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A Construction Method of an Isomorphic Map between Quadratic
Extension Fields Applicable for SIDH

Yuki NANJO†a), Student Member, Masaaki SHIRASE††b), Takuya KUSAKA†c),
and Yasuyuki NOGAMI†d), Members

SUMMARY A quadratic extension field (QEF) defined by F1 =

Fp[α]/(α2 + 1) is typically used for a supersingular isogeny Diffie-Hellman
(SIDH). However, there exist other attractive QEFs Fi that result in a com-
petitive or rather efficient performing the SIDH comparing with that of F1.
To exploit these QEFs without a time-consuming computation of the initial
setting, the authors propose to convert existing parameter sets defined over
F1 to Fi by using an isomorphic map F1 → Fi.
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1. Introduction

Background and motivation. Shor’s algorithm made that
post-quantum cryptography occupies a major place in the
current research of security. In 2011, Jao and De Feo pro-
posed a Diffie-Hellman key exchange protocol based on
the difficulty of computing a kernel of isogenies between
supersingular elliptic curves, which is called supersingular
isogeny Diffie-Hellman (SIDH) [1]. At this time, the best-
known algorithms which against the SIDH have an expo-
nential time complexity for both classical and quantum at-
tackers. Thus, a family of key encapsulation mechanisms
based on the SIDH named supersingular isogeny key encap-
sulation (SIKE) [2] is expected as one of the candidates of
NIST standardization of post-quantum cryptography.

The isogenies required for the SIDH are efficiently
computable since it can be decomposed into low-degree iso-
genies involving a point multiplication on the supersingu-
lar elliptic curves defined over a quadratic extension field
(QEF). Besides, Costello et al. [3] proposed efficient for-
mulas for the low-degree isogenies with a projective point
associated with fast arithmetic on the Montgomery curve.
Since arithmetic operations in the QEF also need to be par-
ticularly efficient, it is typically constructed by using an ir-
reducible binomial, i.e., F1 = Fp[α]/(α2 + 1) where Fp is a
prime field. As these optimizations, parameter sets for the
SIDH on a fixed supersingular Montgomery elliptic curve
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defined over F1, which are named as SIKEp434, SIKEp503,
SIKEp610, and SIKEp751, are given in Chap. 1.6 of the
specification of SIKE [4].

Although an efficient SIDH is realized by using QEF
defined by F1, there exist other attractive QEFs, e.g., F2 =

Fp[β]/(β2 + β + 1) and F3 = Fp[γ]/(γ2 − γ − 1) of which
multiplications have a better performance than that of F1.
According to [5], these QEFs Fi are also suggested for the
SIDH since the performance of the SIDH with Fi has com-
petitive or rather better than that of F1. However, changing
the QEF from F1 to Fi involves a time-consuming compu-
tation for the parameter sets of the SIDH defined over Fi
due to several initial points generation. Thus, the authors try
to obtain the sets defined over Fi by exploiting the existing
parameter sets defined over F1, i.e., SIKEp434, SIKEp503,
SIKEp610, and SIKEp751.

Our proposal. The authors propose to convert the exist-
ing parameter set defined over F1 to Fi by using a low-
computational complexity isomorphic map F1 → Fi. In this
paper, the authors provide a construction method of the map
with an arbitrary QEF defined by an irreducible monic poly-
nomial of degree 2. As an example, the authors construct a
map F1 → F2 and provide a parameter set defined over F2
associated with SIKEp434.

2. Preliminaries

The authors provide fundamentals of the isogeny and SIDH
and describe the details of the QEFs suggested for a practical
SIDH.

Notations. For a prime p, let Fp and Fp2 denote a prime
field and its QEF with a characteristic p. Let K be a finite
field. A set of rational points, which is denoted as E(K),
on an elliptic curve E defined over K with a point at infin-
ity OE forms an additive group where OE acts as the unity.
For a non-negative integer s and point P ∈ E(K), a point
multiplication by s is denoted as [s]P.

Isogeny. Let E and Ẽ be elliptic curves defined over K. An
isogeny φ : E → Ẽ defined over K is a surjective morphism
such that OE 7→ OẼ , which induces a group homomorphism
E(K) → Ẽ(K). If a cyclic subgroup G ⊂ E(K) is given,
there is a unique isogeny φ : E → Ẽ � E/G with ker(φ) =

G, which is called #G-isogeny. The isogeny φ and Ẽ can be
made explicit by using Vélu’s formulas [6] once E and G are
known. If a degree of isogeny is a power of l, the isogeny is
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efficiently computable by decomposed into l-isogenies.

SIDH. The steps for the SIDH key exchange between the
two-person, Alice and Bob, are given as follows:

Setup. Let p be a prime given as p = leA
A leB

B f ± 1
where lA and lB are small integers, eA and eB are pos-
itive integers, and f is a small cofactor. The prime is
called as a SIDH-friendly prime and is typically chosen as
p = 2eA 3eB f − 1. Let E/Fp2 be a supersingular elliptic
curve such that #E(Fp2 ) = (p ∓ 1)2 given by the Mont-
gomery form by2 = x3 + ax2 + x of which j-invariant is
j(E) = 256(a2 − 3)3/(a2 − 4). And let PA,QA, PB,QB are ra-
tional points in E(Fp2 ) such that 〈PA,QA〉 � Z/l

eA
A Z×Z/l

eA
A Z

and 〈PB,QB〉 � Z/l
eB
B Z × Z/l

eB
B Z. A public parameter set of

the SIDH is given as {p, lA, lB, eA, eB, E, PA,QA, PB,QB}.
Key generation. Alice chooses a secret key as sA ∈

Z/leA
A Z and computes a secret subgroup GA = 〈PA +[sA]QA〉.

Alice also computes a leA
A -isogeny φA : E → EA � E/GA

and images φA(PB) and φA(QB), and sets her public key as
{EA, φA(PB), φA(QB)}. Similarly, Bob chooses a secret key
sB ∈ Z/l

eB
B Z and obtains his public key {EB, φB(PA), φB(QA)}

by computing a leB
B -isogeny φB : E → EB � E/GB with

GB = 〈PB+[sB]QB〉 and images φB(PA) and φB(QA). Finally,
they send their public key to each other.

Shared secret. Alice computes a subgroup G′A =

〈φB(PA) + [sA]φB(QA)〉 from the received Bob’s public key.
Then Alice computes a leA

A -isogeny φ′A : EB → EBA �
EB/G′A and obtains a shared key as a j-invariant j(EBA). Bob
also computes a leB

B -isogeny φ′B : EA → EAB � EA/G′B
with G′B = 〈φA(PB) + [sB]φA(QB)〉 and obtains a shared
key as j(EAB). They can share the same j-invariant since
EBA � E/〈PA + [sA]QA, PB + [sB]QB〉 � EAB, which means
that EBA and EAB are isomorphic.

According to [3], the isogeny computation and point
multiplication in the Montgomery curve are efficiently
computed without y-coordinates and a curve coefficient
b. Thus, assuming xP denotes a x-coordinate of a point
P, the public parameter set is typically given as P =

{p, lA, lB, eA, eB, a, xPA , xQA , xRA , xPB , xQB , xRB} with auxiliary
x-coordinates of points RA = QA − PA and RB = QB − PB.

QEFs. A QEF required for the SIDH is typically defined
as F = Fp[ω]/( f (ω) = ω2 + c1ω + c0) where f (x) is an
irreducible polynomial defined over Fp of which a primitive
root is ω. Note that ω is denoted as ω = (−c1 ±

√
D)/2

where D = c2
1 − 4c0 is quadratic non-residue in Fp. An

arbitrary element in F is represented as x = x0 + x1ω where
x0, x1 ∈ Fp and {1, ω} is a basis which is especially classified
into a polynomial basis. If c1 , 0, there exist the other basis
representations {ω,ω2} and {ω,ωp}, which are called as a
pseudo polynomial basis and normal basis, respectively.

As one of the QEFs with efficient performing arith-
metic operations, there are (i) F1 = Fp[α]/( f1(α) = α2 + 1)
with a polynomial basis {1, α} based on an optimal ex-
tension field proposed by Bailey and Paar [7], (ii) F2 =

Fp[β]/( f2(β) = β2 + β + 1) with a pseudo polynomial ba-
sis {β, β2} based on an all-one polynomial extension field
proposed by Nogami et al. [8], and (ii) F3 = Fp[γ]/( f2(γ) =

Table 1 The calculation costs of the multiplication and squaring in the
implementation-friendly QEFs.

QEFs Mul. Sqr.
F1 3M + 5a 2M + 3a
F2 3M + 4a 2M + 4a
F3 3M + 4a 3S + 3a

γ2−γ−1) with a normal basis {γ, γp} of which multiplication
can be efficiently computed by NTT method [9]. Let M, S,
and a denote a calculation cost of the multiplication, squar-
ing, and addition in Fp, respectively. Then, the calculation
costs of the multiplication and squaring in the above QEFs
are given as Table 1. According to Table 1, the performance
of the multiplication in F2 and F3 are better than that of F1.
The performance of the squaring in F3 might be competitive
to F1, however, that of F2 has a degradation.

In fact, the multiplications in Fp2 are typically more of-
ten used for the SIDH operations such that point multiplica-
tions and isogenies than squarings in Fp2 as shown in Table 1
of [3]. Thus, there is a possibility that the performances of
the SIDH applied F2 and F3 are better than that of F1, how-
ever, the typical SIDH implementations adopt F1. In [5],
Nanjo et al. confirmed the above possibility and found that
F2 and F3 result in a slight performance improvement of
SIDH comparing with F1 by an implementation. Thus, in
this paper, the authors consider a sensible way of changing
the construction from F1 to another attractive QEF Fi.

3. An Isomorphic Map from F1 to an Arbitrary QEF
F with a Characteristic of SIDH-Friendly Prime

To exploit the other attractive QEF Fi for the SIDH without
a time-consuming computation of initial setting of a pub-
lic parameter set P defined over Fi, the authors propose to
convert the existing P defined over F1 to Fi by using an
isomorphic map F1 → Fi. In the following, the authors pro-
vide a construction method of an isomorphic map from F1
to an arbitrary QEF F with the SIDH-friendly prime given
as p = 2eA 3eB f − 1.
Lemma 1: If a field characteristic is p = 2eA 3eB f − 1, there
exists a primitive cube root of unity defined over Fp2 .
Proof. Since the primitive cube root of unity is written as

3√1 = (−1 ±
√
−3)/2, it is defined over Fp2 if

√
−3 ∈ Fp2 .

According to [10], if 3 - (p − 1) is satisfied, 3 and −1 are
quadratic residue and non-residue in Fp which leads to −3
is quadratic non-residue in Fp, i.e.,

√
−3 ∈ Fp2 . Since p =

2eA 3eB f − 1 is satisfied the condition, 3√1 ∈ Fp2 . �

From Lemma 1, there exists a primitive cube root of
unity in F1 and F with a SIDH-friendly characteristic given
as p = 2eA 3eB f − 1. In the following, let δ = δ0 + δ1α
and ζ = ζ0 + ζ1ω be a primitive cube root of unity in F1
and F where δ0, δ1, ζ0, ζ1 ∈ Fp, respectively. Indeed, these
elements can be written as δ0 = −1/2, δ1 = ±

√
3/2, ζ0 =

(−1 ± c1
√
−3/D)/2, and ζ1 = ±

√
−3/D, respectively. Note

that
√

3,
√
−3/D ∈ Fp from the quadratic residue property

of 3, quadratic non-residue property of −3, and D in Fp.
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Proposition 1: If a field characteristic is p = 2eA 3eB f − 1,
an isomorphic map from F1 to F is defined as follows:

M :F1 → F,
x = x0 + x1α 7→ (x0 + mx1) + nx1ω, (1)

where m = (ζ0 − δ0)/δ1, n = ζ1/δ1 ∈ Fp.
Proof. Let a and b be elements in F1 represented by a =

a0 + a1ω with a0, a1 ∈ Fp and b = b0 + b1ω with b0, b1 ∈

Fp, respectively. (i) Additive homomorphism. It is clearly
satisfied that M(a + b) = ((a0 + b0) + m(a1 + b1)) + n(a1 +

b1)ω = M(a) + M(b). (ii) Multiplicative homomorphism. It
is obtained that M(a · b) = (a0b0 + m(a0b1 + a1b0)− a1b1) +

n(a0b0 + a1b0)ω and M(a) ·M(b) = (a0b0 + m(a0b1 + a1b0) +

d0a1b1)+n(a0b1 +a0b1−d1a1b1)ωwhere d0 = m2−c0n2 and
d1 = n(c1n−2m). Since m = ±c1

√
−1/D and n = ±2

√
−1/D

with D = c2
1 − 4c0 ∈ Fp, we have d0 = −1 and d1 = 0 which

leads to M(a · b) = M(a) ·M(b). (iii) Monomorphism. Since
n , 0, it is satisfied that M(a) , M(b) if a , b ∈ F. From
the above (i)–(iii), M is an isomorphism. �

From the above, the isomorphic map M : F1 → F
is easily constructed once the primitive cube root of unity
δ ∈ F1 and ζ ∈ F are obtained. The elements δ and ζ are ob-
tained without square root computation by computing a cu-
bic non-residue element to the power of (p2−1)/3 in F1 and
F, respectively. The calculation cost to compute an image of
x ∈ F1 is enough low since it requires only 2 multiplications
and 1 addition in Fp.

Note that M(x) ∈ F with a polynomial basis represen-
tation can also be deformed to the pseudo polynomial basis
and normal basis representations as M(x) = (x0 + mx1) +

nx1ω = ((−c1x0 +(c0n−c1m)x1)/c0)ω−((x0 +mx1)/c0)ω2 =

((−x0+(c1n−m)x1)/c1)ω−((x0+mx1)/c1)ωp with a non-zero
coefficient c0 and c1.

4. Sample Parameter Set

The authors focus on an existing public parameter set of the
SIDH defined over F1 such that P = SIKEp434, which con-
sists of p = 22163137 − 1, lA = 2, lB = 3, eA = 216, eB = 137,
a = 6 + 0α ∈ F1, and x-coordinates of initial points
xPA , xQA , xRA , xPB , xQB , xRB ∈ F1 (see Chap. 1.6.1 in [4]).
In the following, the authors construct an isomorphic map
M12 : F1 → F2 and provide a public parameter set of the
SIDH defined over F2 which are computed as M12(P) =

{p, lA, lB, eA, eB,M12(a),M12(xPA ),M12(xQA ),M12(xRA ),
M12(xPB ),M12(xQB ),M12(xRB )}.

From Proposition 1, the isomorphism map F1 → F2
is obtained as M12 : F1 → F2, x1 = x0 + x1α 7→ x2 =

(x0 +mx1)+nx1β = (−x0 + (n−m)x1)β− (x0 +mx1)β2 where
m and n are given as follows:

m = 00db6794 b8c6558d e8372711 9cd51000 00000000

00000000 00000000

n = 01b6cf29 718cab1b d06e4e23 39aa2000 00000000

00000000 00000000

When applying M12, a curve coefficient a ∈ F1 is mapped

to M12(a) = −6β − 6β2 ∈ F2. The x-coordinates of ini-
tial points xPA , xQA , xRA , xPB , xQB , xRB ∈ F1 can be mapped
to elements defined over F2 by computing M12(xS X ) =

xS X2,0β + xS X2,1β
2 ∈ F2 where xS X2,0 and xS X2,1 are the fol-

lowing values for S ∈ {P,Q,R} and X ∈ {A, B}.

xPA2 ,0 = 0001b7ec 3cb83805 31034815 ffcce3b5 40693f5a

fb9bbd81 80395c7b 9cfbb4fb 30ad5bdd 3cba824f

73f213fe e7125ecc 8be39afc 2fcf4c60

xPA2 ,1 = 00000293 5e9b5a9f 35f24ff3 5de41dac a2843950

b9f07d05 b49cbb3b 12d96a45 d64a0409 5dceb9dd

ea4aaeaa 0c29fc7a df7a8ab4 a3a31d0f

xQA2 ,0 = 0001bcec 6753b4d5 c8dd8561 a57eeca8 cc29930f

a7b9a009 d83cb9b5 a109001f 13c48a6a 2f9ff3c3

c6f7de48 67ad08b5 e671097a 225bc897

xQA2 ,1 = 00011cc5 b86ac995 173a0084 4c1e862d b9733e81

129c3bd1 59924a7c 3ec1ba05 5ed21eb2 55da228c

b8565f38 ceee876b 1dd4a10d c1ce1e8f

xRA2 ,0 = 0000b936 ddd16a1e 503f960c 9c71a2fc 210958e0

306a79c0 573cb62c c04a31b8 462b666b acf65cb4

ccc79553 2d9ad510 582b7a6f 55726594

xRA2 ,1 = 0001c812 09c63acd 2e8f4126 ae76e1a3 7c4fd316

6921dcf9 d3f29fa4 559a7dac c167f8c0 08dcd073

b6c29408 5cb6fc9a cd8d5b69 1e93503e

xPB2 ,0 = 0001adba a0b8cb6c 560c24a4 9fa15de9 3b5c300b

6094d83c b7611fcf faa76a13 c8c97403 ff620503

4c26819c 609a161b a0b9a8c4 f9c84856

xPB2 ,1 = 0001adba a0b8cb6c 560c24a4 9fa15de9 3b5c300b

6094d83c b7611fcf faa76a13 c8c97403 ff620503

4c26819c 609a161b a0b9a8c4 f9c84856

xQB2 ,0 = 0001059a 4fb24deb 8667a051 bfc945a6 e20e2135

ca957fdd a2b130ff 1806b39c 14f9c97e 174e18c6

73f4dbe3 e64699a0 2461ebf9 25c2c7b9

xQB2 ,1 = 0001059a 4fb24deb 8667a051 bfc945a6 e20e2135

ca957fdd a2b130ff 1806b39c 14f9c97e 174e18c6

73f4dbe3 e64699a0 2461ebf9 25c2c7b9

xRB2 ,0 = 00004a01 53e81db2 b207c2d4 9cc9c890 c660622d

7785390f 637fa6d6 f44e6787 266dbc35 100f2130

c5c6f60b 3351c140 4ce94455 a3517d60

xRB2 ,1 = 000083ec 47621b2c 28213cd2 95cf9731 dc0d41f9

a79332cd 53df0535 e132f50e ddc026b7 66d32c9a

1ba4f05d 732eeed5 7e031f07 480913c6

According to [5], the parameter set M12(P) obtained
by the above computation is expected to lead in an efficient
SIDH defined over F2 of which performance is slightly bet-
ter than that of F1.

5. Conclusion

To obtain a public parameter set of the SIDH defined over an
attractive QEF Fi without time-consuming computation, the
authors propose to convert the existing parameter set defined
over F1 = Fp[α]/(α2+1) to Fi by using a low-computational
complexity isomorphic map F1 → Fi. In this paper, the au-
thors provide a construction method of the isomorphic map
and give a sample conversion associated with the existing
parameter set SIKEp434.
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Séries A, vol.273, pp.305–347, 1971.

[7] D.V. Bailey and C. Paar, “Efficient arithmetic in finite field exten-
sions with application in elliptic curve cryptography,” J. Cryptol.,
vol.14, no.3, pp.153–176, 2001.

[8] Y. Nogami, A. Saito, and Y. Morikawa, “Finite extension field with
modulus of all-one polynomial and representation of its elements for
fast arithmetic operations,” IEICE Trans. Fundamentals, vol.E86-A,
no.9, pp.2376–2387, Sept. 2003.

[9] T. Kobayashi, “Oef using a successive extension,” Proc. 2000 Sym-
posium on Cryptography and Information Security, 2000.

[10] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein,
Springer Science & Business Media, 2013.

http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/978-3-642-25405-5_2
https://sike.org
https://sike.org
https://sike.org
https://sike.org
https://sike.org
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/978-3-662-53018-4_21
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
http://dx.doi.org/10.1109/candar.2019.00030
http://dx.doi.org/10.1109/candar.2019.00030
http://dx.doi.org/10.1109/candar.2019.00030
http://dx.doi.org/10.1109/candar.2019.00030
http://dx.doi.org/10.1109/candar.2019.00030
http://dx.doi.org/10.1007/s001450010012
http://dx.doi.org/10.1007/s001450010012
http://dx.doi.org/10.1007/s001450010012

