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SUMMARY High level synthesis (HLS) is a source-code-driven Reg-
ister Transfer Level (RTL) design tool, and the performance, the power
consumption, and the area of a generated RTL are limited partly by the de-
scription of a HLS input source code. In order to break through such kind of
limitation and to get a further optimized RTL, the optimization of the input
source code is indispensable. Routing congestion is one of such problems
we need to consider the refinement of a HLS input source code. In this pa-
per, we propose a novel HLS flow that performs code improvements by de-
tecting congested parts directly from HLS input source code without using
physical logic synthesis, and regenerating the input source code for HLS.
In our approach, the origin of the wire congestion is detected from the HLS
input source code by applying pattern matching on Program-Dependence
Graph (PDG) constructed from the HLS input source code, the possibility
of wire congestion is reported.
key words: wire congestion, high level synthesis, source code compiler,
LLVM

1. Introduction

From the request of short Time-to-Market, the high level
synthesis (HLS) technology is indispensable for dealing
with the increase of design complexity and the advance of
deep-submicron technology. The advantages of utilizing
HLS technology include saving RTL design time, easiness
of mapping the process technology to RTL, etc. The pro-
ductivity of the design with using HLS improves consider-
ably over the RTL hand-coding. However, in many cases,
the output RTL design generated by HLS technology may
have a higher wire congestion which may lead to timing
failure, extra power consumption, and extra area overhead
in the layout design phase. In worst case, it results in de-
sign failure due to a lack of routability of wires in congested
layout areas.

In many conventional design flows, routing conges-
tion problems cannot be recognized before applying phys-
ical logic synthesis which is a simplified layout phase prior
to detailed Place and Route (P&R). When the wire conges-
tion is found, we need to identify the root cause of it and,
if necessary, modify the HLS input source code described
in SystemC or C/C++ in order to improve the RTL design
generated by the HLS. In general, the improvement and
the correction of the HLS input source code are repeated,
which degrades design productivity. The abstraction level of
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HLS input source code is higher than the conventional Ver-
ilog/VHDL hardware description model. This abstraction
leads to the difficulty of grasping intuitively the hardware
implementation from the HLS input source code. Moreover,
it is still more difficult to resolve congestion problems due
to the lack of physical information in HLS. It further aggra-
vates productivity. Introduction of a new congestion aware
HLS design flow is imperative in order to mitigate the prob-
lem.

The wire congestion has long been a well-known prob-
lem in logic synthesis. The methods for congestion mapping
and congestion minimization during logic synthesis have
been proposed in [5], [6]. These methods explore the trade-
offs between area minimization and congestion minimiza-
tion by logic synthesis. The commercial logical synthesis
tools can improve congestion and timing based on the phys-
ical information obtained from layout tools [7]. However,
this approach uses logic synthesis and cannot be applied to
HLS input source code.

As for congestion aware HLS, layout-friendly HLS ap-
proach [4] has been proposed to improve the congestion by
changing the register/resource allocation of RTL architec-
ture generated from HLS and by placement within slack
time of interconnect delay and logic delay. The approach
in [1] is based on Simulated Annealing with the cost func-
tion value which is obtained from a previous placement. J.
Cong and et al. [3] proposed a method of structural metrics
called spreading score to handle the congestion problem at
the HLS phase. The approach proposed in [8] is a design
flow that links congestion data obtained from physical logic
synthesis and the synthesis data obtained from HLS with
focusing on RTL instances (MUXes and DEMUXes). The
HLS input source code will then be rewritten so as to elimi-
nate congestion, which causes the iteration of detection and
improvement of wire congestion because the link between
the wire congestion and the HLS input source code is still
unclear.

Part of wire congestion issues in the high level synthe-
sis originates in a HLS input source code and a RTL design
generated with specified synthesis constraints and HLS di-
rectives. As for the latter, the wire congestion can be mit-
igated by changing synthesis constraints and/or HLS direc-
tives, and previous approaches mentioned above are in this
category. On the other hand, as for the former, the HLS
input source code must be modified for avoiding wire con-
gestions, and none of the above mentioned approaches tried
to detect wire congestion directly from HLS input source
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code.
In this paper, we propose an approach to detect wire

congestion directly from HLS input source code without re-
lying on physical logic synthesis. Our approach is based on
the detection of the generation of MUXes and DEMUXes
from HLS input source code, and our method is imple-
mented as a part of the source code complier phase which
is placed before the HLS phase in the HLS design flow. As
a concreate realization of our approach, we have focused on
two major types of code patterns for detecting wire conges-
tion in this paper. While these two types of pattern may not
cover all potential codes to yield wire congestion, our pro-
posal would provide an important framework which can be
extended by involving detection routines for different types
of potential code to yield wire congestion.

The rest of this paper is organized as follows. In Sect. 2,
the problems of the conventional congestion aware high
level synthesis flow are discussed. Section 3 introduces the
proposed congestion aware high level synthesis flow, and
explains our approach for detecting wire congestion from
HLS input source code in detail. The implementation and
experimental results are presented in Sect. 4. Finally, we
conclude this paper and discuss future works in Sect. 5.

2. Conventional Flow and Problems

2.1 Conventional Congestion Aware High Level Synthesis

The design size capable with using HLS is much higher than
that of RTL. Although the productivity improves, the design
of high abstraction level leads to the loss of hardware (HW)
description and makes it difficult to consider physical de-
sign. When a RTL design generated by HLS is placed and
routed, wire congestion may occur, which results in timing
failure, detours of wires, insertion of extra drivers, a large
chip area, etc.

A design flow to improve the congestion by back an-
notating to HLS input source code from RTL design gen-
erated by HLS has been proposed in [8], which is shown
in Fig. 1. The design flow has two additional steps; Con-
gestion Detection and Congestion Improvement. In Con-
gestion Detection step, a physical logic synthesis tool is
used for detecting the congestion. From the analysis of
past layout results, they found that almost all congestions
come from large multiplexers (MUXes) and de-multiplexers
(DEMUXes). After running the physical logic synthesis,
the congestion aware HLS design flow in Fig. 1 reports the
MUXes and DEMUXes located in the congested area.

In Congestion Improvement step, designers analyze the
congestion information, HLS input source code and HLS di-
rectives to find the root causes of the congestion. According
to the identified root causes, designers will improve conges-
tion either by changing the HLS input source code or by
changing HLS directives to generate different RTL designs.
Before the netlist is sent to a layout design team, the con-
gestion can be fixed earlier by these two steps.

Fig. 1 Congestion aware HLS design flow [8].

2.2 Problem of Conventional Congestion Aware HLS
Flow

The conventional design flow has two major problems in
connection with wire congestion as follows.
The mixed causes of the congestion:

In the conventional design flow, the congestion report
is obtained only after physical logic synthesis applied to
a RTL design generated by HLS. The congestions indi-
cated in the report include not only logic-induced conges-
tions but also layout-induced congestions. Logic-induced
congestion can be further divided into several categories
depending on its root cause, such as HLS-input-source-
code-induced congestion, resource-sharing-in-HLS-induced
congestion [4], logic-synthesis-induced congestion. HLS-
input-source-code-induced congestion (HLS-input-induced
congestion, in short) is a wire congestion which originates
in a HLS input source code. An example of HLS-input-
induced congestion can be seen in the pair of HLS input
source code given in Fig. 2 and a datapath circuit shown in
Fig. 3, which is obtained from the code by HLS, where DE-
MUXes are generated as a result of HLS input source code
description, and they may cause wire congestion depending
on the numbers and the sizes of these DEMUXes. Addi-
tional wire congestions may also occur as a side effect of
other logic-induced congestion around MUXes/DEMUXes.
A number of congestions may be yielded by the mixture
of several different causes as well. In order to cancel or
mitigate the congestions, individual causes of each conges-
tion must be identified so that HLS-input-induced conges-
tion is resolved at the HLS input source code level, resource-
sharing-in-HLS-induced congestion is resolved in HLS with
changing HLS constraints and/or directives, logic-synthesis-



TATSUOKA and KANEKO: HIGH LEVEL CONGESTION DETECTION FROM C/C++ SOURCE CODE FOR HIGH LEVEL SYNTHESIS
1439

Fig. 2 Sample source code in [8].

induced congestion is resolved at the logic synthesis level,
and layout-induced congestion is resolved at the layout
level. However the identification of individual causes of
each congestion from the report obtained only after phys-
ical logic synthesis is difficult.
Congestions caused by unspecified multiplexors:

From the analysis of past layout results, it was found
that almost all congestions come from large MUXes and
DEMUXes. However, as far as the authors know, there was
no enough discussion on the relation between the size of
MUXes/DEMUXes and the degree of congestion. In ad-
dition, considering the detection and the reduction of the
wire congestion due to large MUXes/DEMUXes, we need
to identify the instruction lines in HLS input source code,
which will generate MUXes/DEMUXes, and also we need
to evaluate the size of each MUX/DEMUX from the instruc-
tion lines. The conventional design flow does not handle
these issues.

In this paper, we focus on wire congestion induced by
HLS input source code, and present a method to detect it.

Fig. 3 HLS output RTL in [8].

3. Detection of (DE)MUX-Originated Wire Conges-
tions

3.1 Congestion Aware High Level Synthesis Flow

The congestion aware high level synthesis flow proposed in
this paper is illustrated in Fig. 4 [12], in which our proposed
congestion detection phase is incorporated. In this conges-
tion detection phase, we will detect code lines in the HLS
input source code which yield MUXes and DEMUXes, and
estimate how heavy wire congestion is to occur by these de-
tected MUXes and DEMUXes.

As for HLS-input-induced wire congestion, we fo-
cus on wire congestion induced by MUXes/DEMUXes. A
MUX will be introduced into RTL model when (Fact 1);
with respect to a single variable, there exist multiple ways
to compute its value, and one of them is chosen in run-time
by SWITCH statement, IF statement, etc., or (Fact 2); with
respect to a single computation result, there exist multiple
candidate variables to which the result is substituted, and
one of them is chosen in run-time. Normally, an ARRAY
whose index is determined in run-time is the object for this
Fact 2. Our detection of (DE)MUX relies on the above two
cases. We introduce pattern matching on Program Depen-
dence Graph (PDG) [11] and extended PDG (ePDG). The
final decision of wire congestion (or not) will be made by
comparing the estimated number of wires running around
MUX/DEMUX with an available number of wires running
on a unit area in the physical design.

3.2 Program Dependence Graph

Let Gp =
(
Np, Ep, entry

)
be a (statement-level) PDG, where

Np is the set of statements in a source code p, Ep ⊆

Np × Np × {DD,CD, true, f alse} is the set of edges, and
entry ∈ Np represents a unique starting statement. For
each edge (s, t, type), s and t are source node and destination
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Fig. 4 Proposed congestion aware HLS flow.

node, respectively, and type ∈ {DD,CD, true, f alse} repre-
sents edge type, where DD represents data dependence, CD
represents control dependence (true/false of the condition is
not concerned), true represents control dependence valid for
the case that the condition is fulfilled, and f alse represents
control dependence valid for the case that the condition is
not fulfilled.

Let REF(n) be the set of variables referred from a state-
ment n ∈ NP, and let DEF(n) be the set of variables whose
values are determined in the statement n ∈ NP. It is clear
that (s, t,DD) ∈ Ep means that there exist a variable w such
that w ∈ DEF(s) and w ∈ REF(t).

3.3 Extended Program Dependence Graph

We will extend the definition of PDG so as to treat depen-
dence relation between variables (and constant data) and
instructions within a statement as well. We will treat in-
structions and variables/constant which appear in a single
program statement as nodes of extended PDG (ePDG) and
consider edges connecting them.

For example, the statement-level PDG for a source
code shown in Fig. 5 is illustrated in the left side of Fig. 6,
where node 4 and node 6 correspond to the statements in
the 4th line and 6th line, respectively. On the other hand,
the right hand side of Fig. 6 is an ePDG for the same source
code, in which variable/instruction-level dependence is rep-
resented in addition to the statement-level dependence by in-
troducing nodes “num” and “ret” and an edge between them
instead of the statement node “4”, and by introducing nodes
“num”, “−1”, “*” and “ret” and edges between them instead
of the statement node “6”. A node of the original statement-
level PDG, which corresponds to one statement, will be con-
sidered as a super node (an oval drawn with dashed line in

Fig. 5 A sample program code.

Fig. 6 Statement-level PDG (left hand side) and extended PDG (right
hand side) for the sample code shown in Fig. 5.

Fig. 7 ePDG pattern of Pattern 1.

the right of) in the ePDG.

3.4 Pattern Matching on Dependence Graph

In order to extract MUXs/DEMUXs from a PDG/ePDG, the
following patterns are considered.

Pattern 1: Corresponding to Fact 1, Pattern 1 is used for
finding a variable which is to be computed in multiple ways
and is determined in run-time.

Pattern 1 is a structural pattern on PDG/ePDG, which
consists of a control node C and statement nodes as the des-
tinations of the control dependence relations from C, which
contain a common data node D to be determined in the
statement. Such a data node D will be hereinafter called
a “VART”; a Variable selected At Run Time. Figure 7 illus-
trates the structure of Pattern 1, in which C1 is a common
control node of multiple destinations (the set of super nodes
{s1, s2, . . . , sm}), and Dx is a common data node in all s1,
s2, . . . , sm, whose value is to be computed in one of the
statements (that is, a VART).

Pattern 2: Corresponding to Fact 2, Pattern 2 is used
for finding an ARRAY whose index is determined only run
time.
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Fig. 8 ePDG pattern of Pattern 2.

Fig. 9 ePDG pattern of Pattern 2 with loop.

On the ePDG, Pattern 2 consists of an ARRAY node
Darray, a VART node Dx and a data dependence (Dx, Dar-
ray, DD), where Dx is used as the index for Darray. Figure 8
illustrates Pattern2.

Pattern 2 in a loop: ARRY type variable is frequently
used together with for/while/do-while statement, and the
size of (DE)MUX which affects wire congestion is tend to
be larger in particular when for/while/do-while statement
cannot be unrolled and the array index cannot be determined
during the high level synthesis.

Figure 9 shows an example of PDG/ePDG which in-
cludes ARRAY computation in a loop. At first, by detecting
a cycle (C2 → D2 → Dc → C2) which includes a con-
trol node C2, we recognize that the control node C2 con-
trols a loop. Further, by checking statement-level nodes s0,
s1, and s2 which are destinations of true-type Control De-
pendency from C2, we recognize that an ARRAY type vari-
able Darray[i] is included in the loop as the destination of
data dependency (D0,Darray[i],DD). Next, we will check
whether the detected loop can be unrolled or not. To do
so, we find that the index i of Darray[i] is determined ei-
ther by the data dependency (Di0,Darray[i],DD) or by the
data dependency (Di,Darray[i],DD), where for the latter
we can further trace back to Di0 by another data dependency
(Di0,Di,DD). As a result, we can recognize that the index i
of Darray[i] is determined from Di0 which is outside of the
loop controlled by C2, and if this Di0 is a VART which is
detected by Pattern 1, the loop controlled by C2 cannot be
unrolled by a HLS tool.

As the result of the pattern matching, we will collect
the information listed below.

Darrayp : the name of array data whose index is VART
Widthp : Bit width of Darrayp

Rangep : Index range of Darrayp where
Rangep = “maximum index for Darrayp”

− “minimum index for Darrayp” + 1

Note that the information about the maximum (mini-
mum) index for Darrayp is obtained statically or dynami-
cally. It is possible to determine the range of the index stat-
ically if the first index and the final index of the array are
given with constants (in some cases after applying constant
folding and constant propagation as preprocessing). On the
other hand, when the index is determined as the result of
computations and the range of the possible value for the in-
dex cannot be determined statically, the program will be ex-
ecuted to monitor the possible values of the index, and the
range of the index is then determined.

3.5 Congestion Judgement

Wire congestion will be graded in general with the ratio be-
tween the factual number of wires passing through a bound-
ary separating two regions and the maximum available num-
ber of wires passing through the same boundary. Here we
consider the region for the layout of MUXes/DEMUXes.
Since we are at the stage of HLS input source code and it
is hard to estimate physical level layout exactly, it is as-
sumed that MUXes/DEMUXes are placed nearby to form
a MUXes/DEMUXes layout region.

The area (nominal area) of the MUXes/DEMUXes lay-
out region, Anominal, will be estimated by the area of two-
input MUX (two-output DEMUX), AMUX , multiplied by the
number of two-input MUXes (two-output DEMUXes).

Anominal = AMUX ×

P−1∑
p=0

(
Rangep − 1

)
×Widthp

The “space utilization” factor u is also considered,
which is the ratio of the nominal area over the actual
area of MUXes/DEMUXes layout region, and the area of
MUXes/DEMUXes layout region, Aregion, is estimated as its
nominal area divided by the space utilization u. Note that
the space utilization u may take a positive value equal to or
smaller than 1.

Aregion =
Anominal

u

Finally, we will estimate the maximum available
number Xof wires passing through the boundary of the
MUXes/DEMUXes layout region as follows.

X =

Mmax∑
L=Mmin

`

PL
× rL (1)

where each symbol represents a parameter as follows.

• ` =
√

Aregion: the square root of the area of MUXes/
DEMUXes layout region

• L: index number of each available layer
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Mmin ≤ L ≤ Mmax

• PL: wire pitch in a layer L of a target technology
• rL: wire availability ratio for a layer L

Note that `/PL is an estimate of the maximum number
of wires passing through one edge of a square region hav-
ing its area Aregion, and it is used as a bare estimate (before
multiplying rL) of the available number of wires. Note also
that the wire availability ratio rL is a parameter which repre-
sents the allowable maximum number of wires to be placed
in a layer over a multiplexor cell divided by the maximum
number of wires computed from a given wire pitch, and it is
a real number no larger than 1. The values of parameters PL
and rL are obtained from the physical logic library and the
design specification.

On the other hand, the factual number Z of wires re-
quired around the MUXes/DEMUXes of all arrays {Darray0,
Darray1, · · · , DarrayP−1} detected by the pattern matchings
is computed as follows.

Z =

P−1∑
p=0

{
Widthp ×

(
Rangep + 1

)
+

⌈
log2(Rangep)

⌉}
where Widthp ×

(
Rangep + 1

)
for inputs to be selected and

an output as the result of MUX (or an input to DEMUX and
possible outputs) and

⌈
log2(Rangep)

⌉
is for control signal

for selecting one from Rangep alternatives.
Using the factual number of required wires Z and

the estimated number of available wires X, the congestion
judgement is done as follows.

if(Z > X) {
There is a possibility of congestion.

}

If the inequality in the if-statement is true, it is judged
that the wiring is “congested (C)”, and if it is false, it is
judged that it is “not congested (NC)”.

As it is explained in this section, our challenge is to de-
termine the wire congestion from C/C++ source code which
will be an input to the high level synthesis. Our decision
does not rely on the detailed logic synthesis nor physical de-
sign, but relies on the numbers of required wires and avail-
able wires which are estimated under a quite simple layout
model. One way to bridge the gap between an actual design
and an estimation would be to incorporate more sophisti-
cated layout model, and another way would be to incorpo-
rate a compensation factor which is supported by the statis-
tics of the gap in actual design experiences. These directions
to improve our approach are beyond the scope of this paper,
and remain as future works.

4. Experiments

4.1 Implementation

Our proposed congestion detection has been implemented
as a part of LLVM-based Source Code Compiler. As it is
shown in Figure 10, the PASS flow consists of three proce-
dures, i.e., clang, constant propagation and folding, and our
congestion detection.

The Frontend in this flow is clang for parsing, validat-
ing and diagnosing errors in the input source code, then the
translation of the code into LLVM IR. The IR is fed through
several analysis and optimization PASSes to improve the
code. The HLS input source code has parameters that can
be replaced with constants and others that can’t be replaced.
Before entering to the PASS to analyze a ePDG for con-
gestion detection, the IR is fed into “constant propagation
and constant folding” phase (PASSes : “–constprop” and “–
constmerge” provide by LLVM) to replace a parameter in-
volving only constant operands with a constant value. After
those pre-processing, the wire congestion detection PASS
executes the pattern matching, congestion estimation, con-
gestion judgement as mentioned in the previous section and
reports the result of congestion judgement.

4.2 Congestion Detection

An input source code shown in Fig. 2 is used in the exper-
iment. This code is the same with one example tested in
[8]. A RTL design as an output of HLS is synthesized by
C-to-Silicon compiler (CtoS). The operations applied to the
6 different arrays from A[] to F[] on lines 35 to 40 in the
sample code are implemented using DEMUXes as shown in
Fig. 3, which was reported in [8]. Especially when directive
is “loop unroll”, a terrible wire congestion occurs. In the ex-
periment, the variants of the input source code are prepared,

Fig. 10 The PASS flow chart in the source code compiler.
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where each variant contains the different number of arrays,
i.e., the array A[] alone up to all of six arrays from A[] to
F[].

In our experiment, as for the physical information, we
assume that the cell utilization is 50% (or 70%), multiplexor
cell area is 0.7 µm2, and the wire availability ratio r1 of
Metal 1st layer (M1) is 0% because many wires are used
for intra-cell connections. The layers other than M1 can
be used for wiring between RTL components and wires of
power supply in chip. We have tested two cases about avail-
able layers for multiplexors. In Case 1, four layers from M1
to M4 are available, while in Case 2, three layers from M1
to M3 are available. The physical information described in
the Tech.info. file is shown in Fig. 11.

The congestion detection PASS analyzes ePDG and
executes pattern matching to detect wire congestion. The
ePDG of the test code with one array A[] is shown in Fig. 12.
Considering ePDG of the test source code, Di0 of pattern 1
is “start.0” and “end.0”. where the numerical extension “.0”
is to avoid the overlap of the names of nodes when there are
multiple variables having the same name. Dx of pattern 2
is “start.0”. The loop part is (“start.1” → “cmp” → “inc”
→ “start.1”). The array node is “array A”. The parameter

Fig. 11 Tech.info.file.

Fig. 12 ePDG of the test code with one array.

“start.1” that is used in the while statement can take a value
from 0 to 9, so the parameter “start.1” can be implemented
as a 4-bit variable. For example, regarding array A[], the
number Z of signal wires which are selected via MUX can
be calculated from the ranges of “start” and “end” for the
array node, maximum index = 9, minimum index = 0, and
the bit width of the array (we assume it to be 32 bits).

Table 1 shows experimental results for two different
cases of available layers, for two different cases of utiliza-
tion parameter 0.5 or 0.7, and for each of 6 variants of input
source codes, each of which has different number of arrays.
The columns “Z”, “X” and “judge C/NC” show our results
of the number of required wires, the number of available
wires and the decision of congested (C) or not congested
(NC), while the column “Congestion[%]” shows the result
of the wire congestion obtained from the physical logic syn-
thesis [7].

Physical logic synthesis [7] is a simplified layout de-
sign phase after the high level synthesis and prior to detailed
Place and Route. It lays out macros, ports, standard cells,
blocks, etc. in consideration of the timing of logic synthe-
sis, and acquires the information of connection wires. From
this information, it computes the overflow percentage of the
number of wires required in a predetermined unit area over
the number of available wires, and reports the result to a
designer, which is the value shown in the column “Conges-
tion[%]” in Table 1.

From Table 1, we can recognize a proper agreement
between our result (decision of C/NC) and the result of the
physical logic synthesis (non-zero/zero percentage of over-
flow (congestion)) except one instance (utilization = 0.5,
layers M1 to M3, # of arrays = 2).

Borrowing the idea of overflow from the physical logic
synthesis, we can introduce the overflow in our congestion
detection as;
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Table 1 Experimental results.

Overflow =

0 i f Z ≤ X
Z − X

X
i f Z > X

where Z is the number of required wires and X is a esti-
mated number of available wires as it is explained before. If
we apply this overflow to our experimental result, we have
0% for utilization 0.5 and layers M1 to M4, 3.42% for uti-
lization 0.5 and layers M1 to M3, 0% for utilization 0.7 and
layers M1 to M4, and 22.4% for utilization 0.7 and layers
M1 to M3. If we compare these values with the congestion
reported by the physical logic synthesis for the congested
cases, there is un-negligible gap for their absolute values,
but we can see a similar tendency, i.e., the congestion for
utilization 0.7 and layers M1 to M3 reported from the physi-
cal logic synthesis is about 5.2 times larger (in average) than
that for utilization 0.5 and layers M1 to M3, while it is about
6.5 times larger in our overflow estimation from C/C++

source code. Our overflow estimation relies on the numbers
of required wires and available wires which are estimated
under a quite simple layout model. In order to bridge the
gap between an actual design and an estimation would be to
incorporate more sophisticated layout model, and/or to in-
corporate a compensation factor which is supported by the
statistics of the gap in actual design experiences.

4.3 Examples of Code Rewriting for Mitigating Wire Con-
gestion

The formal discussion on how HLS input source code can
be rewritten in order to mitigate HLS input source code-
induced wire congestion is beyond the scope of this paper.
In this subsection, using the same test source code (Fig. 2)
with the previous experiment, two examples of rewriting of
the source code are presented, by which HLS-input-induced
wire congestion is mitigated. The basic idea of rewriting is
the avoidance of ARRAY computation in a loop, which is
indexed by a VART.

Figure 13 shows the first example of rewriting of Fig. 2.
In this rewriting, ARRAY computations are moved into in-
dividual “case” blocks, and “UNROLL” option is given to
the loop. Within each case block, the start index and the last
index are no longer VARTs. Figure 14 shows the second
example of rewriting. In this rewriting, the loop computa-
tion is eliminated by replacing it with conditional branches.

Fig. 13 First example of rewriting HLS input source code.

The actual transformation from Fig. 2 to Fig. 14 is briefly
demonstrated in Appendix A.

Table 2 shows the result of Physical logic synthesis for
Case2 (using layers M1 through M3) with utilization 0.7,
from which we can find that the wire congestion is properly
mitigated by using rewritten HLS input source codes.

4.4 Comment on Applicability

While the test sample source code used in the experiment
(Fig. 2) is composed with “switch-case” statement for con-
ditional branching and “while” statement for looping, our
detection from C/C++ source code relies on the pattern
matching on ePDG, and it does not strongly rely on spe-
cific instructions. Conditional branching by “if-else” state-
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Fig. 14 Secondt example of rewriting HLS input source code.

Table 2 Comparison of wire congestions reported by Physical logic syn-
thesis.

ment, nested-“if” statement, looping with “do-while” state-
ment and “for” statement can be analyzed similarly (see
Appendix-B). Current version of our software implemen-
tation of wire congestion detection is a test version with a
limited ability of pattern matching on ePDG, but the appli-
cability to a larger and complicated HLS input source code
would be improved by enhancing the pattern matching abil-
ity without changing the theoretical bases proposed in this
paper.

5. Conclusion and Future Work

This paper proposes a wire congestion detection from

C/C++ source code in a high level synthesis flow. Our
approach is based on the detection of the generation of-
MUXes and DEMUXes, and the comparison between the
number of required wires and the estimated number of avail-
able wires. The detection algorithm is implemented as a
part of the source code complier phase which is placed be-
fore the HLS phase in the HLS design flow. Our proposed
flow can improve two problems in the conventional conges-
tion aware HLS flow, i.e., the identification of logic-induced
cause of congestion and the relation between the number of
MUXes/DEMUXes and the occurrence of wire congestion.

Our congestion decision relies on the numbers of re-
quired wires and available wires which are estimated un-
der a quite simple layout model. One way to bridge the
gap between an actual design and an estimation would be
to incorporate more sophisticated layout model, and another
way would be to incorporate a compensation factor which is
supported by the statistics of the gap in actual design experi-
ences. These directions to improve our approach remain as
future work.
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Table A· 1 Relation between idx and indexes used for ARRAY compu-
tations. Circle represents a combination of idx value and index number
used for computation, while a blank represents an unused combination of
idx and index number.

idx=default (i.e., idx>5), and the index 1 is used for idx=1,
idx=5 or idx=default. In this way, for each index number,
conditions are generated as;

bool idx0 = (idx == 0 || idx default);
bool idx1 = (idx == 1 || idx == 5 || idx default);
bool idx2 = (idx1 || idx == 2);
bool idx3 = (idx2 || idx == 3);
bool idx4 = (idx3 || idx == 4);
bool idx8 = (idx == 3 || idx == 5 || idx default);
bool idx5 = (idx == 2 || idx8);
bool idx6 = (idx5);
bool idx7 = (idx5);

where Boolean variable idxj becomes true depending on idx
when arrays with index j are used for computation.

Appendix B: Variants of ePDG Patterns

Figure 7 shows an ePDG pattern (Pattern 1) for a VART
which is defined from a conditional branch specified with
“switch” statement. Variants of pattern for detecting
VART defined from conditional branch specified with “if-
else” statement and nested-”if” statement are illustrated in
Fig. A· 1. On the other hand, Fig. 9 shows ePDG pattern for
detecting ARRAY computation in “while” loop (Pattern 2).
ARRAY computation in “for” loop can be also detected by
the same ePDG pattern shown in Fig. 9. With respect to AR-
RAY computation in “do-while” loop, ePDG pattern shown
in Fig. A· 2 will be used.

Fig. A· 1 Variants of ePDG pattern for detecting VART. The left hand
side is a pattern created from “if-else” statement, and the right hand side
from nested-“if” statement.

Fig. A· 2 A variant of ePDG pattern for detecting ARRAY computation
in “do-while” loop.
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