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PAPER
Deadlock-Free Symbolic Smith Controllers Based on Prediction for
Nondeterministic Systems∗∗

Masashi MIZOGUCHI†∗a), Member and Toshimitsu USHIO†, Fellow

SUMMARY The Smith method has been used to control physical plants
with dead time components, where plant states after the dead time is elapsed
are predicted and a control input is determined based on the predicted states.
We extend the method to the symbolic control and design a symbolic Smith
controller to deal with a nondeterministic embedded system. Due to the
nondeterministic transitions, the proposed controller computes all reachable
plant states after the dead time is elapsed and determines a control input
that is suitable for all of them in terms of a given control specification.
The essence of the Smith method is that the effects of the dead time are
suppressed by the prediction, however, which is not always guaranteed for
nondeterministic systems because there may exist no control input that is
suitable for all predicted states. Thus, in this paper, we discuss the existence
of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed
that the effects of the dead time can be suppressed and that the controller
can always issue the control input for any reachable state of the plant. If it
does not exist, it is proved that the deviation from the control specification
is essentially inevitable.
key words: Smith predictor, symbolic control, dead time, approximated
alternating simulation, deadlock

1. Introduction

Dead times exist in many control systems such as chemical
plants, data networks, and remote control of space robotics
[1]. These dead times often degrade control performances
and influence the stability of the plant.

O. Smith introduced a predictor to improve the perfor-
mance of the controller when the plant has a dead time com-
ponent [2]. Shown in Fig. 1 is a structure of the closed-loop
system, where G[z] · z−L is a plant with a rational transfer
function G[z] and a dead time L, Gc[z] is a controller such
as a PID controller designed for G[z], and P[z] is a model
of G[z]. If P[z] = G[z], the transfer function from r to y is
given by

G[z]Gc[z]
1 + G[z]Gc[z]

z−L . (1)

Apparently, (1) implies that the dead time component is
out of the feedback loop and the output y[k] is controlled
based on the delayed reference r[k − L]. Intuitively, the
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Fig. 1 The block diagram of the (classical) Smith controller.

system P[z] predicts the state of the plant after L times, and
the minor loop consisting of Gc[z] and P[z] determines a
control input that is suitable for the predicted state. The
Smith controller and its modifications and extensions have
been studied [3], [4]. The Smith controller is also extended
to nonlinear systems [5] and digital controllers [6]. The key
point of Smith controllers is that controllers are successfully
extended to control plants with dead times by predicting
plant states after the dead times are elapsed.

On the other hand, symbolic approaches have gathered
attentions for the control of embedded systems in order to
deal with complicated control specifications and nondeter-
ministic transitions [7]–[9]. Recently, an approximate con-
tractive alternating (bi)simulation relation (acASR) is intro-
duced, which enforces robustness against abstraction errors,
sporadic disturbances such as packet dropouts, and input
errors [10]–[12]. The authors extended the acASR-based
symbolic synthesis to partial observation and delayed sys-
tems [13]–[17]. These approaches are extended to networked
control systems [18], [19]

Especially, in [16], the authors proposed a framework
of a symbolic Smith controller, which proves that the Smith
method is applicable not only in the classical control but also
in symbolic control. A symbolic controller designed for a
plant with no dead time is successfully extended to control a
plant with a dead time by adding a predictor on plant states
after the dead time is elapsed. Note that this is same as (clas-
sic) Smith controllers in terms that Gc[z] stabilizing G[z] is
still useful for G[z] · z−L by adding a predictor as shown in
Fig. 1. In contrast to the other approaches [20]–[23], it is
proved that the control performance does not degrade by the
dead time and that the controlled plant still satisfies a control
specification. However, it should be guaranteed that there
always exists a control input that is suitable for all predicted
states if the plant has nondeterministic transitions, which has
not been considered.

Thus, in this paper, we discuss the design of a deadlock-
free symbolic Smith controller for a plant with nondetermin-
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istic transitions and show the condition for the existence of
the controller. If the deadlock-free controller exists, it is guar-
anteed that the effects of the dead time can be suppressed
and that control inputs are always issued for any reachable
states of the plant. If it does not exist, it is shown that the
effects of the dead time cannot be suppressed and that the
degrade of the control performance is essentially inevitable.

2. Symbolic Control

In this section, we review several notions of symbolic control
and show an existence condition of a symbolic controller for
a plant with no dead time.

2.1 Notations

Let Z, R, Z≥0, and R≥0 be the sets of integers, real num-
bers, non-negative integers, and non-negative real num-
bers, respectively. For any x ∈ R, bxc ∈ Z is defined by
bxc := max{n ∈ Z | n ≤ x}. For any a ∈ R and any b ∈ R
such that a < b, [a, b[⊆ R and [a, b] ⊆ R are defined by
[a, b[ := {x ∈ R | a ≤ x < b} and [a, b] := {x ∈ R | a ≤
x ≤ b}, respectively. For a given set A, denoted by 2A is the
power set of A: 2A := {A′ is a set. | A′ ⊆ A}. For given sets
B and C, denoted by BC is a set of all mappings from C to
B.

2.2 Symbolic Systems and Approximate Relations

The following definitions refer to fundamental notions for
the symbolic control [11].

Definition 1 A system S is a tuple (X,X0,U,r), where

• X is a set of states;
• X0 ⊆ X is a set of initial states;
• U is a set of inputs; and
• r : X ×U → 2X is a transition map.

For any x ∈ X , let U(x) = {u ∈ U | r(x,u) , ∅}. We extend
the transition map r : X ×U∗ → 2X in the following ways:

1. r(x, ε) = {x}; and
2. r(x, tσ) = {x ′′ ∈ X | ∃x ′ ∈ r(x, t) : x ′′ ∈ r(x ′, σ)},

where ε is the empty string, and U∗ is a set of all finite input
strings over U. A deadlock state x ∈ X is a state such that
U(x) = ∅, and we say that S is deadlock-free iff the following
condition is satisfied:

∀x ∈ X : U(x) , ∅.

Let S1 = (X1,X10,U1,r1) and S2 = (X2,X20,U2, r2) be
two systems. For a relation R ⊆ X1 × X2 × U1 × U2 over
the state sets X1,X2 and the input sets U1,U2, denoted by
RX ⊆ X1 × X2 is a projection of R to the state sets X1,X2 as
follows:

RX = {(x1, x2) ∈ X1 × X2 | ∃u1 ∈ U1,∃u2 ∈ U2 :
(x1, x2,u1,u2) ∈ R}.

In addition, for a parameterized relation† R(ε) ⊆ X1 × X2 ×
U1 × U2 over the state sets X1,X2 and the input sets U1,U2,
denoted by RX (ε) ⊆ X1 × X2 is a projection of R(ε) to the
state sets X1,X2 as follows:

RX (ε) = {(x1, x2) ∈ X1 × X2 | ∃u1 ∈ U1,∃u2 ∈ U2 :
(x1, x2,u1,u2) ∈ R(ε)}.

Then, the following definition describes an approximate con-
tractive alternating simulation relation between two systems.
Let S1 = (X1,X10,U1,r1) and S2 = (X2,X20, U2,r2) be two
systems, let κ, λ ∈ R≥0, β ∈ [0,1[ be some parameters, and
consider a map d : U1 × U2 → R≥0. We call a parameter-
ized (by ε ∈ [κ,∞[) relation R(ε) ⊆ X1 × X2 × U1 × U2 a
κ-approximate (β,λ)-contractive alternating simulation rela-
tion ((κ, β, λ)-acASR) from S1 to S2 with d if R(ε) ⊆ R(ε ′)
holds for all ε ≤ ε ′ and the following two conditions hold
for all ε ∈ [κ,∞[:

1. ∀x10 ∈ X10,∃x20 ∈ X20 : (x10, x20) ∈ RX (κ);
2. ∀x1 ∈ X1, ∀u1 ∈ U1(x1), ∀x2 ∈ X2, ∃u2 ∈ U2(x2):

(x1, x2) ∈ RX (ε) ⇒ [(x1, x2,u1,u2) ∈ R(ε)] ∧[
∀x ′2 ∈ r2(x2,u2),∃x ′1 ∈ r1(x1,u1) :
(x ′1, x

′
2) ∈ RX (κ + βε + λd(u1,u2))

]
.

If R(ε) is (0,0,0)-acASR, we simply call R an alternating
simulation relation (ASR).

Let S = (X,X0,U,r) and SC = (XC,XC0,UC,rC) be two
systems, and consider a relation RC(ε) ⊆ XC × X ×UC ×U.
We call the pair (SC,RC(ε)) a controller for S if there exist
parameters κ, λ ∈ R≥0, β ∈ [0,1[, and a map dC : UC ×

U → R≥0 such that RC(ε) is a (κ, β, λ)-acASR from SC to
S with dC. Intuitively, SC is a system that describes all
feasible behaviors for S. In this sense, we call SC the control
specification for S. By the pair (SC,RC(ε)), behaviors of the
plant S and those of the specification SC are synchronized
with respect to RC(ε), which implies that the specification is
enforced on the plant.

Definition 2 Let S1 = (X1,X10,U1,r1) and S2 = (X2,X20,
U2,r2) be two systems, and let R ⊆ X1 × X2 × U1 × U2 be
a relation. We define the composition of S1 and S2 with
respect to R, denoted by S := S1 ×R S2 = (X,X0,U,r) where

• X = X1 × X2;
• X0 = (X10 × X20) ∩ RX ;
• U = U1 ×U2; and
• r : X × U → 2X is defined as follows: (x ′1, x

′
2) ∈

r((x1, x2), (u1,u2)) iff[
x ′1 ∈ r1(x1,u1)

]
∧

[
x ′2 ∈ r2(x2,u2)

]
∧

[(x1, x2,u1,u2) ∈ R] ∧
[
(x ′1, x

′
2) ∈ RX

]
.

†We consider a parameterized relation for finite abstraction of
(possibly) infinite transition systems. Intuitively, the parameter
ε describes bounded errors between the actual and the finite ab-
stracted plant states. An example of such parameterized relation is
shown in Sect. 4.
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If R(ε) is a (κ, β, λ)-acASR from S1 to S2 with d, we re-
place the above definitions of X0 and r with the following
conditions:

• X0 = (X10 × X20) ∩ RX (κ); and
• r : X × U → 2X is defined as follows: (x ′1, x

′
2) ∈

r((x1, x2), (u1,u2)) iff[
x ′1 ∈ r1(x1,u1)

]
∧

[
x ′2 ∈ r2(x2,u2)

]
∧

[(x1, x2,u1,u2) ∈ R(e(x1, x2))] ∧[
(x ′1, x

′
2) ∈ RX (κ + βe(x1, x2) + λd(u1,u2))

]
,

where e(x1, x2) := inf{ε ∈ [κ,∞[ | (x1, x2) ∈RX (ε)}.

2.3 Symbolic Controller Design without Dead Times

We review an abstracted controller proposed by Rungger and
Tabuada in [11] summarized as follows:

• Consider a finite abstracted model of a plant;
• Design a controller for the abstracted model; and
• Obtain a controller for the plant.

The following assumption formally imposes the existence of
the abstracted plant model and the controller.

Assumption 1 Let S = (X,X0,U,r) be a physical plant
to be controlled. Assume the existence of a system
Ŝ = (X̂, X̂0,Û, r̂) such that there exists a (κ, β, λ)-acASR
R(ε) ⊆ X̂ × X × Û × U from Ŝ to S with d for some
κ, λ ∈ R≥0, β ∈ [0,1[, and a map d : Û × U → R≥0.
We also assume that a controller for Ŝ is already given by the
pair (ŜC, R̂C) where ŜC = (X̂C, X̂C0,ÛC, r̂C) and the relation
R̂C ⊆ X̂C × X̂ × ÛC × Û is an ASR from ŜC to Ŝ.

Then, we have the following theorem that shows the config-
uration of the controller for the plant [11].

Theorem 1 Under Assumption 1, consider the composed
system SC := ŜC ×R̂C

Ŝ = (XC,XC0,UC,rC) and the follow-
ing relation RC(ε) ⊆ XC × X ×UC ×U:

RC(ε) = {((x̂C, x̂), x, (ûC, û),u) ∈ XC × X ×UC ×U |

[(x̂, x, û,u) ∈ R(ε)] ∧ [(x̂C, x̂, ûC, û) ∈ R̂C]}.

(2)

Then, the pair (SC,RC(ε)) is a controller for S.

Theorem 1 implies that we have a controller for S by
composing ŜC and Ŝ. However, if there exists an input dead
time, the approach is not applicable. This is because they
are derived from relations that will probably be violated due
to the mismatch of states of delayed plants and those of
controllers. Then, in this paper, we extend this framework to
control delayed plants. We propose prediction in contexts of
symbolic control that is inspired from the Smith controller
in the classical control theory.

3. Design of a Deadlock-Free Symbolic Smith Con-
troller

In this section, we design a deadlock-free symbolic Smith
controller. The procedures are summarized as follows. First,
we introduce a symbolic model of a delayed plant (Defi-
nition 3). Second, we design a symbolic Smith predictor
(Definition 4) and a system to feedback prediction errors
(Definition 5) equivalent to P[z] and P[z] · z−L , respectively,
in Fig. 1. Third, we compose them and prove an acASR
implying that a control input can successfully be determined
in terms of a control specification (Theorem 2). Finally, we
introduce an operator to obtain a deadlock-free subtransition
system of the symbolic Smith controller.

3.1 Model of the Plant with the Input Dead Time

The plant with the dead time is modeled by the following
transition system†.

Definition 3 We define a system with a dead time L

SD = (XD,XD0,UD,rD) (3)

induced by S = (X,X0,U,r), where

• XD = X ×UL;
• XD0 = {(x0,u1

0,u
2
0, . . . ,u

L
0 ) ∈ X0 × UL | r(x0,u1

0
u2

0 . . . u
L
0 ) , ∅};

• UD = U ×U; and
• rD : XD ×UD → 2XD is defined as follows:

rD((x,u1,u2, . . . ,uL), (u1
D,u

2
D))

=


{(x ′,u2, . . . ,uL,u2

D) | x
′ ∈ r(x,u1

D)}

if uD
1 = u1,

∅ otherwise.

The input of SD is a pair of inputs: u1
D = u1 is an

updated input of the plant, while u2
D is a control input

stored in the queue and will be injected into the plant
after L time steps are elapsed.

Each state (x,u1,u2, . . . ,uL) ∈ XD means as follows:

• The state x is the current state of the plant; and
• UL denotes the First-In-First-Out (FIFO) queue, that is,
the states u1, u2, . . ., uL are waiting control inputs due
to the dead time component.

Intuitively, SD is the composition of the plant S and the queue
with L memories describing the dead time. This is equivalent
to the delayed plant G[z] · z−L in the classical control theory,
which is the composition of the rational transfer function
G[z] (corresponding to S in the symbolic control) and a
dead time component z−L (corresponding to L-length FIFO
†To simplify the discussion, we assume that S is a discrete-time

transition system.
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memories). In order to determine the initial condition, we
consider the case where the first L initial input sequence,
denoted by u1

0u2
0 . . . u

L
0 satisfying r(x0,u1

0u2
0 . . . u

L
0 ) , ∅, is

stored in the queue and the actuator updates to u1
0 because

the plant starts at the initial time. This is different from
the classical control where initial states are not explicitly
considered or implicitly set to 0 in most cases.

3.2 Symbolic Smith Predictor

We introduce a symbolic Smith predictor induced by Ŝ =
(X̂, X̂0,Û, r̂) that updates prediction by computing all reach-
able states from the latest measured state with the L-length
latest input sequence. Since the plant is generally nonde-
terministic, the predictor does not predict the state uniquely.
Instead, the predictor lists all candidates. Thus, the set of
states of the predictor, denoted by X̂, is the power set of X̂ .
For each state x̂ ∈ X̂ = 2X̂ \ {∅}, a mapping û : x̂→ Û that
assigns each candidate state x̂ ∈ x̂ to an input û(x̂) ∈ Û(x̂)
will be called an input map. Let Û =

⋃
x̂∈X̂ Û x̂ be a set of all

input mappings with respect to X̂. Denoted by dom(û) ⊆ X̂
is the domain of the input map û. Then, we define a transi-
tion map r̂e : X̂ × Û∗ → X̂ induced by r̂ : X̂ × Û → 2X̂ as
follows:

1. For each x̂ ∈ X̂ and each û ∈ Û,

r̂e(x̂, û) =
{ ⋃

x̂∈x̂ r̂(x̂, û(x̂)) if x̂ = dom(û),
∅ otherwise.

2. For each x̂ ∈ X̂, each input map sequence t̂ ∈ Û∗, and
each input map û ∈ Û,

r̂e(x̂, ε) = x̂; and

r̂e(x̂, t̂û) =


⋃

x̂′∈r̂e (x̂,t̂) r̂(x̂
′, û(x̂ ′))

if r̂e(x̂, t̂) = dom(û),
∅ otherwise.

For simplicity, we write r̂e(x̂, û) for r̂e({ x̂}, û).

For any û ∈ Û, we introduce the following set of physical
inputs:

U(û) = {u ∈ U | ∀ε ∈ [κ,∞[,∀x̂ ∈ dom(û),∀x ∈ X :
[(x̂, x) ∈ RX (ε) ⇒ u ∈ U(x)] ∧
[(x̂, x, û(x̂),u) ∈ R(ε)]}.

Intuitively,U(û) is a set of common physical inputs that are
valid at all states in dom(û). Recall that, in the prediction-
based approach, the controller determines a control input
that is valid for all estimated states to achieve the control
specification.

For the estimation at the initial time, we impose the
following assumption that there exists a common physical
input during the first L time steps.

Assumption 2 There exist an initial state x̂0 ∈ X̂0 and

an initial input map sequence û1
0û2

0 . . . û
L
0 (û

i
0 ∈ Û, i ∈

{1,2, . . . , L}) such that

∀i ∈ {1,2, . . . , L} :
[dom(ûi

0) = r̂e(x̂0, û1
0û2

0 . . . û
i−1
0 )] ∧ [U(û

i
0) , ∅].

(4)

Note that, if Ŝ is a finite transition system, Assumption 2 can
be tested in finite steps. Then, the symbolic Smith predictor
is formally defined as follows.

Definition 4 Under Assumption 2, we define a system

Ŝ = (X̂, X̂0, Û, r̂) (5)

induced by Ŝ = (X̂, X̂0,Û, r̂) with respect to x̂0 ∈ X̂0 and
û1

0û2
0 . . . û

L
0 (û

i
0 ∈ Û, i ∈ {1,2, . . . , L}) satisfying (4) where

• X̂0 = {r̂e(x̂0, û1
0û2

0 . . . û
L
0 )} ⊆ X̂; and

• r̂ : X̂ × Û→ 2X̂ is defined as follows:

r̂(x̂, û)

=


2r̂e (x̂,û) \ {∅}
if ∀x̂ ∈ x̂ : [r̂e(x̂, û) , ∅] ∧ [U(û) , ∅],
∅ otherwise.

The system Ŝ is equivalent to P[z] in the classical control
theory to predict plant states after the dead time is elapsed.
Note that, in symbolic control, we consider plants (possibly)
with non-deterministic transitions. It is also noticed that the
initial states should be properly considered. Then, since Ŝ
predicts the state of the plant when a control input arrives,
each initial state of Ŝ is a set of reachable states from the
initial state x̂0 ∈ X̂0 of Ŝ with the initial input map sequence
û1

0û2
0 . . . û

L
0 satisfying (4). It is important that the state of Ŝ

is L time steps forward compared with that of Ŝ.
For the symbolic Smith predictor, the latest measured

state and the latest input sequence are key information for the
prediction. So, we introduce the following transition system
that stores them.

Definition 5 We define a system

ŜD = (X̂D, X̂D0,ÛD, r̂D) (6)

induced by Ŝ = (X̂, X̂0, Û, r̂) constructed with respect to x̂0 ∈
X̂0 and û1

0û2
0 . . . û

L
0 (û

i
0 ∈ Û, i ∈ {1,2, . . . , L}) satisfying (4)

where

• X̂D = X̂ × ÛL;
• X̂D0 = {(x̂0, û1

0, û
2
0, . . . , û

L
0 )} ⊆ X̂0 × ÛL;

• ÛD = Û × Û; and
• r̂D : X̂D × ÛD → 2X̂D is defined as follows:

r̂D((x̂, û1, û2, . . . , ûL), (û1
D, û

2
D))

=


{(x̂ ′, û2, û3, . . . , ûL, û2

D) | x̂
′ ∈ r̂e(x̂, û1

D)}

if [û1
D = û1] ∧ [U(û2

D) , ∅]∧

[dom(û2
D) = r̂e(x̂, û1û2 . . . ûL)],

∅ otherwise.
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The system ŜD plays a role of P[z] · z−L in the classical
control theory. Each state x̂D = (x̂, û1, û2, . . . , ûL) ∈ X̂D is
composed of the abstracted current plant state x̂D and latest
input sequence û1, û2, . . . , ûL ∈ X̂D . In contrast to the classic
control theory, we improve the prediction not by feeding
back subtraction G[z] · z−L − P[z] · z−L but by considering
approximated contractive alternating simulations. We have
the following lemma that shows the synchronization between
Ŝ and ŜD .

Lemma 1 Under Assumptions 1 and 2, we construct Ŝ,
given by Definition 4, w.r.t. x̂0 ∈ X̂0 and û1

0û2
0 . . . û

L
0

(ûi
0 ∈ Û, i ∈ {1,2, . . . , L}) satisfying (4). We also con-

struct ŜD , given by Definition 5, induced by Ŝ. Then, the
following relation R̂ ⊆ X̂ × X̂D × Û × ÛD is an ASR from Ŝ
to ŜD:

R̂ =
{(x̂, (x̂, û1, û2, . . . , ûL), û, (û1

D, û
2
D)) ∈X̂×X̂D×Û×ÛD |

[x̂ = r̂e(x̂, û1û2 . . . ûL)] ∧ [û1 = û1
D] ∧ [û = û2

D]}.

(7)

Intuitively, Lemma 1 implies that the prediction is improved
by feeding back the latest measured state as shown in Fig. 2.

ŜD is also synchronized with SD as shown in Lemma 2
describing that x̂D in a state x̂D = (x̂, û1, û2, . . . , ûL)∈X̂D is
always an abstracted current state and that û1, û2, . . . , ûL∈X̂D

is the latest input sequence.

Lemma 2 Under Assumptions 1 and 2, we construct ŜD ,
given by Definition 5, induced by Ŝ w.r.t. x̂0 ∈ X̂0 and
û1

0û2
0 . . . û

L
0 (û

i
0 ∈ Û, i ∈ {1,2, . . . , L}) satisfying (4). Con-

sider the plant with the dead time SD given by Definition
3. We introduce a map dD : ÛD × UD → R≥0 defined as
follows:

dD((û1
D, û

2
D), (u

1
D,u

2
D)) = max

x̂∈dom(û1
D)

d(û1
D(x̂),u

1
D). (8)

Fig. 2 The prediction is improved by considering reachable states from
the latest measured state.

Then, the following relation RD(ε) ⊆ X̂D × XD × ÛD ×UD

is a (κ, β, λ)-acASR from ŜD to SD with dD:

RD(ε) =

{((x̂, û1, . . . , ûL), (x,u1, . . . ,uL), (û1
D, û

2
D),

(u1
D,u

2
D)) ∈ X̂D × XD × ÛD ×UD | [û1

D = û1]∧

[u1
D = u1] ∧ [(x̂, x, û1

D(x̂),u
1
D) ∈ R(ε)]∧

[∀i ∈ {1,2, . . . , L} : ui ∈ U(ûi)] ∧ [u2
D ∈ U(û

2
D)]}.

(9)

Since each input ui ∈ U satisfies ui ∈ U(ûi), the input ui

is valid at each predicted candidate in dom(ûi). Then, the
determined input u2

D such that u2
D ∈ U(û

2
D) is valid at each

predicted state after the dead time is elapsed. This is essential
for the prediction-based approach.

3.3 Deadlock-Free Symbolic Smith Controller

In order to determine a control input map that satisfies the
specification, we introduce a system, denoted by ŜC, that
is induced by ŜC . As in the case of Ŝ, each state of ŜC,
denoted by x̂C, is a subset of X̂C because ŜC is generally
nondeterministic. Let ÛC =

⋃
x̂C∈X̂C

Û x̂C
C

be a set of all input
mappings with respect to X̂C. Denoted by dom(ûC) ⊆ X̂C is
the domain of the input map ûC. Then, we define a transition
map r̂e

C
: X̂C × Û∗C → X̂C induced by r̂C : X̂C × ÛC → 2X̂C

as follows:

1. For each x̂C ∈ X̂C and each ûC ∈ ÛC,

r̂eC(x̂C, ûC) =


⋃

x̂C ∈x̂C r̂C(x̂C, ûC(x̂C))
if x̂C = dom(ûC),

∅ otherwise.

2. For each x̂C ∈ X̂C, each input map sequence t̂C ∈ Û∗C,
and each input map ûC ∈ ÛC,

r̂eC(x̂C, ε) = x̂C; and

r̂eC(x̂C, t̂CûC)=


⋃

x̂′
C
∈r̂e

C
(x̂C ,t̂C) r̂C(x̂

′
C, ûC(x̂ ′C))

if r̂e
C
(x̂C, t̂C) = dom(ûC),

∅ otherwise.

For simplicity, we write r̂e
C
(x̂C, ûC) for r̂e

C
({ x̂C}, ûC).

The system ŜC is equivalent to Gc[z] determining control
inputs in the classical control theory. It is noticed that ŜC
is extended to consider nondeterministic transitions. Recall
that the state of Ŝ is L time steps forward compared with that
of Ŝ. In order to assign every predicted state to a control input
satisfying the specification, it is necessary that the state of ŜC
is also L time steps forwardwith that of ŜC . Then, we impose
the following assumption that refers to the synchronization
between ŜC and Ŝ at the initial time.

Assumption 3 Consider x̂0 ∈ X̂0 and û1
0û2

0 . . . û
L
0 (û

i
0 ∈

Û, i ∈ {1,2, . . . , L}) satisfying (4). Then, there exist
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x̂C0 ∈ X̂C0 and û1
C0û2

C0 . . . û
L
C0 (û

i
C0 ∈ ÛC, i ∈ {1,2, . . . , L})

satisfying the following condition:

∀x̂L
0 ∈ r̂e(x̂0, û1

0û2
0 . . . û

L−1
0 ),

∃x̂L
C0 ∈ r̂eC(x̂C0, û1

C0û2
C0 . . . û

L−1
C0 ) :

(x̂L
C0, x̂

L
0 , û

L
C0(x̂

L
C0), û

L
0 (x̂

L
0 )) ∈ R̂C .

(10)

Note that, if Ŝ and ŜC are finite transition systems, Assump-
tion 3 can be tested in finite steps.

Definition 6 Under Assumption 3, we define a system

ŜC = (X̂C, X̂C0, ÛC, r̂C) (11)

induced by ŜC = (X̂C, X̂C0,ÛC, r̂C) with respect to x̂C0 ∈
X̂C0 and û1

C0û2
C0 . . . û

L
C0 (û

i
C0 ∈ ÛC, i ∈ {1,2, . . . , L}) satis-

fying (10) where

• X̂C0 = {r̂eC(x̂C0, û1
C0û2

C0 . . . û
L
C0)} ⊆ X̂C; and

• r̂C : X̂C × ÛC → 2X̂C is defined as follows:

r̂C(x̂C, ûC)

=


2r̂eC (x̂C ,ûC) \ {∅}

if ∀x̂C ∈ x̂C : r̂e
C
(x̂C, ûC) , ∅,

∅ otherwise.

Intuitively, ŜC determines an input map such that, for ev-
ery predicted state, there always exists a control input that
satisfies the specification described in ŜC .

Finally, the following theorem shows the configuration
of the symbolic Smith controller that is an extension of The-
orem 1 to the case of delayed plants.

Theorem 2 Under Assumptions 1, 2, and 3, we construct Ŝ,
given by Definition 4, w.r.t. x̂0 ∈ X̂0 and û1

0û2
0 . . . û

L
0 (û

i
0 ∈

Û, i ∈ {1,2, . . . , L}) satisfying (4). Let ŜD be a system given
by Definition 5 and induced by Ŝ. We also construct ŜC,
given by Definition 6, w.r.t. x̂C0 ∈ X̂C0 and û1

C0û2
C0 . . . û

L
C0

(ûi
C0 ∈ ÛC, i ∈ {1,2, . . . , L}) satisfying (10). Consider the

following relation R̂C ⊆ X̂C × X̂ × ÛC × Û:

R̂C = {(x̂C, x̂, ûC, û) ∈ X̂C × X̂ × ÛC × Û |
∀x̂ ∈ x̂,∃x̂C ∈ x̂C : (x̂C, x̂, ûC(x̂C), û(x̂)) ∈ R̂C},

(12)

and let SC := ŜC ×R̂C
Ŝ ×R̂ ŜD = (XC,XC0,UC,rC). We

introduce the following relationRC(ε) ⊆ XC×XD×UC×UD:

RC(ε) =

{((x̂C, x̂, x̂D), xD, (ûC, û, ûD),uD)∈XC×XD×UC×UD |

[(x̂C, x̂, ûC, û) ∈ R̂C] ∧ [(x̂, x̂D, û, ûD) ∈ R̂] ∧
[(x̂D, xD, ûD,uD) ∈ RD(ε)]}.

(13)

Then, the pair (SC,RC(ε)) is a controller for SD given by

Definition 3.

The proof is shown in Appendix.
Theorem 2 implies that a symbolic Smith controller is

obtained by composing ŜC, Ŝ, and ŜD , which is summarized
as follows:

1. When the current plant state xD ismeasured, ŜD updates
the state x̂D by the relation RD(ε);

2. Based on the updated x̂D , Ŝ updates the prediction x̂
by the relation R̂, and ŜC updates the state x̂C by the
relation R̂C; and

3. SC determines a control input such that (ûC, û, ûD) ∈

UC((x̂C, x̂, x̂D)).

This approach corresponds to the IMC form of the classical
Smith controller shown in Fig. 1.

It is noted that SC may have deadlock states because
the controller determines a common physical input that is
valid at all predicted states. In order to compute a deadlock-
free sub-transition system of SC, we introduce the following
operator F : 2XC → 2XC : For any W ⊆ XC,

F(W)= {xC ∈ W | ∃uC ∈UC : rC(xC,uC),∅

∧ rC(xC,uC) ⊆ W}.
(14)

By the definition of F, the following condition holds:

∀Z,∀Z ′ ⊆ XC :
[F(Z) ⊆ Z] ∧ [Z ′ ⊆ Z ⇒ F(Z ′) ⊆ F(Z)],

which means that F is monotonically decreasing. We con-
sider the following iterations Xi

C (i ∈ N):

X0
C = XC and Xi+1

C = F(Xi
C). (15)

Then, for each i ∈ N, we have Xi
C ⊇ Xi+1

C . If there exists
k ∈ N such that Xk+1

C = F(Xk
C), we have the supremal fixed

point X∗C of F by X∗C = Xk
C. Note that if ŜC and Ŝ are finite

transition systems, such k always exists. If

X∗C ∩ XC0 , ∅ (16)

holds, we define a transition system

S∗C = (X
∗
C,X

∗
C0,U

∗
C,r
∗
C), (17)

where

• X∗C0 = X∗C ∩ XC0;
• U∗C = UC; and
• r∗C(xC,uC) = rC(xC,uC) ∩ X∗C for each xC ∈ X∗C and

uC ∈ U∗C.

S∗C is a deadlock-free sub-transition system of SC. Let R∗C(ε)
be the restriction of RC(ε) to X∗C × XD × U∗C × UD . Then,
it is obvious that R∗C(ε) is a (κ, β, λ)-acASR from S∗C to S
with d′C, and the pair (S

∗
C,R

∗
C(ε)) is a deadlock-free symbolic

Smith controller for SD .
Eliminating deadlock states is important in the proposed

framework because we deal with nondeterminstic transition
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systems, where prediction is based on listing all candidates
of plant states after the deadtime is elapsed. In order to
guarantee the satisfaction of the specification, it is necessary
that a control input determined by a symbolic Smith con-
troller is valid for all candidates listed by the predictor. Note
that, if (16) does not hold, we cannot design a deadlock-free
symbolic controller.

We will demonstrate the proposed approach in the next
section using an example of on-off control via networks with
some packet dropouts that may cause nondetermistic transi-
tions to deadlock states.

4. Illustrative Example

We consider a liquid-level control problem with a tank as
shown in Fig. 3. The control input is the close/open of the
valve u(t) ∈ {0,1} at each time step. The inflow velocity
is given by vi(t) := αu(t), where α ∈ R>0 is a constant
value. Let x(t) ∈ [0,Vmax] be the volume of the liquid in
the tank, where Vmax ∈ R>0 is the maximum capacity. The
liquid surface height is given by h(t) := x(t)

A with the surface
area of the tank A ∈ R>0. The outflow velocity is given by
vo(t) := h(t)

R with resistance R ∈ R>0. Then, the dynamics
of the tank is given by

x[k + 1]

= e−
CT
AR x[k] +

αABR
C

(
1 − e−

CT
AR

)
u[k] + d[k],

(18)

where B and C ∈ R>0 are the cross-sectional areas of the
upper and lower pipe, respectively, T ∈ R>0 is a sampling
period, and d[k] ∈ R is a random noise satisfying |d[k]| <
0.5 for all k ∈ Z≥0. First, we cast (18) as the system S1 =
(X1,X10,U1,r1) where X1 = [0,Vmax], X10 = {x10 ∈ X},
U1 = {0,1} × [−0.5,0.5] and r1 : X1 ×U1 → X1 is defined
as follows:

r1(x1, (u1, d)) =


x ′1 if x ′1 ∈ X1,

Vmax if x ′1 ≥ Vmax,

0 if x ′1 ≤ 0,
(19)

where x ′1 = e−
CT
AR x1 +

αABR
C

(
1 − e−

CT
AR

)
u1 + d.

Next, we consider a network between the controller and
the plant. The control input is sent via an unreliable network
with packet dropouts [11], and its dynamics is modeled by
an automaton shown in Fig. 4. We use the system S2 =
(X2,X20,U2,r2) where X2 = {0,1}, X20 = {0}, U2 = {⊥},
and r2 : X2 × U2 → 2X2 is given in the obvious way to
model the network behavior. If a data dropout occurs, i.e.,
x2 = 1, the input signal is set to 0 automatically. On the other
hand, if the data is successfully received by the actuator, i.e.,
x2 = 0, the input determined by the controller is injected
into the plant (after the dead time is elapsed). Then, the
networked plant to be controlled S = (X,X0,U,r) is given by
the composition of S1 and S2, i.e., X := X1×X2, X0 := X10×
X20, and U := U1 ×U2. The transition map r : X ×U → 2X
is defined by (x ′1, x

′
2) ∈ r((x1, x2), ((u1, d)u2)) iff

Fig. 3 The liquid-level control problem with a single tank.

Fig. 4 Automaton model of dynamics of the communication channel.

x ′1 ∈

{
r1(x1, (u1, d)) ∪ r1(x1, (0, d)) if x2 = 0,
r1(x1, (u1, d)) if x2 = 1; and

(20)
x ′2 ∈ r2(x2,u2). (21)

We construct an abstracted model Ŝ for S. First,
we introduce the symbolic model of S1, denoted by Ŝ1 =
(X̂1, X̂10,Û1, r̂1) where X̂1 = X1 ∩ Z, X̂10 = max arg
minx̂10∈X̂1

|x10 − x̂10 |, Û1 = {0,1}, and r̂1 : X̂1 × Û1 → X̂1 is
defined as follows:

r̂1(x̂1, û1) =


x̂ ′1 if x̂ ′1 ∈ X̂,
bVmaxc if x̂ ′1 ≥ bVmaxc,

0 if x̂ ′1 ≤ 0,
(22)

where
x̂ ′1 =

max arg min
x̂′1∈X̂1

����e−CT
AR x̂1+

αABR
C

(
1−e−

CT
AR

)
û1− x̂ ′1

����.
Let Ŝ2 = (X̂2, X̂20,Û2, r̂2), where X̂2 = X2, X̂20 = X20, Û2 =
U2, and r̂2 = r2. Then, we have Ŝ = (X̂, X̂0,Û, r̂) by the
composition of Ŝ1 and Ŝ2, i.e., X̂ := X̂1× X̂2, X̂0 := X̂10× X̂20,
and Û := Û1 × Û2. The transition map r̂ : X̂ × Û → 2X̂ is
defined implicitly by (x̂ ′1, x̂

′
2) ∈ r̂((x̂1, x̂2), (û1, û2)) iff

x̂ ′1 ∈

{
r̂1(x̂1, û1) ∪ r̂1(x̂1,0) if x̂2 = 0,
r̂1(x̂1, û1) if x̂2 = 1; and

(23)

x̂ ′2 ∈ r̂2(x̂2, û2). (24)

It is easily proved that the following relation R(ε) ⊆
X̂ × X × Û ×U is a (0.5, e−CT

AR ,1)-acASR from Ŝ to S with
d(û1, (u1, d)) = |d |:

R(ε) = {((x̂1, x̂2), (x1, x2), (û1, û2), ((u1, d),u2))

∈ X̂ × X × Û ×U | [|x1 − x̂1 | ≤ ε]∧

[x2 = x̂2] ∧ [u1 = û1] ∧ [u2 = û2]}.

(25)
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Wewant to keep the volume of the tank in the following
range:

Vl ≤ x̂1 ≤ Vm. (26)

Thus, we have the control specification ŜC = (X̂C, X̂C0,ÛC,
r̂C), where X̂C = X̂ , X̂C0 = X̂0, ÛC = Û, and r̂C : X̂C ×

ÛC → X̂C defined as follows:

r̂C((x̂C1, x̂C2), (ûC1, ûC2))

=


(x̂ ′

C1, x̂
′
C2) if [Vl ≤ x̂ ′

C1] ∧ [ûC1 = 0],
(x̂ ′

C1, x̂
′
C2) if [x̂ ′

C1 ≤ Vm] ∧ [ûC1 = 1],
∅ otherwise,

(27)

where (x̂ ′
C1, x̂

′
C2) ∈ r̂((x̂C1, x̂C2), (ûC1, ûC2)). ŜC describes

the target volume range (26) and determines a control in-
put. Intuitively, (27) implies that, if the volume is above
(resp. under) the target range (26), the valve should be
closed (resp. opened). If the volume is in the target range
(26), the valve can be opened or closed nondeterministi-
cally. Then, it is easily proved that the following relation
R̂C ⊆ X̂C × X̂ × ÛC × Û is an ASR from ŜC to Ŝ:

R̂C = {(x̂C, x̂, ûC, û) ∈ X̂C × X̂ × ÛC × Û |
x̂ = x̂C ∧ û = ûC}.

(28)

Now, Assumption 1 is satisfied. Theorem 1 implies that,
letting SC := ŜC ×RC (ε ) Ŝ = (XC,XC0,UC,rC) where the
relation RC(ε) ⊆ XC × X ×UC ×U is defined by (2), the pair
(SC,RC(ε)) is a symbolic feedback controller for S if there
is no dead time between the controller and the plant.

Consider the case where the place of the valve is far
from the tank, and there exists an input dead time L ∈ N.
We set the parameters as follows.

α Vmax X0 A B C R T Vl Vm L
10 35 {(0,0)} 30 10 10 0.1 0.1 10 25 2

Then, by the existence of the dead time, the synchronization
of the controller (SC, RC(ε)) and the delayed plant SD fails,
which means that the control specification is not satisfied.
Thus, we design a symbolic Smith controller that satisfies
the control specification. We consider the first L time steps
input map sequences û1

0û2
0 . . . û

L
0 (û

i
0 ∈ Û, i ∈ {1,2, . . . , L})

and û1
C0û2

C0 . . . û
L
C0 (û

i
C0 ∈ ÛC, i ∈ {1,2, . . . , L}) as follows:

û1
0 û2

0 . . . ûL
0 = 0 0 . . . 0; and (29)

û1
C0 û2

C0 . . . ûL
C0 = 0 0 . . . 0, (30)

where 0 is a zero map that assigns every state to the in-
put 0. Intuitively, (29) and (30) imply that the valve is
closed at the initial time. Since x0 = x̂0 = x̂C0 = 0
holds, it is easily proved that û1

0û2
0 . . . û

L
0 with x̂0 ∈ X̂0 and

û1
C0û2

C0 . . . û
L
C0 with x̂C0 ∈ X̂C0 satisfy (4) and (10), respec-

tively. Note that, in this case, every predicted state implies
that the tank is empty. We construct Ŝ w.r.t. x̂0 and ûi

0
(i ∈ {1,2, . . . , L}) given by (29). ŜD is induced by Ŝ. We

Fig. 5 The occurrences of the packet dropouts.

Fig. 6 The time response of the volume of the tank x1 and x̂1.

also construct ŜC w.r.t. x̂C0 and ûi
C0 (i ∈ {1,2, . . . , L}) given

by (30). Let SC := ŜC ×R̂C
Ŝ ×R̂ ŜD where the relations

R̂C ⊆ X̂C× X̂× ÛC× Û and R̂ ⊆ X̂× X̂D × Û× ÛD are given
by (12) and (7), respectively. Finally, by Theorem 2, it is
concluded that the pair (SC,RC(ε)) is a symbolic Smith con-
troller for SD , where the relationRC(ε) ⊆ XC×XD×UC×UD

is given by (13). In this case, (16) is satisfied, andwe have the
deadlock-free controller (S∗C,R

∗
C(ε)). We simulated behav-

iors of the controlled plant with random occurrences of the
packet dropouts shown in Fig. 5. Then, the time response of
the plant volume x1 is shown in Fig. 6. The line in the figure
shows the plant state x1 and each dot is its corresponding ab-
stracted plant state x̂1. Since there is no deadlock, the control
inputs are successfully chosen in terms of the specification
despite of random noises and data dropouts.

It is noticed that x1 is sometimes out of the target range
due to the packet dropouts. We do not ensure that the plant
volume always stays in the target range Vl ≤ x̂1 ≤ Vm. In-
stead, we have designed a controller that issues a control
input so as to enforce the tank volume to the target range un-
der the nondeterministic transitions. It is shown that a kind
of input-to-state stability evaluating the robustness of spo-
radic disturbances such as packet dropouts is guaranteed by a
controller designed based on acASRs [10]–[12]. It is future
work to investigate the stability by introducing quantitative
input and output maps.

Let us consider another case. The dead time L has been
changed to 3.

α Vmax X0 A B C R T Vl Vm L
10 35 {(0,0)} 30 10 10 0.1 0.1 10 25 3

In this case, (16) is not satisfied, then we do not have the
deadlock-free controller. Thus, the controller (SC,RC(ε))
reaches a dead lock state where there is no control input such
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that every predicted state satisfies the specification. In other
words, in this case, the specification is too restrictive for the
delayed plant. Intuitively, for the design of a deadlock-free
controller, all of the predicted states should be under Vm or
over Vl to select a common control input in this example.

5. Conclusion

We design a deadlock-free symbolic Smith controller for a
plant with an input dead time on the premise of a given
control specification for the abstracted model of the plant.
As in the case of the classical Smith controller, the proposed
controller determines a control input by prediction. Since
the control specification is satisfied at every predicted state
by the control input, the controller may have deadlock states.
Then, we introduce an operator that eliminates transitions to
the deadlock states. If we obtain a deadlock-free controller,
it is shown that the effects of the dead time is suppressed
and that the specification is satisfied. If the deadlock-free
controller does not exist, the specification must be relaxed.

It is future work to investigate the input-to-state stability
of the controlled plant quantitatively by introducing cost
functions. An extension of the proposed framework is also
considerable to the case where a control specification for the
plant (not for the abstracted plant model) is given directly.
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Appendix: Proof of Theorem 2

Proof We introduce a map d′C : UC ×UD → R≥0:

d′C((ûC, û, ûD),uD) = dD(ûD,uD)

and show that RC(ε) satisfies conditions of a (κ, β, λ)-acASR
from SC to SD with d′C.

1. Consider any (x̂C0, x̂0, x̂D0) ∈ XC0. Then, we have

[(x̂C0, x̂0) ∈ R̂CX ] ∧ [(x̂0, x̂D0) ∈ R̂X ].

Since RD(ε) is a (κ, β, λ)-acASR from ŜD to SD , there
exists xD0 ∈ XD0 such that (x̂D0, xD0) ∈ RDX (κ) holds.
By the definition of RC(ε), we have

((x̂C0, x̂0, x̂D0), xD0) ∈ RCX (κ).

2. First, consider any ((x̂C, x̂, x̂D), xD) ∈ RCX (ε), and
choose any (ûC, û, ûD) ∈ UC((x̂C, x̂, x̂D)). Then, we
have

[(x̂C, x̂, ûC, û) ∈ R̂C] ∧ [(x̂, x̂D, û, ûD) ∈ R̂]
∧ [(x̂D, xD) ∈ RDX (ε)].

Since RD(ε) is a (κ, β, λ)-acASR from ŜD to SD , there
exists uD ∈ UD(xD) such that (x̂D, xD, ûD,uD) ∈

RD(ε). Thus, by the definition of RC(ε), the follow-
ing condition holds:
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((x̂C, x̂, x̂D), xD, (ûC, û, ûD),uD) ∈ RC(ε).

Next, consider any x ′D ∈ rD(xD,uD). By the (κ, β, λ)-
acASR RD(ε), there exists x̂ ′D ∈ r̂D(x̂D, ûD) such that
(x̂ ′D, x

′
D) ∈ RDX (κ + βε + λdD(ûD,uD)). Since R̂ is an

ASR from Ŝ to ŜD , there exists x̂′ ∈ r̂(x̂, û) such that
(x̂′, x̂ ′D) ∈ R̂X . In addition, the definition of R̂C implies
the following condition:

∀x̂ ∈ x̂,∃x̂C ∈ x̂C : (x̂C, x̂, ûC(x̂C), û(x̂)) ∈ R̂C .

Since R̂C is an ASR from ŜC to Ŝ, we have

∀x̂ ′ ∈ r̂e(x̂, û), ∃x̂ ′C ∈ r̂eC(x̂C, ûC) :
(x̂ ′C, x̂

′) ∈ R̂CX .
(A· 1)

On the other hand, the definition of r̂ implies the fol-
lowing condition:

x̂′ ⊆ r̂e(x̂, û),

and by the definition of r̂C, we have

r̂C(x̂C, ûC) = 2r̂
e
C
(x̂C ,ûC) \ {∅}.

Thus, from (A· 1), there always exists x̂′C ∈ r̂C(x̂C, ûC)
satisfying

∀x̂ ′ ∈ x̂′, ∃x̂ ′C ∈ x̂′C : (x̂ ′C, x̂
′) ∈ R̂CX

⇔ (x̂′C, x̂
′) ∈ R̂CX .

Finally, by the definition of the composed system, we
have

(x̂′C, x̂
′, x̂ ′D) ∈ rC((x̂C, x̂, x̂D), (ûC, û, ûD)).

Thus, by the definitions of RC(ε) and d′C, the following
condition holds:

((x̂′C, x̂
′, x̂ ′D), x

′
D)

∈ RCX (κ + βε + λd′C((ûC, û, ûD),uD)).

Therefore, RC(ε) defined by (13) is a (κ, β, λ)-acASR
fromSC to SD with d′C, and the pair (SC,RC(ε)) is a controller
for SD . �
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