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Hardware Implementation of Euclidean Projection Module Based
on Simplified LSA for ADMM Decoding
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SUMMARY The Euclidean projection operation is the most complex
and time-consuming of the alternating direction method of multipliers
(ADMM) decoding algorithms, resulting in a large number of resources
when deployed on hardware platforms. We propose a simplified line seg-
ment projection algorithm (SLSA) and present the hardware design and
the quantization scheme of the SLSA. In simulation results, the proposed
SLSA module has a better performance than the original algorithm with the
same fixed bitwidths due to the centrosymmetric structure of SLSA. Fur-
thermore, the proposed SLSA module with a simpler structure without hy-
percube projection can reduce time consuming by up to 72.2% and reduce
hardware resource usage by more than 87% compared to other Euclidean
projection modules in the experiments.
key words: simplified line segment projection algorithm (SLSA), alter-
nating direction method of multipliers (ADMM), low-density parity-check
(LDPC) codes

1. Introduction

For low-density parity-check (LDPC) codes, Barman et al.
proposed an linear programming (LP) decoding algorithm
based on the alternating direction method of multipliers
(ADMM) [1], which uses the idea of decomposition coordi-
nation to decompose a large problem into small local prob-
lems, thus improving the efficiency of the LP decoding al-
gorithm.

The ADMM-LP decoding algorithm involves the Eu-
clidean projection (EP) operation, which has a decisive im-
pact on the hardware implementation of the ADMM-LP
decoder in terms of throughput and hardware resource us-
age [2]. Therefore, researchers have proposed simplified
projection methods to solve this problem. X. Zhang et
al. proposed a cut search algorithm (CSA) to simplify the
EP [3]. The CSA is less complex than the original projec-
tion algorithm described in [1], because the sort and desort
operations are replaced by the cut search operation. How-
ever, the CSA still involves sort operation when solving the
piecewise linear optimization problems, leads to a complex-
ity of O(d log d), where d denotes the degree of check nodes.
G. Zhang et al. proposed that the projection onto the par-
ity polytope can be transformed to a projection onto a sim-
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plex [4]. The simplex projection method involves partial
sort operations, and it has a linear-complexity of O(d). In the
worst case, the complexity of the simplex projection method
reaches O(d2). Wasson et al. proposed the hardware imple-
mentations of projection onto the parity polytope and prob-
ability simplex [5]. Then, Wasson et al. implemented the
ADMM decoder on a Field Programmable Logic Gate Array
(FPGA) platform [6], [7]. However, the above projections
are exact projections with high complexity, which reduces
the ADMM-LP decoder throughput and increase the hard-
ware resource consumption. In 2017, Jiao et al. proposed
a lookup table (LUT) based projection method that further
simplifies the projection algorithm [8]. Samhan developed a
modified version of the Wasson’s ADMM-LP decoder based
on the LUT projection method, realizing a bitwidth reduc-
tion of about 50% on FPGA [9]. Thameur et al. presented
the hardware implementations of three projection methods,
namely exact Euclidean projection (EEP) [5], the iterative
Euclidean projection (IEP) [10], and the LUT-based Eu-
clidean projection (LEP) [11]. Recently, Xia et al. proposed
a line segment projection algorithm (LSA) without sorting
and iterative operations [12]. The LSA can save the average
projection time by 43% compared with the CSA.

In this letter, we propose a simplified line segment al-
gorithm (SLSA) with a simpler structure and fewer compu-
tational variables in Sect. 2. Then, we present the hardware
design of the SLSA and quantization scheme in Sect. 3. Fur-
thermore, we evaluate the impact of different quantization
bitwidths on frame error rate (FER) performance, latency
and hardware resource usage of the proposed SLSA module
in Sect. 4. Finally, the proposed SLSA module is compared
with other EP modules to further measure hardware perfor-
mance.

2. Proposed Simplified Line Segment Algorithm

2.1 Line Segment Algorithm

In the EP, we use PPd to represent the parity check polytope,
as defined in Eq. (1). PPd is the convex hull of all the length-
d binary vectors with any even number of 1s, where d is the
check node degree.

PPd = conv
({

x ∈ {0, 1}d | ‖x‖1 is even
})

(1)

Then, we use
∏
PPd

(v) to represent projecting a vector
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Algorithm 1 Line Segment Projection Algorithm
Input: Vector v ∈ Rd

Output: Projection Vector z
1: Projection v onto unit hypercube: u =

∏
[0,1] v

2: Initialize θv : θv,i =

1, vi > 0.5
−1, else

3: if set
{
i|θv,i = 1

}
has an even number of elements then

4: i∗ = argmin
i

(|vi − 0.5|)

5: θv,i∗ = −θv,i∗

6: end if
7: V =

{
i : θv,i = 1

}
8: if θT

v u 6 |V| − 1 then
9: z = u

10: else

11: Odd-vertex O : Oi =

0, θv,i = −1
1, θv,i = 1

12: Index a = argmin
i

(|vi − 0.5|)

13: Index b = argmin
i,a

(|vi − 0.5|)

14: Even-vertex A =

Oi, if i , a
1 − Oi, if i = a

15: Even-vertex B =

Oi, if i , b
1 − Oi, if i = b

16: z =
∏

LAB
(v)

17: end if
18: return z

v ∈ Rd onto PPd, PPd can be described as a quadratic pro-
gram [1]. To solved this problem, Xia et al. proposed a fast
projection method called LSA [12]. The key of LSA is to
use the projection onto the line segment to replace the pro-
jection onto the parity check polytope, which simplifies the
projection operations.

Algorithm 1 describes the process of the LSA. Define
v ∈ Rd as the input vector to be projected, z as the output
projection vector. We use u denotes the projection of v onto
unit hypercube, θv denotes indicator vector. if u satisfied
θT

v u 6 |V| − 1, then we can ensure u ∈ PPd and u is pro-
jection result. Otherwise, we need to find the two nearest
even vertexes A and B to the vector v as the two endpoints
of the projected line segment LAB. Then, we can calculate
the projection of v onto LAB as described in [12].

2.2 Simplified Line Segment Algorithm

In the original LSA, we need to determine whether u satis-
fied θT

v u 6 |V| − 1. Therefore, there are two branches of the
algorithm so that the original LSA is not suitable for imple-
menting pipelines in hardware.

Here, we improve the following points to simplify the
LSA:

(1) We propose to remove the hypercube projection judg-
ment (Line 8 − 9) in Algorithm 1. For all given vector
v, we use the projection of v onto LAB as the final pro-
jection result.

(2) Both indicator vector θv and the Odd-vertex O have
only two values, therefore, we can use a binarized vec-
tor βv to replace θv and O.

Algorithm 2 SLSA
Input: Vector v ∈ Rd

Output: Projection Vector z ∈
[
− 1

2 ,
1
2

]d

1: Initialize: βv : βv,i =

1, vi > 0
0, else

2: if set
{
i|βv,i = 1

}
has an even number of elements then

3: i∗ = argmin
i

(|vi − 0|)

4: βv,i∗ = 1 − βv,i∗
5: end if
6: Index a = argmin

i
(|vi − 0|)

7: Index b = argmin
i,a

(|vi − 0|)

8: Even-vertex A =

βv,i, if i , a
1 − βv,i s, if i = a

9: Even-vertex B =

βv,i, if i , b
1 − βv,i, if i = b

10: z =
∏

LAB
(v) − 0.5

11: return z

(3) Considering the potential asymmetry of LSA with
fixed-point in hardware implementation, we further im-
proved the algorithm to a centrosymmetric one. We re-
locate the projected hypercube from [0, 1] to [− 1

2 ,
1
2 ].

Algorithm 2 describes the proposed SLSA. The input
vector v can be adjusted to the projection hypercube

[
− 1

2 ,
1
2

]
by v = v − 1

2 .
Comparing Algorithm 2 with Algorithm 1, the process

is significantly simpler and has fewer variables, which ben-
efits the hardware implementation.

3. Proposed Hardware Implementation of SLSA

3.1 Proposed SLSA Architecture

The proposed SLSA architecture is diagrammed in Fig. 1.
The majority of steps in Algorithm 2 comprise straightfor-
ward operations that can be mapped directly to the FPGA
platform with linear complexity and constant latency. It is
worth noting that the hardware implementation of SLSA
must involve argmin. argmin is the operation to find the
minimum value, which we can achieve by recursively call-
ing the two min-tree. This construction is efficient and has
linear complexity.

In Fig. 1, v (z) denotes the input (output) vector. The
first step is to binarize the input vector v to obtain βv. The
next step is lines 2 − 5 of Algorithm 2, which determines
whether βv is an odd vertex. If βv has no even number of
elements, then βv is an odd vertex and we can find the two
nearest even vertex A and B directly based on line 6 − 9 in
Algorithm 2. Otherwise, we need to find the index i∗ satis-
fying argmin

i
(|vi − 0|), followed by flipping the element as

1 − βu,i, when i = i∗. Then, we can calculate the projection
of a vector onto a line segment LAB.
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Fig. 1 Proposed SLSA hardware architecture.

3.2 Quantization Scheme

In the hardware implementation of SLSA, resource cost is
essentially determined by the bitwidth of messages. In order
to achieve a balance between resources and performance, a
customised quantization scheme is used. For the binarised
variables (βv) in Algorithm 2, as well as the indicator vari-
ables (Index a, b), integer bits are used to represent them.
When calculating the projections onto LAB, intermediate re-
sults are stored using fixed-points representation. Specifi-
cally, we can represent a fixed-point number as follow:

Fp(S , I, P) (2)

In (2), S indicates the sign bit, usually 1 bit. I and P indicate
integer and fractional bitwidths respectively. In Sect. 4.2, we
compare the quantization effects on FER performance for
SLSA and LSA.

4. Simulation Results

In this section, we conduct experiments in terms of both
FER performance and hardware implementation efficiency.
Specifically, we compare the FER performance of CSA [4],
LSA [12] and the proposed SLSA, quantization effects and
resource scaling for the hardware design of SLSA.

4.1 FER Performance

In the simulation, the ADMM-LP decoder with penalty
function l2 [13] is employed and the additive white Gaus-
sian noise (AWGN) channel with binary phase shift keying
(BPSK) modulation is assumed. In the experiments, we con-
sider four codes conforming to IEEE802.16e standard: the
(576, 480) code C1, the (576, 288) code C2, the (576, 432)
code C3, and the (576, 384) code C4, The check node de-
grees of C1 − C4 are 20, {6, 7}, {14, 15}, and {10, 11}. The
penalty parameter µ for C1 − C4 is 5.0, 3.0, 4.2, and 4.4,
while the parameter α for C1 − C4 is 2.0, 1.4, 1.8, and 1.4,
respectively. The maximum iteration number is set to be
300. The frame-error-rate curves are generated at a level of
no less than 100 error frames for each point in the plots.

Figure 2 shows the FER performance of C1 − C4 for

Fig. 2 FER performance of C1 − C4 with ADMM-SLSA decoder and
other ADMM decoders.

the ADMM-LP decoder with CSA, LSA and the proposed
SLSA. The simulation results in Fig. 2 demonstrate that
ADMM-SLSA decoder has a performance practically iden-
tical to decoder of ADMM-CSA and ADMM-LSA. Mean-
while, the SLSA is simpler in structure and can be mapped
to a pipeline hardware architecture.

4.2 Quantization Effects

To illustrate the quantization effects of SLSA and LSA, we
consider the code C1 and the QC-LDPC code C5 (155, 64).
For C5, the check node degree is 5. The penalty parameter
µ for C5 is 3.0, while the parameter α is 1.4. The maximum
iteration number is set to be 100. We then apply a uniform
quantizer to projection vectors. Figure 3 shows the FER
performance of C1 and C5 with Fp(1, 2, P) and Fp(1, 3, P)
bitwidths. In Fig. 3 (a), (b), the LSA has a poorer FER per-
formance than SLSA with the same Fp(1, 2, P) bitwidths.
The difference in fixed bitwidths between SLSA and LSA is
due to the centrosymmetric structure of SLSA. We relocate
the projected hypercube from [0, 1] to [− 1

2 ,
1
2 ] to eliminate

the asymmetry of fixed-points representation. The SLSA
with a minimum bitwidths of Fp(1, 2, 2) can achieve near
floating performance while LSA need a minimum bitwidths
of Fp(1, 3, 4).

4.3 Resource Scaling

To further evaluate the hardware efficiency, we also syn-
thesis the hardware architecture proposed in Fig. 1 on the
Xilinx ZCU102 FPGA platform which has 599550 LUTs,
548160 FFs, 2520 DSPs and 1824 BRAMs. For flexible
development of validation, Vivado HLS tools was used for
RTL architecture generation. In the simulations, we con-
sider the degree of check nodes d of 5 for all Euclidean
modules.

Table 1 shows the latency and hardware resource usage
of SLSA module for different bitwidths including float pre-
cision. For float scheme, it yieds a latency of 70 clock cycles
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Fig. 3 FER performance of ADMM decoder with C1 and C5 at different Fp(S , I, P).

Table 1 Latency and resource scaling of SLSA modules.

Quantization Scheme Float
Fp(1, 5, P) Fp(1, 4, P) Fp(1, 3, P) Fp(1, 2, P)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Latency 70 15 14 14 14 14 14 14 14 15 14 14 15 14 14 14 14

Frequency(MHz) 183 291 288 287 291 289 291 288 287 288 289 288 288 287 288 289 288

Look-Up-Table (LUT) 10560 596 677 778 895 483 587 673 759 418 474 581 648 287 416 462 565

Flip Flop (FF) 8875 327 367 415 557 299 308 377 407 310 285 300 351 226 308 267 308

Digital Signal Processing (DSP) 15 0 0 0 0

Table 2 Latency and resource scaling of SLSA, LSA, and CSA modules.

Algorithm SLSA LSA CSA

Bitwidth Fp(1, 2, 2) Fp(1, 3, 4) Fp(1, 4, 10)/Fp(1, 0, 14)

Latency 14 34 41

Frequency(MHz) 288 286 237

LUT 416 931 3415

FF 308 732 7927

DSP 0 0 2

at a maximum working frequency of 183 MHz. Due to the
small degree of check nodes (d = 5) of SLSA module, log-
ical resources can be used for storage instead of BRAMs
resources. In terms of Table 1, the quantization scheme
has around 80% less latency than the float scheme and
the hardware resource cost is significantly reduced. More-
over, the quantified SLSA module does not require DSP re-
sources. Combined with Sect. 4.2, Fig. 3 (b) demonstrate
that Fp(1, 2, 2) representation is the better choice in terms of
balancing hardware resources and FER performance.

Furthermore, we compare the latency and hardware re-
source usage of SLSA module with other EP modules: LSA
and CSA [5] in Table 2. The CSA module can achieve near
floating performance with a minimum input bitwidths of
Fp(1, 4, 10) and minimum output bitwidths of Fp(1, 0, 14).
The SLSA module yields the lowest latency of 14 at the
highest working frequency of 288 MHz among three EP
modules. All above EP modules can achieve near floating

precision FER performance while SLSA has a simpler struc-
ture and a lower complexity compared with CSA. More-
over, the SLSA has a centrosymmetric structure without hy-
percube projection which is superior over LSA. The SLSA
module has a 56.3% reduction in time consuming compared
with LSA module and has a 72.7% reduction in time con-
suming compared with CSA module. Moreover, the SLSA
module reduces the LUTs cost by 55.3% and FFs cost by
57.9% compared with LSA module and reduces the LUTs
cost by 87.8% and FFs cost by 96.1% compared with CSA
module. Thus, the proposed SLSA module is more efficient
and has a lower hardware resource usage.

5. Conclusion

The Euclidean projection is a main challenge in ADMM
hardware decoder. In this letter, we propose a hardware-
friendly Euclidean projection algorithm called SLSA to
solve this problem. It’s proven by simulation results that the
proposed SLSA module yields a lower latency and a lower
hardware resource usage. For further research, we can apply
the SLSA module in ADMM hardware decoder to improve
throughput and reduce hardware resource usage.
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