samples and queries. BxBy = 8 × 8
was used. The random projection method [27] was car-
ried out as a dimensionality reduction method in the
encrypted domain. When using the random projection
method, original d-dimensional vectors are projected
to a dr-dimensional subspace, (dr ≤ d), by using a ran-
dom dr × d matrix. The average and variance of the
Euclidean length of each column is respectively 0 and
1. Dimensionality was reduced with reduction ratios of
1/20, 1/40, 1/60, and 1/80, so d = 192 × 160 = 30720
was reduced to dr = 1536 for a ratio of 1/20. After
the dimensionality reduction, we applied z-score nor-
malization to the images. Figure 3 shows examples of
original images and the EtC images.

4.2 Effects of z-score normalization

The effects of z-score normalization were first confirmed
by using plain images. The simulation was run on a
PC, with a 3.2 GHz processor and main memory of 8
Gbytes (see Table 1). SVM classifiers with the linear
kernel were used in this simulation.

In facial recognition with SVM classifiers, one clas-
sifier is created for each client. The classifier outputs
a predicted class label and classification score for each
query image Iq. The classification score is the distance
from a query to the boundary range. The relation be-
tween the classification score Sq and a threshold τ for
a positive label of Iq is given as

if Sq ≤ τ then accept; else reject. (22)

In this experiment, equal error rate (EER), at
which false accept rate (FAR) is equal to false reject
rate (FRR), were used to evaluate the performance.

Table 2 shows the EER values for the SVM with

Table 2: EER values for SVM with linear kernel
(plain images)

reduction
ratio

without z-score
normalization

with z-score
normalization

1/40 0.369 0.0248

1/80 0.349 0.0297

Table 3:
Training time for SVM with linear kernel

(plain images)
reduction

ratio
without z-score
normalization

with z-score
normalization

1/40 5331[sec] 23.48[sec]

1/80 5201[sec] 16.74[sec]

Table 4: EER values for SVM with linear kernel
(B1 6= B2 6= . . . 6= BN )

reduction
ratio

not
encrypted

encrypted

1/20 0.0223 0.000744

1/40 0.0247 0.000835

1/60 0.0271 0.000777

1/80 0.0296 0.000779

Table 5: EER values for SVM with RBF kernel
(B1 6= B2 6= . . . 6= BN )

reduction
ratio

not
encrypted

encrypted

1/20 0.0504 0.000448

1/40 0.0644 0.00112

1/60 0.0732 0.00779

1/80 0.0863 0.00855

the linear kernel. The values of EER with z-score nor-
malization are smaller than those without the normal-
ization. This means z-score normalization improves the
EER performance under the use the SVM classifier. Ta-
ble 3 shows training time in the same situation as in Ta-
ble 2. By applying z-score normalization, training time
was reduced to less than 1/100. Therefore, z-score nor-
malization allows us not only to improve EER values,
but also to reduce training time. In addition, z-score
normalization provides a novel property to EtC images
as described in 3.1.C.

4.3 Experimental results with SVM

In this experiment with SVM, the RBF kernel and lin-
ear kernel were used.

A. B1 = B2 = . . . = BN

The results with key condition 1 are shown in Fig-
ure 4. The results demonstrate that SVM classifiers
with encrypted images (”encrypted” in Fig.4) have the
same performance as SVM classifiers with the original
images (”not encrypted” in Fig.4).

In the experiment, 32 images of person 1 were used
as query ones, and the FRR value of person 1 (FRR1)
under a τ value was calculated as follows. The num-
ber of images r1, which were rejected as another person
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(a)Linear kernel
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FAR  not encrypted

FAR  encrypted

FRR  encrypted
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(b)RBF kernel

Fig. 4: FRR and FAR for SVM
(B1 = B2 = . . . = BN , reduction ratio = 1/64)

from Eq.(22), was calculated, and then the rate of the
rejected images was calculated as FRR1 = r1/32. Fi-
nally, the average of FRRi values over 38 people was
obtained as FRR =

∑38
i=1(FRRi/38).

The FAR value of person 1 (FAR1) under a τ value
was calculated as follows. When 37×32 images without
images of person 1 were used as query ones, the num-
ber of images s1, which were accepted as person 1 from
Eq.(22), was calculated, and then the rate of the ac-
cepted images was calculated as FAR1 = s1/(37× 32).
Finally, the average of FARi values over 38 people was
obtained as FAR =

∑38
i=1(FARi/38).

From the results, the proposed scheme was con-
firmed to give no influence on the performance of SVM
classifiers under key condition 1 and z-score normaliza-
tion.

B. B1 6= B2 6= . . . 6= BN

Tables 4 and 5 show results under using key condi-
tion 2. In this condition, it is expected that a query is
authenticated only when the query meets two require-
ments, i.e., the same key and the same person, although
only the same person is required under key condition 1.
Therefore, the performance of using key condition 2 is

Table 6: EER values for random forests
(B1 = B2 = . . . = BN )

reduction
ratio

not
encrypted

encrypted

1/20 0.104 0.106

1/40 0.113 0.115

1/60 0.121 0.121

1/80 0.124 0.125

different from that with plain images, so the EER val-
ues of ”encrypted” in Tables 4 and 5 were smaller than
those of ”not encrypted” due to the strict requirements.
In other words, the EER values under key condition 2
outperformed those under key condition 1.

In addition, the use of key condition 2 is expected
to enhance the robustness of against spoofing attacks
as demonstrated in [16].

4.4 Experimental results with random forests

We applied the proposed method to random forests.
Table 6 shows results in the case of using random forests
under key condition 1. The results demonstrate that
random forests with encrypted images performed al-
most the same as random forests with the original im-
ages (not encrypted). Therefore, the proposed method
is shown to be applicable to random forests under key
condition 1. We also confirmed that the trendy of the
random forests with key condition 2, which the EER
values are smaller than those of non-encrypted images
in Tables 4 and 5, is similar to that of the SVM with
key condition 2.

5. Conclusion

In this paper, we proposed a privacy-preserving ma-
chine learning scheme with EtC images. A novel prop-
erty of EtC images was considered, and all encryption
steps for generating EtC images were shown to be able
to preserve the inner products between vectors under
the use of z-score normalization. The property allows
us to apply EtC images to not only machine learning
algorithms based on Euclidean distances or inner prod-
ucts, but also kernel trick, without any degradation in
classification performance. A number of facial recogni-
tion experiments using SVM and random forests were
carried out to confirm the effectiveness of the proposed
scheme.
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