LETTER Special Section on Information Theory and Its Applications

A Construction Method of an Isomorphic Map between Quadratic Extension Fields Applicable for SIDH

Yuki NANJO $^{\dagger \mathrm{a})}$, Student Member, Masaaki SHIRASE ${ }^{\dagger \dagger \mathrm{b})}$, Takuya KUSAKA ${ }^{\dagger \mathrm{c})}$, and Yasuyuki NOGAMI ${ }^{\dagger \mathrm{d})}$, Members

SUMMARY A quadratic extension field (QEF) defined by $F_{1}=$ $\mathbb{F}_{p}[\alpha] /\left(\alpha^{2}+1\right)$ is typically used for a supersingular isogeny Diffie-Hellman (SIDH). However, there exist other attractive QEFs F_{i} that result in a competitive or rather efficient performing the SIDH comparing with that of F_{1}. To exploit these QEFs without a time-consuming computation of the initial setting, the authors propose to convert existing parameter sets defined over F_{1} to F_{i} by using an isomorphic map $F_{1} \rightarrow F_{i}$.
key words: post-quantum cryptography, SIDH, quadratic extension field

1. Introduction

Background and motivation. Shor's algorithm made that post-quantum cryptography occupies a major place in the current research of security. In 2011, Jao and De Feo proposed a Diffie-Hellman key exchange protocol based on the difficulty of computing a kernel of isogenies between supersingular elliptic curves, which is called supersingular isogeny Diffie-Hellman (SIDH) [1]. At this time, the bestknown algorithms which against the SIDH have an exponential time complexity for both classical and quantum attackers. Thus, a family of key encapsulation mechanisms based on the SIDH named supersingular isogeny key encapsulation (SIKE) [2] is expected as one of the candidates of NIST standardization of post-quantum cryptography.

The isogenies required for the SIDH are efficiently computable since it can be decomposed into low-degree isogenies involving a point multiplication on the supersingular elliptic curves defined over a quadratic extension field (QEF). Besides, Costello et al. [3] proposed efficient formulas for the low-degree isogenies with a projective point associated with fast arithmetic on the Montgomery curve. Since arithmetic operations in the QEF also need to be particularly efficient, it is typically constructed by using an irreducible binomial, i.e., $F_{1}=\mathbb{F}_{p}[\alpha] /\left(\alpha^{2}+1\right)$ where \mathbb{F}_{p} is a prime field. As these optimizations, parameter sets for the SIDH on a fixed supersingular Montgomery elliptic curve

[^0]defined over F_{1}, which are named as SIKEp434, SIKEp503, SIKEp610, and SIKEp751, are given in Chap. 1.6 of the specification of SIKE [4].

Although an efficient SIDH is realized by using QEF defined by F_{1}, there exist other attractive QEFs, e.g., $F_{2}=$ $\mathbb{F}_{p}[\beta] /\left(\beta^{2}+\beta+1\right)$ and $F_{3}=\mathbb{F}_{p}[\gamma] /\left(\gamma^{2}-\gamma-1\right)$ of which multiplications have a better performance than that of F_{1}. According to [5], these QEFs F_{i} are also suggested for the SIDH since the performance of the SIDH with F_{i} has competitive or rather better than that of F_{1}. However, changing the QEF from F_{1} to F_{i} involves a time-consuming computation for the parameter sets of the SIDH defined over F_{i} due to several initial points generation. Thus, the authors try to obtain the sets defined over F_{i} by exploiting the existing parameter sets defined over F_{1}, i.e., SIKEp434, SIKEp503, SIKEp610, and SIKEp751.
Our proposal. The authors propose to convert the existing parameter set defined over F_{1} to F_{i} by using a lowcomputational complexity isomorphic map $F_{1} \rightarrow F_{i}$. In this paper, the authors provide a construction method of the map with an arbitrary QEF defined by an irreducible monic polynomial of degree 2. As an example, the authors construct a map $F_{1} \rightarrow F_{2}$ and provide a parameter set defined over F_{2} associated with SIKEp434.

2. Preliminaries

The authors provide fundamentals of the isogeny and SIDH and describe the details of the QEFs suggested for a practical SIDH.
Notations. For a prime p, let \mathbb{F}_{p} and $\mathbb{F}_{p^{2}}$ denote a prime field and its QEF with a characteristic p. Let K be a finite field. A set of rational points, which is denoted as $E(K)$, on an elliptic curve E defined over K with a point at infinity O_{E} forms an additive group where O_{E} acts as the unity. For a non-negative integer s and point $P \in E(K)$, a point multiplication by s is denoted as $[s] P$.
Isogeny. Let E and \tilde{E} be elliptic curves defined over K. An isogeny $\phi: E \rightarrow \tilde{E}$ defined over K is a surjective morphism such that $O_{E} \mapsto O_{\tilde{E}}$, which induces a group homomorphism $E(K) \rightarrow \tilde{E}(K)$. If a cyclic subgroup $G \subset E(K)$ is given, there is a unique isogeny $\phi: E \rightarrow \tilde{E} \cong E / G$ with $\operatorname{ker}(\phi)=$ G, which is called $\# G$-isogeny. The isogeny ϕ and \tilde{E} can be made explicit by using Vélu's formulas [6] once E and G are known. If a degree of isogeny is a power of l, the isogeny is
efficiently computable by decomposed into l-isogenies.
SIDH. The steps for the SIDH key exchange between the two-person, Alice and Bob, are given as follows:

Setup. Let p be a prime given as $p=l_{A}^{e_{A}} l_{B}^{e_{B}} f \pm 1$ where l_{A} and l_{B} are small integers, e_{A} and e_{B} are positive integers, and f is a small cofactor. The prime is called as a SIDH-friendly prime and is typically chosen as $p=2^{e_{A}} 3^{e_{B}} f-1$. Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve such that $\# E\left(\mathbb{F}_{p^{2}}\right)=(p \mp 1)^{2}$ given by the Montgomery form $b y^{2}=x^{3}+a x^{2}+x$ of which j-invariant is $j(E)=256\left(a^{2}-3\right)^{3} /\left(a^{2}-4\right)$. And let $P_{A}, Q_{A}, P_{B}, Q_{B}$ are rational points in $E\left(\mathbb{F}_{p^{2}}\right)$ such that $\left\langle P_{A}, Q_{A}\right\rangle \cong \mathbb{Z} / l_{A}^{e_{A}} \mathbb{Z} \times \mathbb{Z} / l_{A}^{e_{A}} \mathbb{Z}$ and $\left\langle P_{B}, Q_{B}\right\rangle \cong \mathbb{Z} / l_{B}^{e_{B}} \mathbb{Z} \times \mathbb{Z} / l_{B}^{e_{B}} \mathbb{Z}$. A public parameter set of the SIDH is given as $\left\{p, l_{A}, l_{B}, e_{A}, e_{B}, E, P_{A}, Q_{A}, P_{B}, Q_{B}\right\}$.

Key generation. Alice chooses a secret key as $s_{A} \in$ $\mathbb{Z} / l_{A}^{e_{A}} \mathbb{Z}$ and computes a secret subgroup $G_{A}=\left\langle P_{A}+\left[s_{A}\right] Q_{A}\right\rangle$. Alice also computes a $l_{A}^{e_{A}}$-isogeny $\phi_{A}: E \rightarrow E_{A} \cong E / G_{A}$ and images $\phi_{A}\left(P_{B}\right)$ and $\phi_{A}\left(Q_{B}\right)$, and sets her public key as $\left\{E_{A}, \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right\}$. Similarly, Bob chooses a secret key $s_{B} \in \mathbb{Z} / l_{B}^{e_{B}} \mathbb{Z}$ and obtains his public key $\left\{E_{B}, \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right\}$ by computing a $l_{B}^{e_{B}}$-isogeny $\phi_{B}: E \rightarrow E_{B} \cong E / G_{B}$ with $G_{B}=\left\langle P_{B}+\left[s_{B}\right] Q_{B}\right\rangle$ and images $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$. Finally, they send their public key to each other.

Shared secret. Alice computes a subgroup $G_{A}^{\prime}=$ $\left\langle\phi_{B}\left(P_{A}\right)+\left[s_{A}\right] \phi_{B}\left(Q_{A}\right)\right\rangle$ from the received Bob's public key. Then Alice computes a $l_{A}^{e_{A}}$-isogeny $\phi_{A}^{\prime}: E_{B} \rightarrow E_{B A} \cong$ E_{B} / G_{A}^{\prime} and obtains a shared key as a j-invariant $j\left(E_{B A}\right)$. Bob also computes a $l_{B}^{e_{B}}$-isogeny $\phi_{B}^{\prime}: E_{A} \rightarrow E_{A B} \cong E_{A} / G_{B}^{\prime}$ with $G_{B}^{\prime}=\left\langle\phi_{A}\left(P_{B}\right)+\left[s_{B}\right] \phi_{A}\left(Q_{B}\right)\right\rangle$ and obtains a shared key as $j\left(E_{A B}\right)$. They can share the same j-invariant since $E_{B A} \cong E /\left\langle P_{A}+\left[s_{A}\right] Q_{A}, P_{B}+\left[s_{B}\right] Q_{B}\right\rangle \cong E_{A B}$, which means that $E_{B A}$ and $E_{A B}$ are isomorphic.

According to [3], the isogeny computation and point multiplication in the Montgomery curve are efficiently computed without y-coordinates and a curve coefficient b. Thus, assuming x_{P} denotes a x-coordinate of a point P, the public parameter set is typically given as $\mathcal{P}=$ $\left\{p, l_{A}, l_{B}, e_{A}, e_{B}, a, x_{P_{A}}, x_{Q_{A}}, x_{R_{A}}, x_{P_{B}}, x_{Q_{B}}, x_{R_{B}}\right\}$ with auxiliary x-coordinates of points $R_{A}=Q_{A}-P_{A}$ and $R_{B}=Q_{B}-P_{B}$.
QEFs. A QEF required for the SIDH is typically defined as $F=\mathbb{F}_{p}[\omega] /\left(f(\omega)=\omega^{2}+c_{1} \omega+c_{0}\right)$ where $f(x)$ is an irreducible polynomial defined over \mathbb{F}_{p} of which a primitive root is ω. Note that ω is denoted as $\omega=\left(-c_{1} \pm \sqrt{D}\right) / 2$ where $D=c_{1}^{2}-4 c_{0}$ is quadratic non-residue in \mathbb{F}_{p}. An arbitrary element in F is represented as $x=x_{0}+x_{1} \omega$ where $x_{0}, x_{1} \in \mathbb{F}_{p}$ and $\{1, \omega\}$ is a basis which is especially classified into a polynomial basis. If $c_{1} \neq 0$, there exist the other basis representations $\left\{\omega, \omega^{2}\right\}$ and $\left\{\omega, \omega^{p}\right\}$, which are called as a pseudo polynomial basis and normal basis, respectively.

As one of the QEFs with efficient performing arithmetic operations, there are (i) $F_{1}=\mathbb{F}_{p}[\alpha] /\left(f_{1}(\alpha)=\alpha^{2}+1\right)$ with a polynomial basis $\{1, \alpha\}$ based on an optimal extension field proposed by Bailey and Paar [7], (ii) $F_{2}=$ $\mathbb{F}_{p}[\beta] /\left(f_{2}(\beta)=\beta^{2}+\beta+1\right)$ with a pseudo polynomial basis $\left\{\beta, \beta^{2}\right\}$ based on an all-one polynomial extension field proposed by Nogami et al. [8], and (ii) $F_{3}=\mathbb{F}_{p}[\gamma] /\left(f_{2}(\gamma)=\right.$

Table 1 The calculation costs of the multiplication and squaring in the implementation-friendly QEFs.

QEFs	Mul.	Sqr.
F_{1}	$3 \mathbf{M}+5 \mathbf{a}$	$2 \mathbf{M}+3 \mathbf{a}$
F_{2}	$3 \mathbf{M}+4 \mathbf{a}$	$2 \mathbf{M}+4 \mathbf{a}$
F_{3}	$3 \mathbf{M}+4 \mathbf{a}$	$3 \mathbf{S}+3 \mathbf{a}$

$\left.\gamma^{2}-\gamma-1\right)$ with a normal basis $\left\{\gamma, \gamma^{p}\right\}$ of which multiplication can be efficiently computed by NTT method [9]. Let \mathbf{M}, \mathbf{S}, and a denote a calculation cost of the multiplication, squaring, and addition in \mathbb{F}_{p}, respectively. Then, the calculation costs of the multiplication and squaring in the above QEFs are given as Table 1. According to Table 1, the performance of the multiplication in F_{2} and F_{3} are better than that of F_{1}. The performance of the squaring in F_{3} might be competitive to F_{1}, however, that of F_{2} has a degradation.

In fact, the multiplications in $\mathbb{F}_{p^{2}}$ are typically more often used for the SIDH operations such that point multiplications and isogenies than squarings in $\mathbb{F}_{p^{2}}$ as shown in Table 1 of [3]. Thus, there is a possibility that the performances of the SIDH applied F_{2} and F_{3} are better than that of F_{1}, however, the typical SIDH implementations adopt F_{1}. In [5], Nanjo et al. confirmed the above possibility and found that F_{2} and F_{3} result in a slight performance improvement of SIDH comparing with F_{1} by an implementation. Thus, in this paper, the authors consider a sensible way of changing the construction from F_{1} to another attractive QEF F_{i}.

3. An Isomorphic Map from F_{1} to an Arbitrary QEF F with a Characteristic of SIDH-Friendly Prime

To exploit the other attractive QEF F_{i} for the SIDH without a time-consuming computation of initial setting of a public parameter set \mathcal{P} defined over F_{i}, the authors propose to convert the existing \mathcal{P} defined over F_{1} to F_{i} by using an isomorphic map $F_{1} \rightarrow F_{i}$. In the following, the authors provide a construction method of an isomorphic map from F_{1} to an arbitrary QEF F with the SIDH-friendly prime given as $p=2^{e_{A}} 3^{e_{B}} f-1$.
Lemma 1: If a field characteristic is $p=2^{e_{A}} 3^{e_{B}} f-1$, there exists a primitive cube root of unity defined over $\mathbb{F}_{p^{2}}$.
Proof. Since the primitive cube root of unity is written as $\sqrt[3]{1}=(-1 \pm \sqrt{-3}) / 2$, it is defined over $\mathbb{F}_{p^{2}}$ if $\sqrt{-3} \in \mathbb{F}_{p^{2}}$. According to [10], if $3 \nmid(p-1)$ is satisfied, 3 and -1 are quadratic residue and non-residue in \mathbb{F}_{p} which leads to -3 is quadratic non-residue in \mathbb{F}_{p}, i.e., $\sqrt{-3} \in \mathbb{F}_{p^{2}}$. Since $p=$ $2^{e_{A}} 3^{e_{B}} f-1$ is satisfied the condition, $\sqrt[3]{1} \in \mathbb{F}_{p^{2}}$.

From Lemma 1, there exists a primitive cube root of unity in F_{1} and F with a SIDH-friendly characteristic given as $p=2^{e_{A}} 3^{e_{B}} f-1$. In the following, let $\delta=\delta_{0}+\delta_{1} \alpha$ and $\zeta=\zeta_{0}+\zeta_{1} \omega$ be a primitive cube root of unity in F_{1} and F where $\delta_{0}, \delta_{1}, \zeta_{0}, \zeta_{1} \in \mathbb{F}_{p}$, respectively. Indeed, these elements can be written as $\delta_{0}=-1 / 2, \delta_{1}= \pm \sqrt{3} / 2, \zeta_{0}=$ $\left(-1 \pm c_{1} \sqrt{-3 / D}\right) / 2$, and $\zeta_{1}= \pm \sqrt{-3 / D}$, respectively. Note that $\sqrt{3}, \sqrt{-3 / D} \in \mathbb{F}_{p}$ from the quadratic residue property of 3 , quadratic non-residue property of -3 , and D in \mathbb{F}_{p}.

Proposition 1: If a field characteristic is $p=2^{e_{A}} 3^{e_{B}} f-1$, an isomorphic map from F_{1} to F is defined as follows:

$$
\begin{align*}
& M: F_{1} \rightarrow F \\
& \quad x=x_{0}+x_{1} \alpha \mapsto\left(x_{0}+m x_{1}\right)+n x_{1} \omega \tag{1}
\end{align*}
$$

where $m=\left(\zeta_{0}-\delta_{0}\right) / \delta_{1}, n=\zeta_{1} / \delta_{1} \in \mathbb{F}_{p}$.
Proof. Let a and b be elements in F_{1} represented by $a=$ $a_{0}+a_{1} \omega$ with $a_{0}, a_{1} \in \mathbb{F}_{p}$ and $b=b_{0}+b_{1} \omega$ with $b_{0}, b_{1} \in$ \mathbb{F}_{p}, respectively. (i) Additive homomorphism. It is clearly satisfied that $M(a+b)=\left(\left(a_{0}+b_{0}\right)+m\left(a_{1}+b_{1}\right)\right)+n\left(a_{1}+\right.$ $\left.b_{1}\right) \omega=M(a)+M(b)$. (ii) Multiplicative homomorphism. It is obtained that $M(a \cdot b)=\left(a_{0} b_{0}+m\left(a_{0} b_{1}+a_{1} b_{0}\right)-a_{1} b_{1}\right)+$ $n\left(a_{0} b_{0}+a_{1} b_{0}\right) \omega$ and $M(a) \cdot M(b)=\left(a_{0} b_{0}+m\left(a_{0} b_{1}+a_{1} b_{0}\right)+\right.$ $\left.d_{0} a_{1} b_{1}\right)+n\left(a_{0} b_{1}+a_{0} b_{1}-d_{1} a_{1} b_{1}\right) \omega$ where $d_{0}=m^{2}-c_{0} n^{2}$ and $d_{1}=n\left(c_{1} n-2 m\right)$. Since $m= \pm c_{1} \sqrt{-1 / D}$ and $n= \pm 2 \sqrt{-1 / D}$ with $D=c_{1}^{2}-4 c_{0} \in \mathbb{F}_{p}$, we have $d_{0}=-1$ and $d_{1}=0$ which leads to $M(a \cdot b)=M(a) \cdot M(b)$. (iii) Monomorphism. Since $n \neq 0$, it is satisfied that $M(a) \neq M(b)$ if $a \neq b \in F$. From the above (i)-(iii), M is an isomorphism.

From the above, the isomorphic map $M: F_{1} \rightarrow F$ is easily constructed once the primitive cube root of unity $\delta \in F_{1}$ and $\zeta \in F$ are obtained. The elements δ and ζ are obtained without square root computation by computing a cubic non-residue element to the power of $\left(p^{2}-1\right) / 3$ in F_{1} and F, respectively. The calculation cost to compute an image of $x \in F_{1}$ is enough low since it requires only 2 multiplications and 1 addition in \mathbb{F}_{p}.

Note that $M(x) \in F$ with a polynomial basis representation can also be deformed to the pseudo polynomial basis and normal basis representations as $M(x)=\left(x_{0}+m x_{1}\right)+$ $n x_{1} \omega=\left(\left(-c_{1} x_{0}+\left(c_{0} n-c_{1} m\right) x_{1}\right) / c_{0}\right) \omega-\left(\left(x_{0}+m x_{1}\right) / c_{0}\right) \omega^{2}=$ $\left(\left(-x_{0}+\left(c_{1} n-m\right) x_{1}\right) / c_{1}\right) \omega-\left(\left(x_{0}+m x_{1}\right) / c_{1}\right) \omega^{p}$ with a non-zero coefficient c_{0} and c_{1}.

4. Sample Parameter Set

The authors focus on an existing public parameter set of the SIDH defined over F_{1} such that $\mathcal{P}=$ SIKEp434, which consists of $p=2^{216} 3^{137}-1, l_{A}=2, l_{B}=3, e_{A}=216, e_{B}=137$, $a=6+0 \alpha \in F_{1}$, and x-coordinates of initial points $x_{P_{A}}, x_{Q_{A}}, x_{R_{A}}, x_{P_{B}}, x_{Q_{B}}, x_{R_{B}} \in F_{1}$ (see Chap. 1.6.1 in [4]). In the following, the authors construct an isomorphic map $M_{12}: F_{1} \rightarrow F_{2}$ and provide a public parameter set of the SIDH defined over F_{2} which are computed as $M_{12}(\mathcal{P})=$ $\left\{p, l_{A}, l_{B}, e_{A}, e_{B}, M_{12}(a), M_{12}\left(x_{P_{A}}\right), M_{12}\left(x_{Q_{A}}\right), M_{12}\left(x_{R_{A}}\right)\right.$, $\left.M_{12}\left(x_{P_{B}}\right), M_{12}\left(x_{Q_{B}}\right), M_{12}\left(x_{R_{B}}\right)\right\}$.

From Proposition 1, the isomorphism map $F_{1} \rightarrow F_{2}$ is obtained as $M_{12}: F_{1} \rightarrow F_{2}, x_{1}=x_{0}+x_{1} \alpha \mapsto x_{2}=$ $\left(x_{0}+m x_{1}\right)+n x_{1} \beta=\left(-x_{0}+(n-m) x_{1}\right) \beta-\left(x_{0}+m x_{1}\right) \beta^{2}$ where m and n are given as follows:

```
m= 00db6794 b8c6558d e8372711 9cd51000 00000000 0000000000000000
\(n=01 b 6 c f 29718 c a b 1 b\) d06e4e23 39aa2000 00000000 0000000000000000
```

When applying M_{12}, a curve coefficient $a \in F_{1}$ is mapped
to $M_{12}(a)=-6 \beta-6 \beta^{2} \in F_{2}$. The x-coordinates of initial points $x_{P_{A}}, x_{Q_{A}}, x_{R_{A}}, x_{P_{B}}, x_{Q_{B}}, x_{R_{B}} \in F_{1}$ can be mapped to elements defined over F_{2} by computing $M_{12}\left(x_{S_{X}}\right)=$ $x_{S_{X 2}, 0} \beta+x_{S_{X 2}, 1} \beta^{2} \in F_{2}$ where $x_{S_{X 2}, 0}$ and $x_{S_{X 2}, 1}$ are the following values for $S \in\{P, Q, R\}$ and $X \in\{A, B\}$.

```
\(x_{P_{A 2}, 0}=0001 \mathrm{~b} 7 \mathrm{ec} 3 \mathrm{cb} 8380531034815\) ffcce3b5 40693f5a
        fb9bbd81 80395c7b 9cfbb4fb 30ad5bdd 3cba824f
        73 f213fe e7125ecc 8be39afc 2 fc£4c60
\(x_{P_{A 2}, 1}=000002935 e 9 b 5 a 9 f 35 f 24 f f 35 d e 41\) dac a2843950
        b9f07d05 b49cbb3b 12d96a45 d64a0409 5dceb9dd
        ea4aaeaa 0c29fc7a df7a8ab4 a3a31d0f
\(x_{Q_{A 2}, 0}=0001 \mathrm{bcec} 6753 \mathrm{~b} 4 \mathrm{~d} 5 \mathrm{c} 8 \mathrm{dd} 8561\) a57eeca 8 cc 29930 f
        a7b9a009 d83cb9b5 a109001f 13c48a6a 2f9ff3c3
        c6f7de48 67ad08b5 e671097a 225bc897
\(x_{Q_{A 2}, 1}=00011 \mathrm{cc} 5\) b86ac995 173a0084 4c1e862d b9733e81
        129c3bd1 59924a7c 3ec1ba05 5ed21eb2 55da228c
        b8565f38 ceee876b 1dd4a10d c1ce1e8f
\(x_{R_{A 2}, 0}=0000 \mathrm{~b} 936\) ddd16a1e 503 f 960 c 9 c 71 a 2 fc 210958 e 0
        306a79cQ 573cb62c c04a31b8462b666b acf65cb4
        ccc79553 2d9ad510 582b7a6f 55726594
\(x_{R_{A 2}, 1}=0001 \mathrm{c} 81209 \mathrm{c} 63 \mathrm{acd} 2 \mathrm{e} 8 \mathrm{f} 4126\) ae76e1a3 7c4fd316
        6921dcf9 d3f29fa4 559a7dac c167f8c0 08dcd073
        b6c29408 5cb6fc9a cd8d5b69 1e93503e
\(x_{P_{B 2}, 0}=0001 a d b a \operatorname{a0b} 8 \mathrm{cb} 6 \mathrm{c} 560 \mathrm{c} 24 \mathrm{a} 4\) 9fa15de9 3b5c300b
        6094d83c b7611fcf faa76a13 c8c97403 ff620503
        4c26819c 609a161b a0b9a8c4 f9c84856
\(x_{P_{B 2}, 1}=0001 \mathrm{adba}\) a0b8cb6c 560c24a4 9fa15de9 3b5c300b
        6094d83c b7611fcf faa76a13 c8c97403 ff620503
        4c26819c 609a161b a0b9a8c4 f9c84856
\(x_{Q_{B 2}, 0}=0001059 \mathrm{a} 4 \mathrm{fb} 24 \mathrm{deb} 8667 \mathrm{a} 051 \mathrm{bfc} 945 \mathrm{a} 6 \mathrm{e} 20 \mathrm{e} 2135\)
        ca957fdd a2b130ff 1806b39c 14f9c97e 174e18c6
        73f4dbe3 e64699a@ 2461ebf9 25c2c7b9
\(x_{Q_{B 2}, 1}=0001059 \mathrm{a} 4 \mathrm{fb} 24 \mathrm{deb} 8667 \mathrm{a} 051 \mathrm{bfc} 945 \mathrm{a} 6 \mathrm{e} 20 \mathrm{e} 2135\)
        ca957fdd a2b130ff 1806b39c 14f9c97e 174e18c6
        73 f4dbe3 e64699a0 2461ebf9 25c2c7b9
\(x_{R_{B 2}, 0}=00004 \mathrm{a} 0153 \mathrm{e} 81 \mathrm{db} 2 \mathrm{~b} 207 \mathrm{c} 2 \mathrm{~d} 49 \mathrm{cc} 9 \mathrm{c} 890 \mathrm{c} 660622 \mathrm{~d}\)
        \(7785390 f\) 637fa6d6 f44e6787 266dbc35 100 f2130
        c5c6f60b 3351c140 4ce94455 a3517d60
\(x_{R_{B 2}, 1}=000083 \mathrm{ec} 47621 \mathrm{~b} 2 \mathrm{c} 28213 \mathrm{~cd} 295 \mathrm{cf} 9731 \mathrm{dc} 0 \mathrm{~d} 41 \mathrm{f} 9\)
        a79332cd 53df0535 e132f50e ddc026b7 66d32c9a
        1ba4f05d 732eeed5 7e031f07 480913c6
```

According to [5], the parameter set $M_{12}(\mathcal{P})$ obtained by the above computation is expected to lead in an efficient SIDH defined over F_{2} of which performance is slightly better than that of F_{1}.

5. Conclusion

To obtain a public parameter set of the SIDH defined over an attractive QEF F_{i} without time-consuming computation, the authors propose to convert the existing parameter set defined over $F_{1}=\mathbb{F}_{p}[\alpha] /\left(\alpha^{2}+1\right)$ to F_{i} by using a low-computational complexity isomorphic map $F_{1} \rightarrow F_{i}$. In this paper, the authors provide a construction method of the isomorphic map and give a sample conversion associated with the existing parameter set SIKEp434.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Numbers 19J2108611 and 19K11966.
[5] Y. Nanjo, M. Shirase, T. Kusaka, and Y. Nogami, "A performance analysis and evaluation of SIDH with implementation-friendly classes of quadratic extension fields," 2019 Seventh International Symposium on Computing and Networking (CANDAR), pp.178184, IEEE, 2019.
[6] J. Vélu, "Isogénies entre courbes elliptiques," CR Acad. Sci. Paris, Séries A, vol.273, pp.305-347, 1971.
[7] D.V. Bailey and C. Paar, "Efficient arithmetic in finite field extensions with application in elliptic curve cryptography," J. Cryptol., vol.14, no.3, pp.153-176, 2001.
[8] Y. Nogami, A. Saito, and Y. Morikawa, "Finite extension field with modulus of all-one polynomial and representation of its elements for fast arithmetic operations," IEICE Trans. Fundamentals, vol.E86-A, no.9, pp.2376-2387, Sept. 2003.
[9] T. Kobayashi, "Oef using a successive extension," Proc. 2000 Symposium on Cryptography and Information Security, 2000.
[10] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer Science \& Business Media, 2013.

[^0]: Manuscript received January 23, 2020.
 Manuscript revised May 20, 2020.
 Manuscript publicized July 6, 2020.
 ${ }^{\dagger}$ The authors are with Okayama University, Okayama-shi, 7008530 Japan.
 ${ }^{\dagger}$ The author is with Future University Hakodate, Hakodate-shi, 041-8655 Japan.
 a) E-mail: yuki.nanjo@s.okayama-u.ac.jp
 b) E-mail: shirase @fun.ac.jp
 c) E-mail: kusaka-t@okayama-u.ac.jp
 d) E-mail: yasuyuki.nogami@okayama-u.ac.jp

 DOI: $10.1587 /$ transfun.2020TAL0002

