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Boosting CPA to CCA2 for Leakage-Resilient Attribute-Based
Encryption by Using New QA-NIZK

Toi TOMITA† ,††a), Nonmember, Wakaha OGATA†, Member, and Kaoru KUROSAWA†† ,†††, Fellow

SUMMARY In this paper, we construct the first efficient leakage-
resilient CCA2 (LR-CCA2)-secure attribute-based encryption (ABE)
schemes. We also construct the first efficient LR-CCA2-secure identity-
based encryption (IBE) scheme with optimal leakage rate. To obtain our
results, we develop a new quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) argument for the ciphertext consistency of the LR-CPA-secure
schemes. Our ABE schemes are obtained by boosting the LR-CPA-security
of some existing schemes to the LR-CCA2-security by using our QA-NIZK
arguments. The schemes are almost as efficient as the underlying LR-CPA-
secure schemes.
key words: leakage-resilience, CCA2-security, attribute-based encryption,
QA-NIZK, simulation-soundness

1. Introduction

1.1 Leakage-Resilient Cryptography

Traditional security notions for encryption schemes such
as IND-CPA/CCA2 implicitly assume that the secret key
is completely hidden from an adversary. However, in the
real-world, an adversary may learn some partial information
on the secret key by side-channel attacks [1] or by cold-boot
attacks [2].

To tackle this problem, Akavia et al. [3] introduced
the bounded memory leakage (BML) model and formulated
leakage-resilient CPA (LR-CPA) security of public-key en-
cryption (PKE) schemes. Soon after, Naor and Segev [4]
defined LR-CCA2 security. In the BML model, the total
amount of key leakage is bounded. Brakerski et al. [5] and
Dodis et al. [6] independently introduced the continual mem-
ory leakage (CML) model, where there is a notion of time
periods and secret keys are updated at the end of each time
period. In the CMLmodel, an adversary is allowed to obtain
a limited amount of leakage of secret keys in each time pe-
riod, but there is no limitation on the total amount of leakage
that the adversary obtained in all time periods. An LR-
CPA/CCA2-secure PKE scheme in the BML or CML model
is IND-CPA/CCA2-secure even if some partial information
of the secret key is leaked to the adversary.
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We can also consider the leakage-resilient (LR) security
model of advanced encryption schemes such as attribute-
based encryption (ABE) schemes [3], [7]. Indeed, many ef-
ficient LR-CPA-secure ABE schemes have been constructed
so far [8]–[11].

To achieve LR-CCA2-security, there exists a generic
method to transform any LR-CPA-secure ABE schemes to
LR-CCA2-secure ones based on the Naor-Yung double en-
cryption paradigm [12]. The resulting scheme is, however,
very inefficient because this method uses a simulation-sound
NIZK [4], [13] or a true simulation extractable NIZK [14] in
addition to doubling the original (CPA) ciphertext.

Unfortunately, the generic construction is the only
known method to construct LR-CCA2-secure ABE scheme
except for special cases like identity-based encryption (IBE).
A natural open question arises:

Can we construct efficient LR-CCA2-secure ABE
schemes?

Next, we focus on IBE. For IBE,Hofheinz et al. [15] pre-
sented a (non-black-box) CPA-to-CCA2 transformation by
using a quasi-adaptive non-interactive zero-knowledge (QA-
NIZK) argument for linear subspaces, introduced by [16].
Their approach is very efficient, but cannot be used in the
leakage-resilient setting, as we will explain in Sect.1.3.

On the other hand, several LR-CCA2-secure IBE
schemes [13], [17]–[21], which are more efficient than the
generic construction, have been proposed. However, to the
best of our knowledge, no scheme is secure if more than
half of the secret key is leaked. Therefore, a second open
question that we are interested in is:

Can we construct efficient LR-CCA2-secure IBE
schemes that allow leakage of most of the secret key?

1.2 Our Contributions

This paper gives positive answers to the above questions. We
develop new LR-CCA2-secure ABE schemes that are more
efficient than the generic construction. Our schemes are
obtained by boosting the LR-CPA-security of some existing
schemes [9], [11] to the LR-CCA2-security. The schemes
are almost as efficient as the underlying LR-CPA-secure
schemes, and in particular, each ciphertext is only 2 group
elements larger than those of the underlying schemes. We
summarize our results below.

1. We construct the first LR-CCA2-secure ABE schemes

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers



144
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Table 1 Summary of the differences between our scheme and existing schemes. The schemes in the
column of m = 0 are a QA-NIZK argument for just linear subspaces, and the schemes in the column of
m ≥ 1 are a QA-NIZK argument for (generalized) tagged linear subspaces.

Linear subspaces (m = 0) Tagged linear subspaces (m ≥ 1)
No-simulation-sound Already exist, e.g. JR13 [16] Already exist, e.g. JR13 [16]
Simulation-sound Already exist, e.g. KW15 [23] Ours

for a large class of predicates. Our ABE scheme allows
its master secret key leakage and user’s secret key in the
CML model. By combining with [11], we obtain the
following concrete LR-CCA2-secure ABE schemes:

• Inner-product encryption (IPE) and non-zero IPE,
• (Doubly) spatial encryption,
• Key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE) for boolean formulae,

• KP-ABE and CP-ABE for arithmetic formulae,
• Broadcast encryption.

The leakage rates of the above LR-CCA2-secure ABE
schemes are the same as the LR-CPA-secure one of [11].

2. We construct the first LR-CCA2-secure IBE scheme
with optimal leakage rate†. More specifically, our IBE
scheme is resilient to the leakage of (1 − o(1))-fraction
of its user’s secret key in the BML model, but does not
allow its master key leakage.

To obtain our results, we develop a new QA-NIZK ar-
gument for the ciphertext consistency of the LR-CPA-secure
schemes. Our new QA-NIZK argument has simulation-
soundness and a small proof, that allows us to boost LR-
CPA-security to LR-CCA2-security efficiently.

A QA-NIZK argument is an NIZK argument in which
a common reference string depends on the language. We
develop the first simulation-sound QA-NIZK argument for a
language that is characterized by generalized tagged linear
subspaces (GTLS), that is defined as

LGTLS
ρ B

{
([c],x) | ∃r ∈ Ztq s.t. c =Mxr

}
, (1)

where ρ B ([M], [M′1], . . . , [M
′
m]) ∈ G

n×t × (Gn′×t )m,
n > t, n′ ≥ 1, xi is the i-th element of x ∈ Zmq , and
Mx B

(
M∑m

i=1 xiM
′
i

)
. (We use implicit representation of

group elements as in [22]. See Sect. 2.1.) Previously,
the simulation-sound QA-NIZK argument is known only for
m = 0 (linear subspaces). No-simulation-sound QA-NIZK
argument is known for m = 2 and x1 = 1 (tagged linear
subspaces). We also show that a QA-NIZK argument for the
above language implies one for the following language:

L̂GTLS
ρ B

{
([c], L) | ∃r ∈ Ztq s.t. c =MLr

}
, (2)

where L is a linear map and ML B
(

M
L(M′1 ,...,M

′
m)

)
. We

summarize the differences between our QA-NIZK argument
†The leakage rate is defined as the ratio of the amount of allowed

leakage to the secret key size. Optimal leakage rate means that the
leakage rate can be arbitrarily close to 1 by setting parameters
appropriately.

and the existing ones in Table 1.
We believe that our new QA-NIZK argument has other

applications because it supports more general languages than
languages for just linear subspaces before.

1.3 Technical Overview

Here, we provide overviews of our techniques.

How to boost CPA to CCA2 for leakage-resilient ABE.
As mentioned in Sect. 1.1, we can obtain LR-CCA2-secure
schemes from LR-CPA-secure schemes through the Naor-
Yung paradigm [12]. The resulting scheme is, however, very
inefficient.

In [24]–[26], the authors constructed CCA2-secure
PKE schemes by using an efficient simulation-sound QA-
NIZK argument for linear subspaces. In these PKE schemes,
the ciphertext consistency can be verified by a linear equa-
tion, which depends only on a public key. In the case of
ABEs, however, the consistency check equation depends not
only on the public parameter (which is a fixed parameter)
but also on the attribute (which is a variable). Therefore,
we cannot use existing (simulation-sound) QA-NIZK argu-
ments for linear subspaces to construct LR-CCA2-secure
ABE schemes in general.

On the other hand, in [15], [27], [28], the authors
showed a CPA-to-CCA2 transformation for (not leakage-
resilient) IBE schemes by using a simulation-sound (tag-
based) QA-NIZK argument for linear subspaces. At first
glance, thanks to the public verifiability of the QA-NIZK ar-
gument, their approach seems to provide LR-CCA2-secure
schemes by only replacing the CPA-secure schemes with
LR-CPA-secure ones. Unfortunately, it does not work well,
because the proof of the (non-LR) CCA2-security in their
approach makes use of the property that a secret key is uni-
formly random from the adversary’s view point. In the LR-
security model, the adversary can learn partial knowledge
about the secret key, and hence we cannot ensure the uni-
form randomness of it.

From the above discussion, it is difficult to construct
LR-CCA2-secure ABE schemes by using the existing very
efficient QA-NIZK schemes. We solve this problem by de-
veloping a new simulation-sound QA-NIZK argument.

How to achieve simulation-sound QA-NIZK argument
for GTLS. Our simulation sound QA-NIZK argument for
generalized tagged linear subspaces is obtained as a (non-
trivial) combination of the QA-NIZK arguments by Jutla and
Roy [16] and by Kiltz and Wee [23]. The former is no simu-
lation sound one for tagged linear subspaces and the latter is
a simulation sound one for linear subspaces. Our main ob-
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servation is to consider designated verifier (DV) variants of
these two QA-NIZK arguments. Then their security proofs
are greatly simplified, and we find out that these arguments
have a close relationship. This observation allows us to
construct the first simulation-sound QA-NIZK argument for
generalized tagged linear subspaces.

More details are as follows. The language for tagged
linear subspaces is defined as follows:

L
tagged
ρ B

{
([c], x) | ∃r ∈ Ztq s.t. c =Mxr

}
, (3)

where ρ B ([M], [M′0], [M
′
1]) and Mx B

(
M

M′0+xM′1

)
. In

the DV variant of Jutla-Roy’s scheme, a verifier has a secret
verification keywhich is randomvectors k ∈ Zn′q and k0,k1 ∈
Znq , and the common reference string (CRS) is the projections
[p0] B [M>k0 +M′0

>k] and [p1] B [M>k1 +M′1
>k]. To

prove that ([c], x) satisfies [c] = [Mxr] for some r ∈ Ztq ,
the prover outputs π B [r>(p0 + xp1)] as a proof. With the
verification key, the (designated) verifier can check whether
π = [c>kx], where kx B

(
k0+xk1

k

)
. By using k, k0, and k1

as a simulation trapdoor, a simulated proof is given by π̃ B
[c>kx]. Perfect completeness and zero-knowledge follow
from the following equation:

r>(p0 + xp1) = r>
(
M>(k0 + xk1) +

(
M′0
>
+ xM′1

>) k
)

= r>M>x kx

= c>kx .

Soundness is guaranteed by the fact that if c is outside the
span of Mx for x chosen by an adversary, then c>kx is
completely random givenM>k0+M′0

>k andM>k1+M′1
>k.

Now we observe that this scheme has similar struc-
ture to the DV variant of Kiltz-Wee’s scheme. Therefore,
by using their techniques, the scheme can be converted to
a simulation-sound and publicly-verifiable QA-NIZK argu-
ment.

The above QA-NIZK argument is a special case of a
QA-NIZK argument for the generalized tagged linear sub-
spaces (GTLS) given by Eq. (1), where m = 2 and x1 = 1.
This is one of our contributions. We further show that this
argument can be extended to the GTLS in this paper.

By a straightforward encoding, we also demonstrate
that a QA-NIZK argument for GTLS implies one for the
language in Eq. (2). We refer to Sect.3.3 for details.

Summary. Finally, we summarize how to construct our
LR-CCA2-secure ABE schemes.

1. We start from an LR-CPA-secure ABE scheme that the
ciphertext is written as [c] in Eq. (1), where x is the
attribute and r is a random vector used in encryption.
Indeed, the LR-CPA-secure IBE scheme of [9] and the
LR-CPA-secure ABE scheme of [11] satisfy this condi-
tion.

2. We construct a simulation-sound QA-NIZK argument
for the language given by Eq. (1). As mentioned above,
previously, the simulation-sound QA-NIZK argument

is known only for linear subspaces [16] (i.e., m = 0 in
Eq. (1)), and the no-simulation-sound QA-NIZK argu-
ment is known even for tagged linear subspaces [23]
(i.e., m = 2 and x1 = 1 in Eq. (1)). It is not an easy
task to extend these results to any m and any x1, . . . , xm.
Our new QA-NIZK argument is obtained as a (non-
trivial) combination of theQA-NIZK arguments by [16]
and [23]. Our main observation is to consider desig-
nated verifier variants of these two QA-NIZK argu-
ments.

3. The proposed LR-CCA2-secure ABE scheme is ob-
tained by adding the above simulation-sound QA-NIZK
proof to the ciphertext [c].

2. Preliminaries

Notations. We denote [a, b] as the set of {a, . . . , b} for any
a, b ∈ N with a ≤ b. We denote the empty string as ε and
the empty set ∅. We use x←$S to denote the process of
sampling an element x from S uniformly at random if S is
a finite set. We denote the bit length of element x as |x |. We
denote a security parameter as λ. For integers k > 1, η ∈ N
and a matrix M ∈ Z

(k+η)×k
q , we denote the upper square

matrix of M as M ∈ Zk×kq and the lower η rows of M as
M ∈ Z

η×k
q . Similarly, for a column vector v ∈ Zk+ηq , we

denote the upper k elements of v as v ∈ Zkq and the lower η
elements of v as v ∈ Zηq . Span(M) B

{
Mr | r ∈ Zmq

}
⊂ Znq

denotes the linear span of M. All the logarithms used in this
paper are in base 2.

All algorithms in this paper are probabilistic polynomial
time (PPT) unless we state otherwise. If A is an algorithm,
then we write a←$A(b) to denote the random variable a
outputted by A on input b.

Games. Following [29], we use code-based games to
define and prove security. A game contains procedures INIT
and FINALIZE, and some additional procedures P1, . . . ,Pn,
which are defined in pseudo-code. Initially, all variables
and all sets in a game are defined as 0 and empty (i.e.,
∅), respectively. If an adversary A is executed in game G
(denoted byGA), it first calls INIT and then obtains its output.
Next, it may make arbitrary queries to Pi (according to their
specification), and obtain their output. Finally, it makes one
single call to FINALIZE and stops, and G outputs d which is
the output of FINALIZE. We use GA ⇒ d to denote that G
outputs d after interacting with A.

Collision Resistant Hash Functions. LetH be a family of
hash functionsH : {0,1}∗ → X, whereX = Xλ is a finite set.
We assume that a hash function H is efficiently samplable
fromH .

Definition 1 (Collision resistance): We say that a family of
hash functions H is collision-resistant (CR) if for any PPT
adversary A,

AdvCR
H,A(λ) B Pr[x , x ′ ∧ H(x) = H(x ′) | H←$H,
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(x, x ′) ←$A(1λ,H)]

is negligible.

2.1 Pairing Groups and Matrix Diffie-Hellman Assump-
tions

Let GGen be a PPT algorithm that on input 1λ returns a de-
scriptionG = (G1,G2,GT ,q,P1,P2, e) of asymmetric pairing
groups, where G1,G2,GT are cyclic-groups of order q for a
λ-bit prime q, P1 and P2 are generators of G1 and G2, re-
spectively, and e : G1 ×G2 → GT is an efficient computable
(non-degenerated) bilinear map. Define PT B e(P1,P2),
which is a generator in GT .

We use implicit representation of group elements as
in [22]. For s ∈ {1,2,T } and a ∈ Zq , we define [a]s B
aPs ∈ Gs as the implicit representation of a inGs . Similarly,
for A ∈ Zn×mq , we define [A]s B APs ∈ G

n×m
s . Note

that it is efficient to compute [AB]s C [A]sB = A[B]s
given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 B e([A]1, [B]2) = [AB]T , which can be
efficiently computed given [A]1 and [B]2. From the linearity
of [·]s , we have a[A]s+b[B]s = [aA+bB]s for any a, b ∈ Zq
and [A]s, [B]s ∈ Gn×m

s .
Throughout this paper, we also use the following useful

notations from [30]. Let L : Ztq → Zt
′

q be aZq-linearmap. A
Zq-linearmap L can be encoded as amatrixL = (li, j) ∈ Zt×t

′

q

such that

L : Ztq 3
©­«
w1
. . .
wt

ª®¬ 7→ ©­«
∑t

i=1 li,1wi

. . .∑t
i=1 li,t′wi

ª®¬ ∈ Zt′q .
We can naturally extend a Zq-linear map L to a Zn×mq -linear
map and Gn×m

s -linear map as follows:

©­­«
W1
...

Wt

ª®®¬ 7→
©­­«
∑t

i=1 li,1Wi

...∑t
i=1 li,t′Wi

ª®®¬ and

©­­«
[W1]s
...

[Wt ]s

ª®®¬ 7→
©­­«
∑t

i=1 li,1[Wi]s
...∑t

i=1 li,t′[Wi]s

ª®®¬ ,
where W1, . . . ,Wt ∈ Z

n×m
q . Because they essentially share

the same structure, we employ the same notation L. Here,
we highlight the following commutativity:

L(·) and [·]s: For any w ∈ Ztq , we have L([w]s) = [L(w)]s .
L(·) and multiplication: For any W1, . . . ,Wt ∈ Z

n×k
q and

A ∈ Zk×mq , we have L([W1A]s, . . . , [WtA]s) =
L([W1]s, . . . , [Wt ]s)A.

L(·) and pairing: For any A ∈ Zn×kq and B1, . . . ,Bt ∈

Zk×mq , we have [A]1 ◦ L ([B1]2, . . . , [Bt ]2) =

L ([AB1]T , . . . , [ABt ]T ).

In the following, we denote L(w1, . . . , wt ) as L
(
(wi)i∈[1,t]

)
.

Next, we recall the definition of the matrix Diffie-
Hellman (MDDH) [22] and related assumptions [31].

Definition 2 (Matrix distribution): Let k, ` ∈ Nwith ` > k.
We call D`,k a matrix distribution if it outputs matrices in
Z`×kq of full rank k in polynomial time. By Dk , we denote
Dk+1,k .

Without loss of generality, we assume the first k rows
of A←$D`,k (i.e., Ā ∈ Zk×kq ) form an invertible matrix. For
a matrix A←$D`,k , we define the set of kernel of A as

ker(A) B {A⊥ ∈ Z`×(`−k)q | A>A⊥ = 0 ∈ Zk×(`−k)q

and A⊥ has rank (` − k)}.

Given a matrix A over Z`×kq , it is efficient to sample an A⊥
from ker(A).

The D`,k-Matrix Diffie-Hellman problem is to distin-
guish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s),
where A←$D`,k , w←$Zkq and u←$Z`q .

Definition 3 (D`,k-Matrix Diffie-Hellman assumption): Let
k ≥ 1 and ` > k be integers. Let D`,k be a matrix distribu-
tion and s ∈ {1,2,T }. We say that the D`,k-Matrix Diffie-
Hellman (D`,k-MDDH) problem is hard relative to GGen in
group Gs if for any PPT adversary A,

AdvMDDH
Gs ,D` ,k ,A

(λ) B
�� Pr[1←$A(G, [A]s, [Aw]s)]

− Pr[1←$A(G, [A]s, [u]s)]
��

is negligible, where the probability is taken over
G ←$ GGen(1λ), A←$D`,k , w←$Zkq , and u←$Z`q .

We define the D`,k-Kernel Diffie-Hellman (D`,k-
KerMDH) assumption [31] which is a natural search variant
of the D`,k-MDDH assumption.

Definition 4 (D`,k-Kernel Diffie-Hellman assumption):
Let k ≥ 1 and ` > k be integers. Let D`,k be a matrix
distribution and s ∈ {1,2}. We say that the D`,k-Kernel
Diffie-Hellman (D`,k-KerMDH) problem is hard relative to
GGen in group Gs if for any PPT adversary A,

AdvKerMDH
Gs ,D` ,k ,A

(λ)

B Pr[c>A = 0 ∧ c , 0 | [c]3−s←$A(G, [A]s)]

is negligible, where the probability is taken over
G ←$ GGen(1λ), A←$D`,k .

The following lemma shows that the D`,k-KerMDH
assumption is a relaxation of the D`,k-MDDH assumption.

Lemma 1 (D`,k-MDDH⇒D`,k-KerMDH [31]): For any
matrix distributionD`,k , ifD`,k-MDDH in groupGs is hard,
then D`,k-KerMDH in group Gs is hard.

We also define the externalD`,k-matrix Diffie-Hellman
(D`,k-exMDDH) assumption, which is a generalization of
the external decision linear assumption [32]. We emphasize
that we need k ≥ 2 to hold this assumption, unlike the above
assumptions.
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Definition 5 (external D`,k-MDDH assumption): Let k ≥
2 and ` > k be integers. Let D`,k be a matrix distribution
and s ∈ {1,2}. We say that the external D`,k-Matrix Diffie-
Hellman (D`,k-exMDDH) problem is hard relative to GGen
in group Gs if for any PPT adversary A,

AdvexMDDH
Gs ,D` ,k ,A

(λ) B
�� Pr[1←$A(G, [A]1, [A]2, [Aw]s)]

− Pr[1←$A(G, [A]1, [A]2, [u]s)]
��

is negligible, where the probability is taken over
G ←$ GGen(1λ), A←$D`,k , w←$Zkq , and u←$Z`q .

3. Quasi-Adaptive Non-Interactive Zero-Knowledge
Argument

A quasi-adaptive non-interactive zero-knowledge (QA-
NIZK) argument, introduced by Jutla and Roy [16], is an
NIZK argument that the common reference string depends
on the language for which proofs are generated.

In this section, we describe a simulation-sound QA-
NIZK argument used to boost CPA to CCA2 for leakage-
resilient ABE schemes. Our QA-NIZK argument is for
generalized tagged linear subspaces (GTLS) supporting a
language defined as

LGTLS
ρ B {([c]1,x) ∈ Gn+n′

1 × Zmq | ∃r ∈ Ztq s.t. c =Mxr},

where ρ B ([M]1, [M′1]1, . . . , [M
′
m]1) ∈ G

n×t
1 × (Gn′×t

1 )m, xi
is the i-th element of x, and Mx B

(
M∑m

i=1 xiM
′
i

)
. This is a

combination of the QA-NIZK arguments for tagged linear
subspaces by Jutla and Roy [16] and a simulation-sound one
for linear subspaces by Kiltz and Wee [23].

In Sect. 3.1, we first give the general definition of QA-
NIZK arguments. In Sect. 3.2, we then describe our one-
time simulation-sound QA-NIZK argument for GTLS†. In
Sect. 3.3, we show that a QA-NIZK argument for the above
language implies one for GTLS expressed by linear maps
(Eq. (2)).

3.1 Definition

Let par be a public parameter and Dpar be a probabil-
ity distribution over a set of strings {ρ}, that specifies a
witness relation Rρ with a corresponding language Lρ =
{y | ∃w s.t. Rρ(y, w) = 1}. We recall the formal defini-
tion of QA-NIZK arguments for a collection of languages
L B {Lρ}ρ∈Dpar .

Syntax. AQA-NIZK argument for L consists of the follow-
ing algorithms Π = (Gen, Prove, Ver, Sim).

Gen(par, ρ) → (crs, td): The generation algorithm takes as
input the public parameter par and a string ρ ∈ Dpar. It
outputs a common reference string crs and a trapdoor
td.
†Wecan also easily construct unbounded simulation-sound one.

Please refer to Appendix for detail.

INIT(ρ): // ρ ∈ Dpar
(crs, td) ←$ Gen(par, ρ)
Return crs

SIM(y): // Qs queries
π ←$ Sim(crs, td, y)
Qsim B Qsim ∪ {(y, π) }
Return π

FINALIZE(y∗, π∗):
If y∗ < LGTLS

ρ ∧ (y∗, π∗) <
Qsim:
Return Ver(crs, y∗, π∗)

Else: Return 0

Fig. 1 USS security game for QA-NIZK.

Prove(crs, y, w) → π: The proving algorithm takes as input
the crs, a statement y, and a witness w with Rρ(y, w) =
1, and outputs a proof π.

Ver(crs, y, π) → 1/0: The verification algorithm takes as in-
put crs, a statement y, and a proof π, and outputs 1 or
0.

Sim(crs, td, y) → π: The simulation algorithm takes as input
crs, td, and a statement y (not necessarily in Lρ), and
outputs a simulated proof π.

Perfect completeness. We say that a QA-NIZK Π sat-
isfies perfect completeness, if for all λ ∈ N, ρ ∈ Dpar,
(y, w) with Rρ(y, w) = 1, and (crs, td) ←$ Gen(par, ρ), we
have Pr[Ver(crs, y,Prove(crs, y, w)) = 1] = 1.

Perfect zero-knowledge. We say that a QA-NIZK Π satis-
fies perfect zero-knowledge, if for all λ ∈ N, ρ ∈ Dpar, (y, w)
with Rρ(y, w) = 1, (crs, td) ←$ Gen(par, ρ), the two distribu-
tions {Prove(crs, y, w)} and {Sim(crs, td, y)} are identical.

We define the simulation-soundness for a QA-NIZK
argument.

Simulation-soundness. We say that a QA-NIZK Π satis-
fies the (unbounded) simulation-sound (USS) if for any PPT
adversary A, AdvUSS

Π,A(λ) B Pr[USSA ⇒ 1] is negligible,
where Game USSA is defined in Fig.1.

We say that Π is one-time simulation-sound (OT-SS) if
A can make at most one query to SIM (i.e., Qs = 1). We de-
note the corresponding advantage function by AdvOT-SS

Π,A (λ).

Remark 1 (Variants of definitions of simulation-soundness):
Here, we use a stronger version of simulation-soundness
used in [15], [33] that requires (y∗, π∗) < Qsim, rather than
the weaker version used in [23], [34], [35] that only requires
y∗ < Qsim. As mentioned in [33], the weaker simulation-
soundness is not sufficient to construct a CCA2-secure en-
cryption scheme, because it does not prevent an adversary
from sending a forged challenge ciphertext as a decryption
query.

3.2 Construction: OT-SS QA-NIZK Argument for GTLS

Here, we show our OT-SS QA-NIZK argument for LGTLS B
{LGTLS

ρ }ρ∈Dpar . Let H = {H : {0,1}∗ → Zq} be a CR
hash function family. Our QA-NIZK argument ΠOT-SS =
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Gen(par, ρ = ([M]1, [M′1]1, . . . , [M
′
m]1)):

H←$H, A←$Dk ⊂ Z
(k+1)×k
q , K(0),K(1) ←$Z

n′×(k+1)
q

(Y(0),Y(1)) B (K(0)A,K(1)A)
For i = 1, . . . ,m:

K(0)i ,K(1)i ←$Z
n×(k+1)
q , (Y(0)i ,Y(1)i ) B (K

(0)
i A,K(1)i A)

[P(b)i ]1 B [M
>K(b)i +M′i

>K(b)]1 for b ∈ {0, 1}
crs B ({[P(b)i ]1, [Y

(b)
i ]2 }i ,b , {[Y

(b)]2 }b , [A]2, H)
td B ({K(b)i }i ,b , {K

(b) }b )

Return (crs, td)

Prove(crs, ([c]1, x), r): // c =Mxr
τ B H([c]1, x), [P

(b)
x ]1 B [

∑m
i=1 xiP

(b)
i ]1 for b ∈ {0, 1}

π B [(P(0)x + τP(1)x )
>r]1 ∈ Gk+1

1
Return π

Ver(crs, ([c]1, x), π = [u]1):

τ B H([c]1, x), [Y
(b)
x ]2 B

[∑m
i=1 xiY

(b)
i

Y(b)

]
2
for b ∈ {0, 1}

If [u]>1 ◦ [A]2 = [c]
>
1 ◦ [Y

(0)
x + τY(1)x ]2: Return 1

Else: Return 0

Sim(crs, td, ([c]1, x)):

τ B H([c]1, x), K(b)x B

(∑m
i=1 xiK

(b)
i

K(b)

)
for b ∈ {0, 1}

π B [(K(0)x + τK(1)x )
>c]1 ∈ Gk+1

1
Return π

Fig. 2 Our OT-SS QA-NIZK argument ΠOT-SS.

(Gen,Prove,Ver,Sim) is defined in Fig.2†.
To prove OT-SS ofΠOT-SS, we use the following lemma

adapted from [23].

Lemma 2: Let n,n′, t, k ∈ N. Then, for any full rankmatrix
M ∈ Zn×tq , any matrices M′1, . . . ,M

′
m ∈ Z

n′×t
q and A ∈

Z
(k+1)×k
q , and any (possibly unbounded) adversary A, we

have Pr[CoreAOT-SS ⇒ 1] ≤ 1/q, where Game CoreOT-SS is
defined in Fig.3.

Proof. To prove the lemma, fix matrices M ∈ Zn×tq ,
M′1, . . . ,M

′
m ∈ Z

n′×t
q , A ∈ Z(k+1)×k

q , and fix a non-zero vec-
tor â < Span(A). For any x∗ ∈ Zmq and c∗ ∈ Zn+n′q such that
c∗ < Span(Mx∗ ), there exist vectors m⊥1 , . . . ,m

⊥
m ∈ Z

n
q and

m⊥ ∈ Zn′q such that

©­­­­­­­«

M> O · · · O M′1
>

O M> · · · O M′2
>

...
. . .

...
O · · · O M> M′m>

x∗1c∗> x∗2c∗> · · · x∗mc∗> c∗>

ª®®®®®®®¬
©­­­­­­«

m⊥1
m⊥2
...

m⊥m
m⊥

ª®®®®®®¬
=

©­­­­­­«

0
0
...
0
1

ª®®®®®®¬
(4)

†As with the QA-NIZK argument proposed by Abe et al. [33],
our construction can be easily extended to a tag-based QA-NIZK
argument by adding the label lbl to the input of hash function. Thus,
our construction can be used in all the applications that require tag-
based QA-NIZK arguments.

INITCore:
K(0), K(1) ←$Z

n′×(k+1)
q , (Y(0),Y(1)) B (K(0)A,K(1)A)

For i = 1, . . . ,m:
K(0)i ,K(1)i ←$Z

n×(k+1)
q , (Y(0)i ,Y(1)i ) B (K

(0)
i A,K(1)i A)

P(b)i B M>K(b)i +M′i
>K(b) for b ∈ {0, 1}

crsCore B ({P(b)i ,Y(b)i }i ,b , {Y
(b) }b ,A)

Return crsCore

EVALCore(x, τ): // one query

K(b)x B

(∑m
i=1 xiK

(b)
i

K(b)

)
for b ∈ {0, 1}

Return K(0)x + τK(1)x

FINALIZECore([u∗]1, ([c∗]1, x∗), τ∗):
If [c∗]1 < Span([Mx∗ ]1) ∧ τ

∗ , τ ∧ [u∗]1 = (K
(0)
x∗ + τK(1)x∗ )

>[c∗]1:
Return 1

Else: Return 0

Fig. 3 Game CoreOT-SS for defining Lemma 2.

since c∗ < Span(Mx∗ ). By setting K(b) B K̂(b) +
sm⊥a⊥ and K(b)i B K̂(b)i + sm⊥i a⊥ for b ∈ {0,1}, where
s←$Zq , K̂(0), K̂(1)←$Z

n′×(k+1)
q , K̂(0)i , K̂

(1)
i ←$Z

n×(k+1)
q and

a⊥ ∈ ker(A), we can see that the following two distributions

(crsCore,K(0)x + τK(1)x , â>(K(0)x∗ + τK(1)x∗ )
>c∗) and

(crsCore,K(0)x + τK(1)x ,u)

are the same, where u←$Zq .
By a standard argument (e.g., complexity leverag-

ing), this means that the two distributions are the same
even if x∗ and c∗ are adaptively chosen after seeing
(crsCore,K(0)x + τK(1)x ). Hence, for any adversary A, we
have Pr[CoreAOT-SS ⇒ 1] ≤ 1/q since â>(K(0)x∗ + τK(1)x∗ )

>c∗ is
uniformly random from the A’s view point. �

Theorem 1: ΠOT-SS defined in Fig.2 has perfect complete-
ness and perfect zero-knowledge. Furthermore, if the Dk-
KerMDH problem in G2 is hard andH is a CR hash function
family, then ΠOT-SS has one-time simulation-soundness.

Proof. Perfect completeness and perfect zero-knowledge
follow readily from the fact that(

P(0)x + τP(1)x

)>
=

m∑
i=1

(
xiP(0)i + τxiP(1)i

)>
=

m∑
i=1

(
xi(K(0)i

>
M +K(0)>M′i) + τxi(K(1)i

>
M +K(1)>M′i)

)
=

©­­«
m∑

1=1
xiK(0)i

K(0)

ª®®¬
> ©­­«

M
m∑

1=1
xiM′i

ª®®¬ + τ
©­­«

m∑
1=1

xiK(1)i

K(1)

ª®®¬
> ©­­«

M
m∑

1=1
xiM′i

ª®®¬
= K(0)x

>
Mx + τK(1)x

>
Mx

= (K(0)x
>
+ τK(1)x

>
)Mx,
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INIT(ρ): // G0–G2

H←$H, A←$Dk ⊂ Z
(k+1)×k
q , K(0),K(1) ←$Z

n′×(k+1)
q

(Y(0),Y(1)) B (K(0)A,K(1)A)
For i = 1, . . . ,m:

K(0)i ,K(1)i ←$Z
n×(k+1)
q , (Y(0)i ,Y(1)i ) B (K

(0)
i A,K(1)i A)

[P(b)i ]1 B [M
>K(b)i +M′i

>K(b)]1 for b ∈ {0, 1}
crs B ({[P(b)i ]1, [Y

(b)
i ]2 }i ,b , {[Y

(b)]2 }b , [A]2, H)
Return crs

SIM([c]1, x): // G0–G2

τ B H([c]1, x), K(b)x B

(∑m
i=1 xiK

(b)
i

K(b)

)
for b ∈ {0, 1}

π B (K(0)x + τK(1)x )
>[c]1 ∈ Gk+1

1
Return π

FINALIZE(([c∗]1, x∗), π∗ = [u∗]1): // G0 , G1, G2

If ([c∗]1, x∗) ∈ LGTLS
ρ or (([c∗]1, x∗), π∗) = (([c]1, x), π):

Return 0

τ∗ B H([c∗]1, x∗), [Y
(b)
x ]2 B

[∑m
i=1 xiY

(b)
i

Y(b)

]
2
for b ∈ {0, 1}

If τ∗ = τ: Return 0

If [u∗]>1 ◦ [A]2 = [c
∗]>1 ◦ [Y

(0)
x∗ + τY(1)x∗ ]2: Return 1

If [u∗]1 = (K
(0)
x∗ + τ

∗K(1)x∗ )
>[c∗]1: Return 1

Else: Return 0

Fig. 4 Games G0, G1, and G2 for the proof of Theorem 1. In each
procedure, a solid (dotted, gray) frame indicates that the command is only
executed in the game marked by a solid (dotted, gray) frame.

and for all c =Mxr, we have(
P(0)x + τP(1)x

)>
r =

(
K(0)x

>
+ τK(1)x

>
)

Mxr

=
(
K(0)x + τK(1)x

)>
c,

where τ B H([c]1,x).
Next, we will prove that ΠOT-SS has OT-SS. We will

show that for any adversary A, there exists adversaries B
and B̂ with

AdvOT-SSΠOT-SS ,A
(λ) ≤ AdvKerMDH

G2 ,Dk ,B
(λ) + AdvCR

H, B̂
(λ) + 1/q.

(5)

We bound the advantage of A via a sequence of games
defined in Fig. 4. G0 is the real OT-SS game for QA-NIZK
as defined in Fig.1.

Lemma 3 (G0): Pr[OT-SSA ⇒ 1] = Pr[GA0 ⇒ 1].

Lemma 4 (G0 to G1): There is an adversary B that solves
the Dk-KerMDH problem in G2 with AdvKerMDH

G2 ,Dk ,B
(λ) ≥

| Pr[GA0 ⇒ 1] − Pr[GA1 ⇒ 1]|.

Proof. G1 is identical to G0 unless A queries FINALIZE
with (([c∗],x∗), [u∗]1) such that [u∗]1 − (K(0)x∗ + τ

∗K(1)x∗ )
>[c∗]1

is a non-zero vector in ker(A), which is a solution of the
Dk-KerMDH problem for A. Hence, we have | Pr[GA0 ⇒

INIT(ρ):
crsCore ←$ INITCore , H←$H

Parse crsCore C ({P(b)i ,Y(b)i }i ,b ,
{
Y(b)

}
b
,A)

crs B ({[P(b)i ]1, [Y
(b)
i ]2 }i ,b , {[Y

(b)]2 }b , [A]2, H)
Return crs

SIM([c]1, x):

τ B H([c]1, x), K(0)x + τK(1)x ←$ EVALCore(x, τ)

π B (K(0)x + τK(1)x )
>[c]1 ∈ Gk+1

1
Return π

FINALIZE(([c∗]1, x∗), π∗ = [u∗]1):
If ([c∗]1, x∗) ∈ LGTLS

ρ or (([c∗]1, x∗), π∗) = (([c]1, x), π):
Return 0

τ∗ B H([c∗]1, x∗)
If τ∗ = τ: Return 0
Return FINALIZECore([u∗]1, ([c∗]1, x∗), τ∗)

Fig. 5 Algorithm B′ for the proof of Lemma 6 with oracles INITCore,
EVALCore, and FINALIZECore defined in Fig. 3. The oracle calls are high-
lighted with gray.

1] − Pr[GA1 ⇒ 1]| ≤ AdvKerMDH
G2 ,Dk ,B

(λ). �

Lemma 5 (G1 to G2): There is an adversary B̂ breaking the
collision resistance of H with AdvCR

H, B̂
(λ) ≥ | Pr[GA1 ⇒

1] − Pr[GA2 ⇒ 1]|.

Proof. The difference between G1 and G2 happens
when A queries FINALIZE with (([c∗]1,x∗), π∗) such that
(([c∗]1,x∗), π∗) , (([c]1,x), π) and τ∗ = τ. To bound this, we
consider the following cases:

• ([c∗]1,x∗) = ([c]1,x) and π∗ , π. For ([c∗]1,x∗) =
([c]1,x), only (K(0)x∗ + τ∗K(1)x∗ )

>[c∗]1 = (K(0)x +

τK(1)x )
>[c]1 = π is accepted in both G1 and G2. Hence,

in this case, the FINALIZE will output 0 in both games
since π∗ , π.

• ([c∗]1,x∗) , ([c]1,x) and τ∗ = τ. In this case, we can
break the collision-resistance of H . Hence, we can
bound the probability of this case by AdvCR

H, B̂
(λ).

Therefore, we have | Pr[GA1 ⇒ 1] − Pr[GA2 ⇒ 1]| ≤
AdvCR

H, B̂
(λ). �

Lemma 6 (G2): Pr[GA2 ⇒ 1] ≤ 1/q.

Proof. To bound this probability, we consider the algorithm
B ′ defined in Fig. 5. Clearly, if the oracle access of B ′ is
from CoreOT-SS, then B perfectly simulates G2. Thus, we
have Pr[GA2 ⇒ 1] = Pr[CoreB′OT-SS ⇒ 1]. From Lemma 2,
we have Pr[GA2 ⇒ 1] ≤ 1/q. �

From Lemmas 3 to 6, we obtain Eq. (5) �

3.3 GTLS Expressed by Linear Maps

We describe that a QA-NIZK argument for GTLS im-
plies one for GTLS expressed by linear maps. Let ρ B
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([M]1, [M′1]1, . . . , [M
′
m]1) ∈ G

n×t
1 × (Gn′×t

1 )m. For any Zq-
linear map L : (Zn′×tq )m → Zn

′m′×t
q , we define

L̂GTLS
ρ B

{
([c]1, L) | ∃r ∈ Ztq s.t. c =MLr

}
,

where ML B
(

M
L(M′1 ,...,M

′
m)

)
. Note that a linear subspace

to which c should belong depends on a linear map L, but
not on a vector x. We can see that our QA-NIZK arguments
support the above language L̂GTLS

ρ as follows: If we express
L as L = (li, j) ∈ Zm×m

′

q , we have

L(M′1, . . . ,M
′
m) =

©­­«
∑m

i=1 li,1M′i
...∑m

i=1 li,m′M′i

ª®®¬
=

m∑
i=1

li,1
©­­«
M′i
...
O

ª®®¬ + · · · +
m∑
i=1

li,m′
©­­«

O
...

M′i

ª®®¬ ,
where O ∈ Zn

′×t
q is the matrix whose coordinates are

all zero. Therefore, we can appropriately determine
M̂′1,1, . . . ,M̂

′
m,m′ ∈ Z

m′n′×t
q from M′1, . . . ,M

′
m that satisfy

L(M′1, . . . ,M
′
m) =

∑m
i=1

∑m′

j=1 li, jM̂′i, j , and we have

L̂GTLS
ρ =

([c]1, l)
������� ∃r ∈ Ztq s.t. c =

©­­«
M

m∑
i=1

m′∑
j=1

li, jM̂′i, j

ª®®¬ r


= LGTLS

ρ̂ ∈ LGTLS,

where ρ̂ B ([M]1, [M̂′1,1]1, . . . , [M̂
′
m,m′]1) ∈ G

n×t
1 ×

(Gn′×t
1 )mm′ and l B (l1,1, . . . , lm,m′)> ∈ Zmm′

q .

4. Leakage-Resilient CCA2-Secure Attribute-Based
Encryption

In this section, we present the first leakage-resilient
CCA2 (LR-CCA2) secure attribute-based key encapsula-
tion (ABKEM)† scheme. Our LR-CCA2-secure ABKEM
scheme is obtained by combining the LR-CPA-secure ABE
scheme by Zhang et al. [11] and our QA-NIZK argument
in Sect. 3. Similar to the scheme of [11], our LR-CCA2-
secure scheme is resilient to the leakage of both master and
user’s secret key, and works in the CML model.

In Sect.4.1, we first give the definition of ABKEM and
its security model. In Sect. 4.2, we then recall the notion of
leakage-resilient predicate encodings that is the main build-
ing block of the ABE scheme of [11]. In Sect.4.3, we finally
provide the construction of our ABKEM scheme.

†Here, we only focus on ABKEMs, since, even in the leakage-
resilient setting, a CCA2-secure ABKEM scheme can be trans-
formed to a CCA2-secure ABE scheme efficiently and securely
by using a symmetric encryption scheme. We can prove this by
adapting the techniques from [36] in a straightforward manner.

4.1 Definition

Here, we provide the definition of ABKEM and its security
model.

Syntax. An ABKEM scheme for a predicate P : X × Y →
{0,1} consists of the following PPT algorithms.

Setup(1λ,X,Y) → (mpk,msk): The setup algorithm takes
as input a security parameter 1λ, the ciphertext attribute
universeX and the key attribute universeY, and outputs
a master public key mpk and a master secret key msk.
We assume thatmpk implicitly defines an encapsulated
key space K.

KGen(msk, y) → sky: The key generation algorithm takes
as input the master secret key msk and a key attribute
y ∈ Y, and outputs a secret key sky .

Encap(mpk, x) → (K,ctx): The encapsulation algorithm
takes as input the master public key mpk and an at-
tribute x ∈ X, and outputs an encapsulated key K ∈ K
together with a ciphertext ctx .

Decap((sky, y),ctx) → K or ⊥: The decapsulation algo-
rithm takes as input the secret key sky with the cor-
responding attribute y and the ciphertext ctx , and out-
puts either an encapsulated key K or ⊥ (indicating the
ciphertext is invalid).

In the CML model, we use the following key update algo-
rithm in addition to the above algorithms.

UpdateMSK(mpk,msk) → msk′: The master secret key up-
date algorithm takes as input the master public key
mpk and the master secret key msk, and outputs a re-
randomized master secret key msk′.

UpdateSK(mpk,sky, y) → sk′y: The secret key update algo-
rithm takes as input the master public key mpk and a
secret key sky with the corresponding attribute y, and
outputs a re-randomized secret key sk′y .

Correctness. For all λ ∈ N, (mpk,msk) ←$ Setup(1λ,X,Y),
attributes (x, y) ∈ X × Y such that P(x, y) = 1,
sky ←$ KGen(msk, y), and (K,ctx) ←$ Encap(mpk, x), we
have Pr[Decap((sky, y),ctx) = K] = 1. Furthermore, in
the CML model, the above property is also satisfied even if
we use a re-randomized master secret key or a secret key.

We define the LR-CCA2-security of ABKEM in the
CML model. In the CML model [5], [7], there is a notion of
time periods and secret keys are updated at the end of each
time period. An adversary is allowed to obtain a bounded
leakage of secret keys in each time period, but there is no
bound on the overall leakage.

LR-CCA2-Security for ABKEM in the CML model. Let
`msk = `msk(λ) and `sk = `sk(λ) be leakage bounds for a mas-
ter key and secret keys, respectively. An ABKEM scheme
ABKEM is (`msk, `sk)-LR-CCA2-secure if for any PPT adver-
sary A, AdvLR-CCAABKEM,A(λ) B

��Pr[LR-CCAACML ⇒ 1] − 1/2
�� is

negligible, where Game LR-CCACML is defined as in Fig.6.
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INIT:
b ←$ {0, 1}, (mpk,msk) ←$ Setup(1λ , X, Y)
QT B {(0, ε ,msk, 0) }
Return mpk

CREATE(h, y):
Find (h, y′, sky , L) ∈ QT
If y′ = ε (i.e., skε = msk′):

sky ←$ KGen(msk′, y)
QT B QT ∪

{
(H + 1, y, sky , 0)

}
, H B H + 1

Return ⊥

REVEAL(h):
Find (h, y, sky , L) ∈ QT
If y ∈ QR s.t. P(x∗, y) = 1: Return ⊥
If y , ε :
QR B QR ∪ {y }
Return sky

Else: Return ⊥

LEAK(h, f ):
If flg = 1: Return ⊥
Find (h, y, sky , L) ∈ QT
If y , ε and L + | f (sky ) | ≤ `sk :

L B L + | f (sky ) |
Return f (sky )

If y = ε (i.e., skε = msk) and L + | f (msk) | ≤ `msk :
L B L + | f (msk) |
Return f (msk)

Return ⊥

UPDATE(h):
Find (h, y, sky , L) ∈ QT
If y = ε (i.e., skε = msk):

msk′ ←$ UpdateMSK(mpk,msk)
QT B QT ∪ {(H + 1, ε ,msk′, 0) }, H B H + 1

Else:
sk′y ←$ UpdateSK(mpk, sky , y)
QT B QT ∪

{
(H + 1, y, sk′y , 0)

}
, H B H + 1

Return ⊥

DECAP(h, ctx ):
Find (h, y, sky , L) ∈ QT
If y = ε (i.e., skε = msk): Return ⊥
If ctx , ct∗ or R(x∗, y) = 0: Return Decap((sky , y), ctx )
Return ⊥

CHAL(x∗): // one query
flg B 1
If y ∈ QR s.t. P(x∗, y) = 1: Return ⊥
(ct∗, K∗0) ←$ Encap(mpk, x∗), K∗1 ←$K

Return (ct∗, K∗
b
)

FINALIZE(b′):
Return (b′ = b)

Fig. 6 Security game LR-CCACML.

Remark 2 (On the handle in Fig.6): The first component
in each entry ofQT is called “handle,” which is introduced to
specify a master secret key/user’s secret key that is updated
every time period. The handle of the original master secret
key is 0.

4.2 Leakage-Resilient Predicate Encodings

Here, we recall the notion of leakage-resilient predicate en-
codings (LRPE) introduced by Zhang et al. [11] to construct
a leakage-resilient ABE scheme.

Definitions. Let P : X × Y → {0,1} be a predicate.
An LRPE for P is a tuple of deterministic algorithms
(sE,mE,mkE, rE, rkE,sD, rD) as follows: sE : X×Znq → Z

ns
q ,

mE : Znzq × Znq → Znmq , mkE : Znzq × Zq → Znmq ,
rE : Y × Znzq × Znq → Z

nr
q , rkE : Y × Znzq × Zq → Znrq ,

sD : X×Y×Znzq ×Znsq → Zq , rD : X×Y×Znzq ×Znrq → Zq
for some n,ns,nr ,nm,nz ∈ N. We require that an LRPE
satisfies linearity, α-reconstruction, α-privacy, α-leakage-
resilient, delegable, and re-randomizable. We highlight only
linearity, delegable, and re-randomizable that will be used in
the following. Please refer to [11] for more details.

(linearity): For all (x, y) ∈ X × Y and z ∈ Znzq , the func-
tions sE(x, ·), mE(z, ·), mkE(z, ·), rE(y,z, ·), rkE(y,z, ·),
sD(x, y,z, ·) and rD(x, y,z, ·) are Zq-linear.

(delegable): For all α ∈ Zq , z ∈ Znzq , w ∈ Znq and
y ∈ Y, there exists a linear map D(y, ·) : mkE(z, α) +
mE(z,w) 7→ rkE(y,z, α) + rE(y,z,w).

(re-randomizable): For all α ∈ Zq , z,z′ ∈ Znzq , and w ∈
Znq , there exists a linear map R(z,z′, ·) : mkE(z, α) +
mE(z,w) 7→ mkE(z′, α) +mE(z′,w).

4.3 Construction: LR-CCA2-Secure ABKEM Scheme

Here, we will give the construction of an LR-CCA2-secure
ABKEM scheme for a predicate P based on our QA-NIZK
argument in Sect.3 and an LRPE for P.

Construction. Let

L̂ABE
ρ B

{
([c]1, L)

���� ∃s ∈ Zkq s.t. c =
(

A
L((A′i)i∈[1,n])

)
s
}
,

where ρ B
(
[A]1, ([A′i]1)i∈[1,n]

)
∈ G

(k+1)×k
1 × (G

(k+1)×k
1 )n,

k ≥ 1 is determined by the underlying assumption, and
L is a Zq-linear map. Let Π = (Gen,Prove,Ver,Sim)
be an OT-SS QA-NIZK argument for L̂ B {L̂ABE

ρ }ρ.
Let (sE,mE,mkE, rE, rkE,sD, rD) be an LRPE for P.
Our ABKEM = (Setup,KGen,Encap,Decap,UpdateMSK,
UpdateSK) is defined in Fig.7.

If we instantiate ABKEM with our QA-NIZK argument
ΠOT-SS in Sect. 3.2 that is secure under the D1-MDDH as-
sumption, then its ciphertext is only 2 group elements longer
than that of the original scheme [11].

Correctness and Security. The correctness of our ABKEM
follows readily from the correctness of Zhang et al.’s ABE
scheme [11] and the perfect completeness of Π. Next, we
show the security of our ABKEM.

Theorem 2: If the Dk-MDDH problem in G1 is hard and
Π is an OT-SS QA-NIZK argument, then ABKEM defined in
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Setup(1λ , X, Y):
A, B←$Dk , k←$Zk+1

q , r←$Zkq

z←$Z
nz
q , W1, . . . ,Wn ←$Z

(k+1)×(k+1)
q

[p0]2 B [Br]2 ∈ Gk+1
2

[p1]2 B mE(z, ([WiBr]2)i∈[1,n]) +mkE(z, [k]2) ∈ G
nm (k+1)
2

ρ B ([A]1, ([W>i A]1)i∈[1,n]), crs←$ Gen(par, ρ)

mpk B
(
[A]1, [B]2,

{
[W>i A]1, [WiB]2

}
i∈[1,n] , [k

>A]T , crs
)

msk B
(
z, [p0]2, [p1]2

)
Return (mpk,msk)

KGen(msk C (z, [p0]2, [p1]2), y):
r′ ←$Zkq , z′ ←$Z

nz
q

[t0]2 B [p0]2 + [Br′]2 ∈ Gk+1
2

[t1]2 B rE(y, z′, ([WiBr′]2)i∈[1,n]) + D(y, R(z, z′, [p1]2)) ∈

G
nr (k+1)
2

Return sky B (z′, [t0]2, [t1]2)

Encap(mpk, x):
s←$Zkq

[Ax ]1 B

[
A

sE(x, (W>i A)i∈[1,n])

]
1

[c]1 B [Ax s]1 ∈ G
(ns+1)(k+1)
1

π B Prove (crs, ([c]1, sE(x, ·)), s)
ctx B ([c]1, π ), K B [k>As]T ∈ Gk

T C K
Return (K, ctx )

Decap((sky C (z′, [t0]2, [t1]2), y), ctx C ([c]1, π )):

If Ver(crs, ([c]1, sE(x, ·)), π) = 0: Return ⊥

Parse [c]1 C ([c0]
>
1 , [c1]

>
1 )
> ∈ Gk+1

1 × G
ns (k+1)
1

K B [c0]
>
1 ◦ rD(x, y, z

′, [t1]2) − sD(x, y, z′, [c1]
>
1 ) ◦ [t0]2

Return K

UpdateMSK(mpk,msk B (z, [p0]2, [p1]2)):
r′ ←$Zkq , z′ ←$Z

nz
q

[p′0]2 B [p0]2 + [Br′]2 ∈ Gk+1
2

[p′1]2 B mE(z′, ([WiBr′]2)i∈[1,n]) + R(z, z′, [p1]2) ∈ G
nm (k+1)
2

Return msk′ B (z′, [p′0]2, [p
′
1]2)

UpdateSK(mpk, sky B (z, [t0]2, [t1]2), y):

r′ ←$Zkq , z′ ←$Z
nz
q

[t′0]2 B [t0]2 + [Br′]2 ∈ Gk+1
2

[t′1]2 B rE(z′, ([WiBr′]2)i∈[1,n]) + [t1]2 ∈ G
nr (k+1)
2

Return sk′y B (z′, [t′0]2, [t
′
1]2)

Fig. 7 Our LR-CCA2-secure ABKEM scheme ABKEM. The boxed
parts are differences from [11]’s LR-CPA-secure ABE scheme.

Fig. 7 is (`msk, `sk)-LR-CCA2-secure, where `msk and `sk is
derived from the parameters of the underlying LRPE.

Remark 3 (On the concrete instantiations and leakage bounds):
Zhang et al. [11] proposed LRPE schemes that correspond to
IPE, non-zero IPE, (doubly) spatial encryption, KP/CP-ABE
for boolean formulae and arithmetic formulae, and broadcast
encryption, and all of them have the same leakage bounds:

`msk ≤ (nz − 1) log q + log(1 − 1/q) + 2 − ω(log λ),
`sk ≤ (nz − 1) log q + log(1 − 1/q) + 2 − ω(log λ),

where nz ≥ 1 is an arbitrary integer and k is determined
by the underlying assumption. (Larger nz guarantees higher
leakage resilience, but requires longer keys.) By instanti-
ating our construction with their LRPE schemes, we have
corresponding LR-CCA2-secure ABE schemes (i.e., IPE,
KP/CP-ABE, and so on) with the same leakage bounds.

Proof. Our proof is similar to that of [11, Theorem 1].
Hence, we only sketch our proof here and emphasize the
differences.

At a high level, the proof basically follows the dual
systemmethodology [37] and Cramer-Shoup technique [38].
To prove the security, we first give names of various forms of
ciphertexts and secret keys that will be used. Let a⊥ ∈ ker(A)
and b⊥ ∈ ker(B). A ciphertext under an attribute x ∈ X has
the following forms:

(Normal): A normal ciphertext is generated as in the actual
scheme.

(Semi-Functional): A semi-functional (SF) ciphertext is
the same as normal ciphertext except thatAs is replaced
by As + b⊥ ŝ, where ŝ←$Zq . That is,

ctx =

(
[Axs]1 +

[
b⊥ ŝ

sE(x, (W>i b⊥ ŝ)i∈[1,n])

]
1
, π

)
.

(Invalid): A ciphertext ctx = ([c]1, π) is invalid when c <
Span(Ax).

A secret key for an attribute y ∈ Y can be one of the follow-
ing forms:

(Normal): A normal secret key is generated as in the actual
scheme.

(Pseudo-Normal): A pseudo-normal secret key is the same
as normal secret key except that B(r+ r′) is replaced by
B(r + r′) + a⊥r̂ , where r̂←$Zq .

(Pseudo-SF): A pseudo-SF secret key is the same as
pseudo-normal secret key except that k is replaced by
k + a⊥α, where α←$Zq .

(SF): An SF secret key is the same as pseudo-sf secret key
except that B(r + r′) + a⊥ ŝ is replaced by B(r + r′).

Remark 4 (Decapsulation capability of each secret key):
We note that the decapsulation results are the same regardless
of the form of secret key as long as decapsulated ciphertexts
are not invalid. Furthermore, the results are always in the
form of [k>As]T for some s ∈ Zkq , and hence they completely
hide α used in pseudo-SF and SF secret keys.

We will show that for any adversary A that makes at
mostQ queries toREVEAL and LEAK, there exist adversaries
B, B ′, and B ′′ with

AdvLR-CCAABKEM,A(λ) ≤Adv
MDDH
G1 ,Dk ,B

(λ) + 2QAdvMDDH
G2 ,Dk ,B′

(λ)

+ AdvOT-SS
Π,B′′ (λ) +Q2−ω(logλ). (6)

We define the following sequence of games to prove the
security.

• G0: This is the real security game defined in Fig.6.
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• G1: This game is the same as G0 except that ([c∗]1, π∗,
K∗0) outputted by CHAL are computed as follows:

[c∗]1 =
[(

Ik+1
sE(x, (W>i )i∈[1,n])

)
c∗0

]
1
,

π∗ = Sim(crs, td, ([c∗]1,sE(x, ·))),
K∗0 = [k

>c∗0]T ,

where c∗0 B As.
• G2: This game is the same as G1 except that the chal-
lenge ciphertext becomes SF. Namely, c∗0 = As is re-
placed by c∗0 = As + b⊥ ŝ.

• G3: This game is the same as G2 except that DECAP
returns⊥ forA’s queries (·,ctx) such that ctx is invalid.

• G4,i,1: This game is the same as G4,i−1,3 except that
the i-th key revealed (or leaked) to A become pseudo-
normal. The game is defined for i = 1, . . . ,Q.

• G4,i,2: This game is the same as G4,i,1 except that the
i-th key revealed (or leaked) becomes pseudo-SF. The
game is defined for i = 1, . . . ,Q.

• G4,i,3: This game is the same as G4,i,2 except that the
i-th key revealed (or leaked) becomes SF. The game is
defined for i = 1, . . . ,Q. We set G4,0,3 B G3.

• G5: This game is the same as G4,Q,3 except that
K∗0←$K.

To prove the security of our scheme, we make some
fine-tuning of the game. The LR-CCA2 game does not really
generate a secret key and only returns a handle to A when
A queries to CREATE. Alternatively, the game generates a
secret key if the secret key has not generated whenA queries
REVEAL, LEAK, or DECAP, and then adds the key to the set
QT . We note that this makes no difference in A’s view.

In G5, the view of A is statistically independent of the
challenge bit b. Hence, we have

Pr[GA5 ⇒ 1] = 1/2. (7)

We complete the proof by establishing the following se-
quence of lemmas. We omit the proof of Lemmas 8 and 11
to 14 as they are the same as those of Lemmas 2 to 6 in [11,
Sect. 5.2].

Lemma 7 (G0 to G1): Pr[LR-CCAACML ⇒ 1] = Pr[GA0 ⇒
1] = Pr[GA1 ⇒ 1].

Proof. G0 is the real security game. In G1, the change in the
way generating [c1]

∗ and K∗0 is conceptual since

c∗ =
(

A
sE(x, (W>i A)i∈[1,n])

)
s

=

(
Ik+1

sE(x, (W>i )i∈[1,n])

)
As

=

(
Ik+1

sE(x, (W>i )i∈[1,n])

)
c∗0,

K∗0 = k>As = k>c∗0.

Moreover, we simulate the QA-NIZK proof π∗ in CHAL(x∗)

by usingΠ’s zero-knowledge simulator. By the perfect zero-
knowledge property of Π, G1 is identical to G0. �

Lemma 8 (G1 to G2): There is an adversary B breaking
the Dk-MDDH assumption in G1 with AdvMDDH

G1 ,Dk ,B
(λ) ≥

| Pr[GA1 ⇒ 1] − Pr[GA2 ⇒ 1]|.

Lemma 9 (G2 to G3): There is an adversary B ′ breaking
the OT-SS of Π with AdvOT-SS

Π,B′ (λ) ≥ | Pr[GA2 ⇒ 1] −
Pr[GA3 ⇒ 1]|.

Proof. The difference between G2 and G3 happens when
A queries DECAP with (x,ctx = ([c]1, π)) such that c <
Span(AID) and Ver(crs, ([c]1, ID), π) = 1. The probability of
this happening is bounded by AdvOT-SS

Π,B′ (λ), and then we have
| Pr[GA2 ⇒ 1] − Pr[GA3 ⇒ 1]| ≤ AdvOT-SS

Π,B′ (λ). �
In the subsequent games, while REVEAL and LEAK

use the various types of secret key, DECAP always uses a
normal secret key to return the decapsulation result. From
Remark 4, this unfairness does not affect A’s view, because
the DECAP rejects all invalid ciphertexts by the change in
G3. Furthermore, the DECAP does not provide additional
information toA since theDECAP returns⊥ forA’s queries
(·, ([c]1, π)) such that c < Span(Ax).

Lemma 10 (G3 to G4,0,3): Pr[GA3 ⇒ 1] = Pr[GA4,0,3 ⇒ 1].

Lemma 11 (G4,i−1,3 to G4,i,1): There is an adversary B ′′
such thatAdvMDDH

G2 ,Dk ,B′′
(λ) ≥ | Pr[GA4,i−1,3 ⇒ 1]−Pr[GA4,i,1 ⇒

1]|.

Lemma 12 (G4,i,1 to G4,i,2): We have | Pr[GA4,i,1 ⇒ 1] −
Pr[GA4,i,2 ⇒ 1]| ≤ 2−ω(logλ), as long as the leakage amount
of msk and sk are at most `msk and `sk bits, respectively.
Here, `msk and `sk is derived from the parameters of the
underlying LRPE.

Lemma 13 (G4,i,2 to G4,i,3): There is an adversary B ′′
such that AdvMDDH

G2 ,Dk ,B′′
(λ) ≥ | Pr[GA4,i,2 ⇒ 1] − Pr[GA4,i,3 ⇒

1]|.

Lemma 14 (G4,Q,3 to G5): Pr[GA4,Q,3 ⇒ 1] = Pr[GA5 ⇒
1].

From Lemmas 7 to 14 and Eq. (7), we obtain Eq. (6).
�

As a result, we obtain the following corollary when we
use our OT-SS QA-NIZK argument in Sect.3.2.

Corollary 1: Let k, k ′ ≥ 1. If the Dk-MDDH problem in
G1 and the Dk′-KerMDH problem in G2 are hard and H is
a CR hash function family, then our ABKEM is (`msk, `sk)-
LR-CCA2 secure, where `msk and `sk is derived from the
parameters of the underlying LRPE.

5. LR-CCA2-Secure Identity-Based Encryption with
Optimal Leakage Rate

In this section, we show our efficient LR-CCA2-secure
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identity-based key encapsulation (IBKEM)† scheme that is
resilient to the leakage of (1− o(1))-fraction of its secret key.
Our LR-CCA2-secure IBKEM scheme is based on the LR-
CPA-secure IBE scheme by Kurosawa and Phong [9] and
our simulation-sound QA-NIZK argument in Sect.3.

In Sect. 5.1, we first give the definition of IBKEM and
its security model. In Sect.5.2, we then provide our IBKEM
scheme, that is secure against selective-identity attacks. In
Sect.5.3, we briefly explain how to extend our scheme to be
an adaptive secure variant.

5.1 Definition

IBKEM is a special case of ABKEM where a predicate P
is the equality checking predicate, i.e., P(ID, ID′) = 1 if and
only if ID = ID′. Therefore, its syntax and correctness are
the same as those of ABKEM shown in Sect.4.1.

As the leakage model, we consider the bounded mem-
ory leakage (BML) model in this section. There is no time
period in this model, thus we do not use key update algo-
rithms. Furthermore, we do not consider the leakage of its
master secret key.

Following [13], we define the LR-CCA2-security of an
IBKEM in the BML model.

LR-CCA2-Security of IBKEM in the BML model. Let
`sk = `sk(λ) be a leakage bound for secret keys. An IBKEM
scheme IBKEM is `sk-LR-CCA2-secure if for any PPT adver-
sary A, AdvLR-CCAIBKEM,A(λ) B

��Pr[LR-CCAABML ⇒ 1] − 1/2
�� is

negligible, where Game LR-CCABML is defined as in Fig.8.
We say that IBKEM is secure against selective-identity

attacks (s-LR-CCA2), when the adversary chooses the chal-
lenge identity ID∗ before seeing any parameters. We denote
the corresponding advantage function by Advs-LR-CCAIBKEM,A (λ).

We define leakage rate γ of the scheme to be value of
`sk/|skID |. We say that the leakage rate of the scheme is
optimal if γ = 1 − o(1).

5.2 Construction: s-LR-CCA2-Secure IBKEM Scheme

Here, we give our construction of s-LR-CCA2-secure
IBKEM scheme with optimal leakage rate.

Construction. Let I B Zq be an identity space. Let

LIBE
ρ B

{
([c]1, ID) ∈ G2k+µ

1 × Zq

�����∃s ∈ Zkq s.t.

c =
(

A
B + ID · B′

)
s

}
,

where ρ B ([A]1, [B]1, [B′]1) ∈ G(k+µ)×k1 × (Gk×k
1 )2, k ≥ 2

is determined by the underlying assumption, and µ ≥ 1

†Similarly to Sect. 4, we only focus on IBKEMs since we can
convert an LR-CCA2-secure IBKEM scheme to an LR-CCA2-
secure IBE scheme using a symmetric encryption scheme. For
details, we refer the reader to [36].

INIT:
b ←$ {0, 1}
(mpk,msk) ←$ Setup(1λ)
Return mpk

CREATE(ID):
If (ID, skID) ∈ QT : Return ⊥
Else:

skID ←$ KGen(msk, ID)
QT B QT ∪ {(ID, skID) }
Return skID

REVEAL(ID):
If ID = ID∗: Return ⊥
If (ID, skID) ∈ QT :
QR B QR ∪ {ID }
Return skID

Else: Return ⊥

FINALIZE(b′):
Return (b′ = b)

LEAK(ID, f ):
If flg = 1: Return ⊥
If (ID, skID) ∈ QT and LID +
| f (skID) | ≤ `sk :
LID B LID + | f (skID) |
Return f (skID)

Else: Return ⊥

DECAP(ID, ctID′ ):
If (ID, skID) ∈ QT and
(ID, ctID′ ) , (ID∗, ct∗):

ReturnDecap((skID, ID), ctID′ )
Else: Return ⊥

CHAL(ID∗): // one query
flg B 1
If ID∗ ∈ QR : Return ⊥
(ct∗, K∗0) ←$ Encap(mpk, ID∗)
K∗1 ←$K

Return (ct∗, K∗
b
)

Fig. 8 Security game LR-CCABML.

is an arbitrary integer. Note that LIBE
ρ is a special case

of LGTLS
ρ where m = 2 and x1 is fixed to 1. As µ in-

creases, the efficiency of the scheme becomes less efficient,
but the leakage rate of the scheme becomes greater. Let Π =
(Gen,Prove,Ver,Sim) be an OT-SS QA-NIZK argument for
L B {LIBE

ρ }ρ. Our IBKEM = (Setup,KGen,Encap,Decap)
is defined in Fig.9.

Similar to ourABKEM, a ciphertext of our IBKEM is only
2 group elements longer than that of the original scheme [9]
if we instantiate our IBKEM with our QA-NIZK argument
ΠOT-SS that is secure under the D1-MDDH assumption.

Correctness and Security. The correctness of our IBKEM
follows readily from the correctness of Kurosawa-Phong IBE
scheme [9] and the perfect completeness ofΠ. Next, we give
the security of our IBKEM.

Theorem 3: If Dk+µ,k-exMDDH problem in G1 is hard, Π
is an OT-SS QA-NIZK argument, and

`sk ≤ (µ + k − 1) log q − ω(log λ), (8)

then IBKEM defined in Fig.9 is `sk-s-LR-CCA2-secure.

Remark 5 (Leakage rate of our scheme): From Eq. (8), we
have

γ =
`sk

|skID |
=
(µ + k − 1) log q − ω(log λ)

(µ + 2k) log q

= 1 −
(k + 1) log q + ω(log λ)
(µ + 2k) log q

.

If µ = ω(log λ), with k fixed, the leakage rate γ achieves
1−o(1) and then our scheme has optimal leakage rate because
log q = O(λ).

We give a simple example of a parameter setting to
obtain the rate wewant. We assume that k = 2 and log q = λ,
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Setup(1λ):
A←$Dk+µ,k , B←$Zk×kq , k←$Zkq ,

ρ B ([A]1, [B]1, [Ik ]1), (crs, td) ←$ Gen(par, ρ)

mpk B
(
[A]1, [B]1, [k]1, crs

)
, msk B

(
A, B, k

)
Return (mpk,msk)

KGen(msk C (A, B, k), ID):

t1 ←$Z
µ+k
q , t0 B A−1>

(
k −

(
A

B + ID · Ik

)>
t1

)
∈ Zkq

Return skID B
[
t0
t1

]
2
∈ G

2k+µ
2

Encap(mpk, ID):
s←$Zkq

[AID]1 B

[
A

B + ID · Ik

]
1
∈ G
(2k+µ)×k
1 , [c]1 B [AIDs]1 ∈ G

2k+µ
1

π B Prove (crs, ([c]1, ID), s)
ctID B ([c]1, π ), K B [k>s]T ∈ GT C K
Return (K, ctID)

Decap((skID C [t]2, ID), ctID′ C ([c]1, π )):

If Ver(crs, ([c]1, ID), π) = 0: Return ⊥
Return K B [c]>1 ◦ [t]2

Fig. 9 Our s-LR-CCA2-secure IBKEM scheme IBKEM. The boxed
parts are differences from [9]’s scheme.

and we use 2λ as ω(log λ) for λ-bit security. If we want to
set the rate to 3/4, then we should set µ = 16 since we obtain
the rate γ = 1 − (3 + 2)/(16 + 4) = 3/4 as desired.

Remark 6 (On the efficiency of the scheme): To achieve
the optimal leakage rate, our LR-CCA2-secure IBE scheme
requires ω(log λ) group elements in the ciphertext. Such a
ciphertext overhead is currently unavoidable even for LR-
CPA-secure PKE schemes that achieve the optimal leakage
rate (e.g., [4]). Furthermore, the ciphertext size of our LR-
CCA2-secure scheme is almost the same as the state-of-the-
art LR-CPA-secure IBE scheme [9]. From these facts, our
scheme is (currently) efficient.

Proof. We will show that for any adversary A, there exist
adversaries B and B ′ with

Advs-LR-CCAIBKEM,A (λ) ≤Adv
exMDDH
G1 ,Dk+µ,k ,B

(λ) + AdvOT-SS
Π,B′ (λ)

+ 1/q + 2−ω(logλ). (9)

We define the following sequence of games to prove the
security.

• G0: This game is the real security game defined in
Fig.8.

• G1: This game is the same as G0 ex-
cept that π∗ in the challenge ciphertext is
computed via Sim(crs, td, ([c∗]1, ID∗)) instead of
Prove(crs, ([c∗]1, ID∗), s).

• G2: This game is the same asG1 except for the following
changes:

– [B]1 and [k]1 in the master public key are com-
puted as follows:

[B]1 B [R∗A − ID∗ · Ik]1 and

[k]1 B
[(

A
R∗A

)>
t∗
]

1
,

where R∗←$Z
k×(k+µ)
q and t∗←$Z

2k+µ
q . In the fol-

lowing games, the game s-LR-CCA2 sets [t∗]2 as
a secret key for the challenge identity ID∗. Then,
we have

AID =

(
A

B + ID · Ik

)
=

(
A

R∗A + (ID − ID∗) · Ik

)
.

– K∗0 outputted by CHAL is computed by [c∗>t∗]T .
– skID for ID , ID∗ is generated as follows:

t′0←$Z
k+µ
q , [t′1]2 B

[
−A>t′0 + k
ID − ID∗

]
2
,

skID = [t]2 B
[
t′0 − R∗>t′1

t′1

]
2
.

We note that these values can be generated without
knowing A, while with knowing [A]1 and [A]2.

• G3: This game is the same as G2 except that [c∗]1 in the
challenge ciphertext is sampled from G2k+µ

1 uniformly
at random.

• G4: This game is the same as G3 except that DECAP
returns ⊥ for A’s queries (ID,ct = ([c]1, π)) such that
c < Span(AID).

• G5: This game is the same asG4 except thatK∗0 outputted
by CHAL is sampled from GT uniformly at random.

In G5, the view of the adversary is statistically indepen-
dent of the challenge bit b. Hence, we have

Pr[GA5 ⇒ 1] = 1/2. (10)

To complete the proof, we prove the following sequence of
lemmas.

Lemma 15 (G0 to G1): Pr[LR-CCAABML ⇒ 1] = Pr[GA0 ⇒
1] = Pr[GA1 ⇒ 1].

Proof. G0 is the real security game. In G1, we simulate
the QA-NIZK proof π∗ in CHAL(ID∗) by using Π’s zero-
knowledge simulator. By the perfect zero-knowledge prop-
erty of Π, we have Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1]. �

Lemma 16 (G1 to G2): Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

Proof. The distributions of all values is not affected by the
changes in G2. Then, we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

�

Lemma 17 (G2 to G3): There is an adversary B that
solves the Dk+µ,k-exMDDH problem in G1 with
AdvexMDDH

G1 ,Dk+µ,k ,B
(λ) ≥ | Pr[GA2 ⇒ 1] − Pr[GA3 ⇒ 1]| − 1/q.

Proof. UsingA, we can construct B that solves theDk+µ,k-
exMDDH problem in G1 as follows. Let (G, [A]1, [A]2, [u]1)
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be an instance of Dk+µ,k-exMDDH problem, where either
u = Aw for w←$Zkq or u←$Zk+1

q , and let ID∗ be a chal-
lenge identity chosen by A. Clearly, B can generate mpk
and skID using [A]1 and [A]2, respectively. Hence, B can
simulate INIT, REVEAL, LEAK, and DECAP. We only focus
on simulating CHAL by B.

When A queries to CHAL, B simulates the values out-
putted by CHAL as follows:

[c∗]1 B
[

u
R∗u

]
1
, π B Sim(crs, td, ([c∗]1, ID∗)),

K∗0 B [c
∗>t∗]T , K∗1←$GT .

Then, B sends ([c∗]1, π,K∗b) to A. To conclude this proof,
we show that the distribution of c∗ is the same as one in G2
if u = Aw and in G3 otherwise.

• Case u = Aw: In this case, we have

c∗ B
(

u
R∗u

)
=

(
A

R∗A

)
w = AID∗w.

Hence, the distribution of c∗ is the same as one in G2.
• Case u←$Z

k+µ
q : It is sufficient to show that R∗u is

uniformly distributed over Zkq from A’s view point.
With probability 1−1/q, u is linearly independent of A
since A is full rank and u is uniformly distributed over
Z
k+µ
q . Hence,R∗u is uniformly distributed overZkq even

given A, R∗A, and u, which are all the information that
A knows. Therefore, the distribution of c∗ is the same
as one in G3.

From these, we have | Pr[GA2 ⇒ 1] − Pr[GA3 ⇒ 1]| ≤
AdvexMDDH

G1 ,Dk+µ,k ,B
(λ) + 1/q. �

Lemma 18 (G3 to G4): There is an adversary B ′ break-
ing the OT-SS of Π with AdvOT-SS

Π,B′ (λ) ≥ | Pr[GA3 ⇒

1] − Pr[GA4 ⇒ 1]|.

Proof. The difference between G3 and G4 happens when an
adversary queries DECAP with (ID,ct = ([c]1, π)) such that
c < Span(AID) andVer(crs, ([c]1, ID), π) = 1. The probability
of this happening is bounded by AdvOT-SS

Π,B′ (λ), and then we
have | Pr[GA3 ⇒ 1] − Pr[GA4 ⇒ 1]| ≤ AdvOT-SS

Π,B′ (λ). �
By the change in G4, in the following game, A learns

information about t∗ only from k in mpk and { f (skID∗ )}
which is `sk-bit leakage of skID since DECAP returns ⊥ for
A’s queries (ID, ([c]1, π)) such that c < Span(AID).

Lemma 19 (G4 to G5): | Pr[GA4 ⇒ 1] − Pr[GA5 ⇒ 1]| ≤
2−ω(logλ).

To prove this lemma, we use the following lemma.

Lemma 20 (Generalized leftover hash lemma [41]): LetH =
{H : X → Y} be a universal hash function family, that is
Pr[H(x) = H(x ′) | H←$H] = 1/|Y| for any x , x ′ ∈ X.
Let f : X → Z be any function, where Z is a finite set.
Then, for any random variable X over X, we have

∆ ((H,H(X), f (X)), (H,UY, f (X)))

≤
1
2
√
γ(X) · |Y| · |Z|,

where ∆(·, ·) denotes the statistical distance between two dis-
tributions, H←$H , UY is the uniform distribution over Y,
and γ(X) B maxx Pr[X = x].

Proof of Lemma 19. To bound this, we show that the two dis-
tributions (c∗,c∗>t∗,k,{ f (skID∗ )}) and (c∗,u,k,{ f (skID∗ )})
are statistically indistinguishable, where u←$Zq . We can
see that Hc∗ (t∗) B c∗>t∗ is a universal hash function. By
Lemma 20 and Eq. (8), we have

∆
(
(c∗,c∗>t∗,k,{ f (skID∗ )}), (c∗,u,k,{ f (skID∗ )})

)
≤

1
2

√
q−(2k+µ) · q · (qk2`sk )

=
1
2

√
2−(k+µ−1) log q+`sk

= 2−ω(logλ).

Hence, we have | Pr[GA4 ⇒ 1] − Pr[GA5 ⇒ 1]| ≤ 2−ω(logλ).
�

From Lemmas 15 to 19 and Eq. (10), we obtain Eq. (9).
�

As a result, we obtain the following corollary when we
use our OT-SS QA-NIZK argument in Sect.3.2.

Corollary 2: Let k ≥ 2 and k ′ ≥ 1. If theDk+µ,k-exMDDH
problem inG1 and theDk′-KerMDH problem inG2 are hard,
H is a CR hash function family, and Eq. (8) holds, then our
IBKEM is `sk-s-LR-CCA2-secure.

5.3 Adaptive Security Variant

Here, we briefly explain how to extend our scheme to be
an adaptive secure variant. We use the same techniques
of [9], [19], [20].

Let m ∈ N, and let I B {0,1}m be an identity space.
Our LR-CCA2-secure IBKEM scheme is obtained by chang-
ing the scheme in previous section as follows:

• We set mpk B ([A]1, {[Bi]1 }i∈[0,m] , [k]1,crs) and

msk B (A, {Bi }i∈[0,m] ,k), where B0, . . . ,Bm ∈ Z
k×k
q .

• For ID B (ID1, . . . , IDm) ∈ {0,1}m, we set

AID B
©­­­«

A

B0 +

m∑
i=1

IDi · Bi

ª®®®¬ ∈ Z
(2k+µ)×k
q .

• We use a QA-NIZK argument for a language

LIBE′
ρ B

{
([c]1, ID) | ∃s ∈ Zkq s.t. c = AIDs

}
,

where ρ B ([A]1,{[Bi]1 }i∈[0,m]).

Remark 7 (Efficiency of the resulting scheme): While the
above changes will increase the size of the master public
and master private keys and worsen the reduction cost, they
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will not change the size of ciphertext and private keys, un-
derlying assumptions, and leakage rate.
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Appendix: Construction: USS QA-NIZK Argument
for GTLS

Here, we show a USS QA-NIZK argument ΠUSS for LGTLS.
Our QA-NIZK ΠUSS = (Gen,Prove,Ver,Sim) is defined

Gen(par, ρ = ([M]1, [M′1]1, . . . , [M
′
m]1)):

H←$H, A, B←$Dk ⊂ Z
(k+1)×k
q

K←$Z
n′×(k+1)
q , K′0,K

′
1 ←$Z

(k+1)×(k+1)
q

Y B KA, (Y′0,Y
′
1) B (K

′
0A,K′1A), (P′0, P

′
1) B (B

>K′0, B
>K′1)

For i = 1, . . . ,m:
Ki ←$Z

n×(k+1)
q , Yi B KiA ∈ Zn×kq

[Pi ]1 B [M>Ki +M′i
>K]1

crs B ({[Pi ]1, [Yi ]2 }i , [P′0]1, [P
′
1]1, [Y]2, [Y

′
0]2, [Y

′
1]2, [A]2,

[B]1, H)
td B (K, {Ki }i )

Return (crs, td)

Prove(crs, ([c]1, x), r): // c =Mxr
w←$Zkq , [t]1 B [Bw]1, τ B H([c]1, x, [t]1) ∈ Zq
[Px]1 B

[∑m
i=1 xiPi

]
1, [u]1 B [P

>
x r + (P′0 + τP′1)

>w]1
Return π B ([u]1, [t]1) ∈ (Gk+1

1 )2

Ver(crs, ([c]1, x), π C ([u]1, [t]1)):

τ B H([c]1, x, [t]1) ∈ Zq , [Yx]2 B

[∑m
i=1 xiYi

Y

]
2

If [u]>1 ◦ [A]2 = [c]
>
1 ◦ [Yx]2 + [t]>1 ◦ [Y

′
0 + τY′1]2: Return 1

Else: Return 0

Sim(crs, td, ([c]1, x)):
w←$Zkq , [t]1 B [Bw]1, τ B H([c]1, x, [t]1) ∈ Zq

Kx B

(∑m
i=1 xiKi

K

)
, [u]1 B [K>x c + (P′0 + τP′1)

>w]1

Return π B ([u]1, [t]1) ∈ (Gk+1
1 )2

Fig. A· 1 Our USS QA-NIZK argument ΠUSS.

in Fig.A· 1. Our construction is based on the USS QA-NIZK
argument proposed by Kiltz and Wee [23].

Theorem 4: ΠUSS defined in Fig. A· 1 has perfect com-
pleteness and perfect zero-knowledge. Furthermore, if the
the Dk-MDDH problem in G1 and the Dk-KerMDH problem
in G2 is hard andH is a CR hash function family, then ΠUSS
has unbounded simulation-soundness.

Weonly give the proof overviewof this theorembecause
our proof is similar to [23, Theorem 4].
Proof Overview. Perfect completeness and perfect zero-
knowledge follow readily from the fact that for all c = Mxr,
we have P>x r =

∑m
i=1 xiP>i r = K>x Mxr = K>x c and for all A,

B, w, K′0 and K′1, we have

[w>B>(K′0+τK′1)]1◦[A]2 = [w
>B>]1◦[K′0A+τK′1A]2,

where τ = H([c]1,x, [t]1).
Next, we consider USS. Similar to the USS QA-NIZK

in [23], we can show that no information on K and {Ki }i
is leaked from all simulated proofs thanks to the tech-
nique of using pseudorandom MAC [29]. If information
on K and {Ki }i does leak only from crs, then Kx∗c∗ for
c∗ < Span(Mx∗ ) is uniformly random from the view point
of an adversary, that guarantees the unbounded simulation
soundness. �

Toi Tomita received the B.E. and M.E. de-
grees in information and communication engi-
neering in 2017 and 2019, respectively, from
Tokyo Institute of Technology. He is currently a
doctor course student in Tokyo Institute of Tech-
nology. He is also a research assistant in the Na-
tional Institute of Advanced Industrial Science
and Technology (AIST). His current interests are
cryptography and information security.

Wakaha Ogata received the B.S., M.E. and
D.E. degrees in electrical and electronic engi-
neering in 1989, 1991 and 1994, respectively,
from Tokyo Institute of Technology. From 1995
to 2000, she was anAssistant Professor at Himeji
Institute of Technology. Since 2000 she has been
working for Tokyo Institute of Technology, and
now she is a Professor from 2013. Her current
interests are cryptography and information secu-
rity.

http://dx.doi.org/10.1007/978-3-030-03326-2_21
http://dx.doi.org/10.1007/978-3-030-03326-2_21
http://dx.doi.org/10.1007/978-3-030-03326-2_21
http://dx.doi.org/10.1049/iet-ifs.2013.0173
http://dx.doi.org/10.1049/iet-ifs.2013.0173
http://dx.doi.org/10.1049/iet-ifs.2013.0173
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-24676-3_31


TOMITA et al.: BOOSTING CPA TO CCA2 FOR LEAKAGE-RESILIENT ATTRIBUTE-BASED ENCRYPTION BY USING NEW QA-NIZK
159

Kaoru Kurosawa received the B.E. and
Dr. Eng. degrees in electrical engineering in
1976 and 1981, respectively, from Tokyo Insti-
tute of Technology. He is a Professor Emeritus
at Ibaraki University. He is also a visiting re-
searcher ofNational Institute ofAdvanced Indus-
trial Science and Technology and Research and
Development Initiative, Chuo University. His
current research interest is cryptography. He
was Program Chair for Asiacrypt 2007, PKC
2013 and some other conferences. Dr. Kuro-

sawa is a Fellow of IACR and IEICE, and a member of IEEE. He received
the excellent paper award of IEICE in 1981, the young engineer award of
IEICE in 1986, Telecom System Scientific Award of Telecommunications
Advancement Foundation in 2006 and Achievement Award of IEICE in
2007.


