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PAPER
Signature Codes to Remove Interference Light in Synchronous
Optical Code-Division Multiple Access Systems

Tomoko K. MATSUSHIMA†∗a), Member, Shoichiro YAMASAKI†∗∗, Senior Member,
and Kyohei ONO†∗∗∗, Nonmember

SUMMARY This paper proposes a new class of signature codes for
synchronous optical code-division multiple access (CDMA) and describes
a general method for construction of the codes. The proposed codes can
be obtained from generalized modified prime sequence codes (GMPSCs)
based on extension fields GF(q), where q = pm, p is a prime number, and
m is a positive integer. It has been reported that optical CDMA systems
using GMPSCs remove not only multi-user interference but also optical in-
terference (e.g., background light) with a constant intensity during a slot of
length q2. Recently, the authors have reported that optical CDMA systems
using GMPSCs also remove optical interference with intensity varying by
blocks with a length of q. The proposed codes, referred to as p-chip codes
in general and chip-pair codes in particular for the case of p = 2, have the
property of removing interference light with an intensity varying by shorter
blocks with a length of p without requiring additional equipment. The
present paper also investigates the algebraic properties and applications of
the proposed codes.
key words: optical CDMA, generalized modified prime sequence code,
p-chip code, chip-pair code, interference cancellation, background light

1. Introduction

The optical code-division multiple access (CDMA) tech-
nique has been studied to realize multiple-user transmission
and reception in optical communication systems [1], [2].
Modified prime sequence codes (MPSCs) [3], [4] and gen-
eralized MPSCs (GMPSCs) [5], [6] are signature codes pro-
posed for synchronous optical CDMA. An MPSC is gen-
erated from a prime field and a GMPSC is generated from
an extension field. If the field has q elements and is repre-
sented as GF(q), both codes are composed of q2 codewords
with a length of q2. For a GMPSC, q = pm where p is a
prime number and m is a positive integer, while q is a prime
number for an MPSC. Although MPSCs and GMPSCs are
non-orthogonal codes, it has been shown that multi-user in-
terference (MUI) is completely canceled when they are used
with appropriate MUI cancellation schemes, such as Shal-
aby’s scheme [7], Liu’s scheme [8], or the equal-weight or-
thogonal (EWO) scheme [9], [10], in synchronous optical
CDMA systems.
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Recently, it was reported that optical CDMA systems
using MPSCs or GMPSCs have the ability to remove in-
terference light, such as background light and other optical
signals, simultaneously with MUI at each user’s decoder. In
Ref. [11], it is shown that interference light with a constant
intensity within a code length is canceled at the decoder
completely when the system adopts the EWO scheme, Sha-
laby’s scheme, or a modified Liu’s scheme for MUI cancel-
lation. In general, ambient light interference mostly exists
in the spectrum up to around 60 Hz [12], and the intensity
of such interference light can be considered to be constant
over the length of the signature code. Furthermore, it has
been reported that interference light is removed even if its
intensity varies by blocks with a length of q chips. Using
this property, an optical CDMA system employing both an
extended bi-orthogonal code [13] and a GMPSC has been
proposed [14], [15]. In addition, in Ref. [16], the authors
showed that there exists a GMPSC that has the property of
removing interference light with an intensity that varies by
a shorter block two chips long when q is equal to 22. How-
ever, they also recognized that not every GMPSC has this
property.

In this paper, we propose a new class of GMPSCs that
has the property of removing interference light whose inten-
sity varies by p chips. The proposed codes are referred to
as p-chip codes in general and chip-pair codes in particular
for the case of p = 2 in this paper. We describe a gen-
eral construction method for the proposed codes, which can
be constructed from any extension field GF(pm) by adding
some actions to the conventional method for constructing
GMPSCs. Furthermore, this paper investigates the algebraic
properties and applications of the proposed p-chip and chip-
pair codes.

This work was partially presented in Refs. [16], [17],
and [18].

2. p-Chip Codes and Chip-Pair Codes

2.1 Preliminaries

The mathematical concept of finite fields provides an im-
portant framework for designing signal sequences [19], [20].
The codes proposed in this paper are based on the arithmetic
properties of finite fields.

Let F be the set of all elements in GF(pm), where p is
a prime number and m is a positive integer. F is represented
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as follows:

F = {0, 1, α, α2, · · · , αpm−2}, (1)

where α is a primitive element of GF(pm) satisfying π(α) =

0 for an m-degree primitive polynomial π(x) over GF(p).
Then, we define a relation R on F as follows:

R = { (x, y) | x − y ∈ {0, 1, · · · , p − 1}}. (2)

Because R is an equivalence relation, the quotient set of F
by R is

F/R = { [a] | a ∈ F}, (3)

where [a] = {x | (a, x) ∈ R} is the equivalence class of a
in F. In Appendix A, we show the proof that R defined by
Eq. (2) is an equivalence relation.

For example,

F/R = {{0, 1}, {α, α2}}

for GF(22) and π(x) = x2 + x + 1,

F/R = {{0, 1}, {α, α3}, {α2, α6}, {α4, α5}}

for GF(23) and π(x) = x3 + x + 1, and

F/R = {{0, 1, α4}, {α, α7, α6}, {α5, α2, α3}}

for GF(32) and π(x) = x2 + x + 2.

2.2 Properties of GMPSC

MPSCs [3], [4] and GMPSCs [5], [6] are binary unipolar
codes proposed for synchronous optical CDMA. GMPSCs
are a generalized version of MPSCs and have the same cor-
relation property as MPSCs. Although MPSCs are gener-
ated only from prime fields, GMPSCs are generated from
extension fields GF(pm).

A GMPSC consists of p2m codewords, which can be
divided into pm groups of pm codewords each. Every code-
word has a code length of p2m and a Hamming weight of
pm. Every GMPSC has a special correlation property in
a synchronous system, as shown in the following equation
[5], [6]:

Γ(ci1, j1 , ci2, j2 ) =


pm if i1 = i2 and j1 = j2 ,
0 if i1 = i2 and j1 , j2 ,
1 if i1 , i2,

(4)

where ci, j is the jth codeword in the ith group (i, j =

0, 1, · · · , pm − 1) and Γ(a,b) is the auto- or cross-correlation
function between two sequences a and b at zero shift.

Equation (4) shows that GMPSCs have the same cor-
relation property as the original MPSCs. Therefore, the
conventional MUI cancellation schemes [7]–[10] can be ap-
plied to optical CDMA systems using GMPSCs instead of
the original MPSCs. The EWO scheme is one such MUI
cancellation scheme [9], [10]. In the EWO scheme, multi-
ple equal-weight and orthogonal codewords are assigned to

Fig. 1 Examples of multiplexed signals and interference light in optical
CDMA system using GMPSC and the EWO scheme.

each user. The transmitter for each user chooses one of the
assigned codewords according to the transmission data and
transmits the chosen codeword as an optical sequence. The
optical sequences from all the users are multiplexed over
the channel, and the multiplexed sequence is received by all
receivers. At each receiver, MUI is removed and the trans-
mission data are estimated by each user’s decoder.

In practical wireless optical communication, the re-
ceived sequence includes not only the multiplexed sequence
of transmitted codewords but also interference light (e.g.,
background light) at the receiver. Figure 1 illustrates some
examples of the multiplexed sequence and the interference
light received at the optical CDMA system using a GMPSC
of pm = 4 and the EWO scheme. Figure 1(a) shows the se-
quences transmitted from eight users simultaneously. Each
GMPSC codeword consists of positive chips, called marks
and denoted by 1s, and null chips, called spaces and de-
noted by 0s. In this paper, a slot represents a time period
during which one codeword consisting of p2m chips is trans-
mitted, and a block represents a set of pm chips when one
slot is divided into pm parts of equal length, as shown in
Fig. 1(a). If the main component of the interference light is
sunlight, the intensity of the interference light is considered
to be constant within each slot, as shown in Fig. 1(b). It has
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Table 1 C∗ over GF(22) and its chip-pair code C.

Gr. User C∗ Chip-pair code C
0 0 c∗0,0 : 0 0 0 0 c0,0 : 1000 1000 1000 1000

c∗0,1 : 1 1 1 1 c0,1 : 0100 0100 0100 0100
1 c∗0,2 : α α α α c0,2 : 0010 0010 0010 0010

c∗0,3 : α2 α2 α2 α2 c0,3 : 0001 0001 0001 0001
1 2 c∗1,0 : 0 1 α α2 c1,0 : 1000 0100 0010 0001

c∗1,1 : 1 0 α2 α c1,1 : 0100 1000 0001 0010
3 c∗1,2 : α α2 0 1 c1,2 : 0010 0001 1000 0100

c∗1,3 : α2 α 1 0 c1,3 : 0001 0010 0100 1000
2 4 c∗2,0 : 0 α α2 1 c2,0 : 1000 0010 0001 0100

c∗2,1 : 1 α2 α 0 c2,1 : 0100 0001 0010 1000
5 c∗2,2 : α 0 1 α2 c2,2 : 0010 1000 0100 0001

c∗2,3 : α2 1 0 α c2,3 : 0001 0100 1000 0010
3 6 c∗3,0 : 0 α2 1 α c3,0 : 1000 0001 0100 0010

c∗3,1 : 1 α 0 α2 c3,1 : 0100 0010 1000 0001
7 c∗3,2 : α 1 α2 0 c3,2 : 0010 0100 0001 1000

c∗3,3 : α2 0 α 1 c3,3 : 0001 1000 0010 0100

Table 2 Equivalence classes in GF(22) and binary subsequences.

Equivalence class Elements in C∗ Subsequences in C
{0, 1} 0 1000

1 0100
{α, α2} α 0010

α2 = α + 1 0001

been reported that an optical CDMA system using an MPSC
or GMPSC removes MUI and interference light simultane-
ously at the decoder, when the interference light intensity
is constant within a slot and an adequate MUI cancellation
scheme is adopted [11]. Reference [11] presents three differ-
ent schemes for canceling interference light and MUI simul-
taneously, and one of these is the EWO scheme. Through
the discussion in [11], we have obtained a further result that
the interference light can be removed at the decoder, when
its intensity varies by block as shown in Fig. 1(c). In Ap-
pendix B, we explain how the decoder removes interference
light that varies by block when a GMPSC is used as a sig-
nature code.

2.3 Procedure for Construction of p-Chip Codes

The proposed p-chip codes are codes having the ability to
remove interference light with an intensity that varies by p
chips, as shown in Fig. 1(d), when they are used with the
EWO scheme. In particular, we referred to the p-chip codes
as chip-pair codes when p = 2. In the construction pro-
cedure of a p-chip code, we first generate a code C∗ over
GF(pm), and then we transform it into a binary p-chip code
C. The length of code C∗ is pm symbols, and the length of
code C is p2m chips. Each code consists of p2m codewords,
which can be divided into pm groups of pm codewords each.
The construction procedure for the p-chip codes is almost
the same as that for GMPSCs. In the following procedure,
the text in bold indicates actions that are required to con-
struct p-chip codes but are not required to construct GMP-
SCs.

Table 3 C∗ over GF(23) for chip-pair code C.

Gr. C∗ Gr. C∗

0 0 0 0 0 0 0 0 0 4 0 α3 α4 α5 α6 1 α α2

1 1 1 1 1 1 1 1 1 α α5 α4 α2 0 α3 α6

α α α α α α α α α 1 α2 α6 α5 α3 0 α4

α3 α3 α3 α3 α3 α3 α3 α3 α3 0 α6 α2 α4 α 1 α5

α2 α2 α2 α2 α2 α2 α2 α2 α2 α5 α α3 1 α6 α4 0
α6 α6 α6 α6 α6 α6 α6 α6 α6 α4 α3 α 0 α2 α5 1
α4 α4 α4 α4 α4 α4 α4 α4 α4 α6 0 1 α3 α5 α2 α

α5 α5 α5 α5 α5 α5 α5 α5 α5 α2 1 0 α α4 α6 α3

1 0 1 α α2 α3 α4 α5 α6 5 0 α4 α5 α6 1 α α2 α3

1 0 α3 α6 α α5 α4 α2 1 α5 α4 α2 0 α3 α6 α

α α3 0 α4 1 α2 α6 α5 α α2 α6 α5 α3 0 α4 1
α3 α 1 α5 0 α6 α2 α4 α3 α6 α2 α4 α 1 α5 0
α2 α6 α4 0 α5 α α3 1 α2 α α3 1 α6 α4 0 α5

α6 α2 α5 1 α4 α3 α 0 α6 α3 α 0 α2 α5 1 α4

α4 α5 α2 α α6 0 1 α3 α4 0 1 α3 α5 α2 α α6

α5 α4 α6 α3 α2 1 0 α α5 1 0 α α4 α6 α3 α2

2 0 α α2 α3 α4 α5 α6 1 6 0 α5 α6 1 α α2 α3 α4

1 α3 α6 α α5 α4 α2 0 1 α4 α2 0 α3 α6 α α5

α 0 α4 1 α2 α6 α5 α3 α α6 α5 α3 0 α4 1 α2

α3 1 α5 0 α6 α2 α4 α α3 α2 α4 α 1 α5 0 α6

α2 α4 0 α5 α α3 1 α6 α2 α3 1 α6 α4 0 α5 α

α6 α5 1 α4 α3 α 0 α2 α6 α 0 α2 α5 1 α4 α3

α4 α2 α α6 0 1 α3 α5 α4 1 α3 α5 α2 α α6 0
α5 α6 α3 α2 1 0 α α4 α5 0 α α4 α6 α3 α2 1

3 0 α2 α3 α4 α5 α6 1 α 7 0 α6 1 α α2 α3 α4 α5

1 α6 α α5 α4 α2 0 α3 1 α2 0 α3 α6 α α5 α4

α α4 1 α2 α6 α5 α3 0 α α5 α3 0 α4 1 α2 α6

α3 α5 0 α6 α2 α4 α 1 α3 α4 α 1 α5 0 α6 α2

α2 0 α5 α α3 1 α6 α4 α2 1 α6 α4 0 α5 α α3

α6 1 α4 α3 α 0 α2 α5 α6 0 α2 α5 1 α4 α3 α

α4 α α6 0 1 α3 α5 α2 α4 α3 α5 α2 α α6 0 1
α5 α3 α2 1 0 α α4 α6 α5 α α4 α6 α3 α2 1 0

Table 4 Equivalence classes in GF(23) and binary subsequences.

Equivalence class Elements in C∗ Subsequences in C
{0, 1} 0 10000000

1 01000000
{α, α3} α 00100000

α3 = α + 1 00010000
{α2, α6} α2 00001000

α6 = α2 + 1 00000100
{α4, α5} α4 = α2 + α 00000010

α5 = α2 + α + 1 00000001

(i) First, set up a generator vector g = (g0, g1, · · · , gpm−1),
where gi ∈ GF(pm) and no two elements gi and g j (i ,
j) are equal for i, j = 0, 1, · · · , pm−1. For example, we
can choose the vector for GF(23) and π(x) = x3 + x + 1
as follows:

g = (0, 1, α, α2, α3, α4, α5, α6).

(ii) Select a group coefficient xi (xi ∈ GF(pm), i =

0, 1, · · · , pm − 1) for each group. No two group co-
efficients are equal. For example, we can choose the
coefficients for GF(23) as follows:

x0 = 0, x1 = 1, x2 = α, · · · , x7 = α6.

(iii) Set up pm constant vectors y j ( j = 0, 1, · · · , pm − 1)
over GF(pm). The vectors y j have a length pm. All
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Table 5 C∗ over GF(32) for three-chip code C.

Gr. C∗ Gr. C∗ Gr. C∗

0 0 0 0 0 0 0 0 0 0 3 0 α2 α3 α4 α5 α6 α7 1 α 6 0 α5 α6 α7 1 α α2 α3 α4

1 1 1 1 1 1 1 1 1 1 α3 α5 0 α2 α α6 α4 α7 1 α2 α α6 α4 α7 α3 α5 0
α4 α4 α4 α4 α4 α4 α4 α4 α4 α4 α5 α2 1 α3 α7 α 0 α6 α4 α3 α7 α 0 α6 α5 α2 1
α α α α α α α α α α 1 α4 α6 0 α3 α2 α7 α5 α 0 α3 α2 α7 α5 1 α4 α6

α7 α7 α7 α7 α7 α7 α7 α7 α7 α7 α4 0 α 1 α5 α3 α6 α2 α7 1 α5 α3 α6 α2 α4 0 α

α6 α6 α6 α6 α6 α6 α6 α6 α6 α6 0 1 α7 α4 α2 α5 α α3 α6 α4 α2 α5 α α3 0 1 α7

α5 α5 α5 α5 α5 α5 α5 α5 α5 α5 α7 α6 α3 α α4 1 α2 0 α5 α α4 1 α2 0 α7 α6 α3

α2 α2 α2 α2 α2 α2 α2 α2 α2 α2 α6 α α5 α7 0 α4 α3 1 α2 α7 0 α4 α3 1 α6 α α5

α3 α3 α3 α3 α3 α3 α3 α3 α3 α3 α α7 α2 α6 1 0 α5 α4 α3 α6 1 0 α5 α4 α α7 α2

1 0 1 α α2 α3 α4 α5 α6 α7 4 0 α3 α4 α5 α6 α7 1 α α2 7 0 α6 α7 1 α α2 α3 α4 α5

1 α4 α7 α3 α5 0 α2 α α6 1 α5 0 α2 α α6 α4 α7 α3 1 α α6 α4 α7 α3 α5 0 α2

α4 0 α6 α5 α2 1 α3 α7 α α4 α2 1 α3 α7 α 0 α6 α5 α4 α7 α 0 α6 α5 α2 1 α3

α α7 α5 1 α4 α6 0 α3 α2 α α4 α6 0 α3 α2 α7 α5 1 α α3 α2 α7 α5 1 α4 α6 0
α7 α6 α2 α4 0 α 1 α5 α3 α7 0 α 1 α5 α3 α6 α2 α4 α7 α5 α3 α6 α2 α4 0 α 1
α6 α α3 0 1 α7 α4 α2 α5 α6 1 α7 α4 α2 α5 α α3 0 α6 α2 α5 α α3 0 1 α7 α4

α5 α2 0 α7 α6 α3 α α4 1 α5 α6 α3 α α4 1 α2 0 α7 α5 α4 1 α2 0 α7 α6 α3 α

α2 α3 1 α6 α α5 α7 0 α4 α2 α α5 α7 0 α4 α3 1 α6 α2 0 α4 α3 1 α6 α α5 α7

α3 α5 α4 α α7 α2 α6 1 0 α3 α7 α2 α6 1 0 α5 α4 α α3 1 0 α5 α4 α α7 α2 α6

2 0 α α2 α3 α4 α5 α6 α7 1 5 0 α4 α5 α6 α7 1 α α2 α3 8 0 α7 1 α α2 α3 α4 α5 α6

1 α7 α3 α5 0 α2 α α6 α4 1 0 α2 α α6 α4 α7 α3 α5 1 α6 α4 α7 α3 α5 0 α2 α

α4 α6 α5 α2 1 α3 α7 α 0 α4 1 α3 α7 α 0 α6 α5 α2 α4 α 0 α6 α5 α2 1 α3 α7

α α5 1 α4 α6 0 α3 α2 α7 α α6 0 α3 α2 α7 α5 1 α4 α α2 α7 α5 1 α4 α6 0 α3

α7 α2 α4 0 α 1 α5 α3 α6 α7 α 1 α5 α3 α6 α2 α4 0 α7 α3 α6 α2 α4 0 α 1 α5

α6 α3 0 1 α7 α4 α2 α5 α α6 α7 α4 α2 α5 α α3 0 1 α6 α5 α α3 0 1 α7 α4 α2

α5 0 α7 α6 α3 α α4 1 α2 α5 α3 α α4 1 α2 0 α7 α6 α5 1 α2 0 α7 α6 α3 α α4

α2 1 α6 α α5 α7 0 α4 α3 α2 α5 α7 0 α4 α3 1 α6 α α2 α4 α3 1 α6 α α5 α7 0
α3 α4 α α7 α2 α6 1 0 α5 α3 α2 α6 1 0 α5 α4 α α7 α3 0 α5 α4 α α7 α2 α6 1

elements of a single vector are identical, and no two
vectors are the same. In addition, we have to set the
p elements consisting of ykp, ykp+1, · · · , and ykp+p−1

(k = 0, 1, · · · , pm−1 − 1) to be in an equivalence class
of the relation R. For example, we can choose the
vectors for GF(23) as follows:

y0 = (0, 0, 0, 0, 0, 0, 0, 0),
y1 = (1, 1, 1, 1, 1, 1, 1, 1),
y2 = (α, α, α, α, α, α, α, α),
y3 = (α3, α3, α3, α3, α3, α3, α3, α3),
y4 = (α2, α2, α2, α2, α2, α2, α2, α2),
y5 = (α6, α6, α6, α6, α6, α6, α6, α6),
y6 = (α4, α4, α4, α4, α4, α4, α4, α4),
y7 = (α5, α5, α5, α5, α5, α5, α5, α5).

(iv) Then, generate the codewords c∗i, j in the code C∗ over
GF(pm) with the following equation:

c∗i, j = xig + y j, i, j = 0, 1, · · · , pm − 1. (5)

Multiplication and addition in Eq. (5) are performed
over GF(pm). The pm codewords in the ith group are
ci,0, ci,1, · · · , and ci,pm−1. For example, the codewords
for GF(23) are obtained as follows:

c∗0,0 = x0g + y0 = (0, 0, 0, 0, 0, 0, 0, 0),
c∗0,1 = x0g + y1 = (1, 1, 1, 1, 1, 1, 1, 1),

...

Table 6 Equivalence classes in GF(32) and binary subsequences.

Equivalence class Elements in C∗ Subsequences in C
{0, 1, α4} 0 100000000

1 010000000
α4 = 2 001000000

{α, α7, α6} α 000100000
α7 = α + 1 000010000
α6 = α + 2 000001000

{α5, α2, α3} α5 = 2α 000000100
α2 = 2α + 1 000000010
α3 = 2α + 2 000000001

c∗7,6 = x7g + y6 = (α4, α3, α5, α2, α, α6, 0, 1),

c∗7,7 = x7g + y7 = (α5, α, α4, α6, α3, α2, 1, 0).

(v) Finally, transform the codewords c∗i, j (i, j =

0, 1, · · · , pm − 1) in the code C∗ into binary codewords
ci, j, which constitute the binary code C. In this trans-
formation, each GF(pm) element is assigned to a differ-
ent binary vector with a length of pm and a weight of 1.
These vectors are subsequences of a binary codeword
ci, j in the p-chip code C, and every codeword consists
of pm subsequences. Note that the p elements in an
equivalence class have to be assigned to the vectors
whose locations of nonzero chips are in the same
small block when we divide a subsequence into pm−1

small blocks whose lengths are p chips. For example,
the assignment of GF(23) elements to binary vectors
can be given as follows:

0 → (1, 0, 0, 0, 0, 0, 0, 0),
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Table 7 Codewords in chip-pair code constructed from GF(23). The two elements in each red box
are in an equivalence class of the relation R on GF(23). The two sub-blocks of length two in each green
box have the chip-pair property.

1 → (0, 1, 0, 0, 0, 0, 0, 0),
α → (0, 0, 1, 0, 0, 0, 0, 0),

α3 → (0, 0, 0, 1, 0, 0, 0, 0),

α2 → (0, 0, 0, 0, 1, 0, 0, 0),

α6 → (0, 0, 0, 0, 0, 1, 0, 0),

α4 → (0, 0, 0, 0, 0, 0, 1, 0),

α5 → (0, 0, 0, 0, 0, 0, 0, 1).

(vi) When assigning p-chip codewords to each user in
the EWO scheme, assign p consecutive codewords
ci,kp, ci,kp+1, · · · , ci,kp+p−1 (i = 0, 1, · · · , pm − 1, k =

0, 1, · · · , pm−1 − 1) in the same group to a single user.
In total, p2m codewords are assigned to p2m−1 users.
For example, we can assign c0,0 and c0,1 to the 0th user,
c0,2 and c0,3 to the 1st user, · · · , and c7,6 and c7,7 to the
31st user, respectively, for the chip-pair code generated
from GF(23).

2.4 Examples of p-Chip Codes and Chip-Pair Codes

Table 1 shows the code C∗ over GF(22) and its chip-pair

code C. In Tables 1 and 2, α is a primitive element of GF(22)
and π(x) = x2 + x + 1. In the construction of C∗, we sup-
pose g = (0, 1, α, α2), x0 = 0, x1 = 1, x2 = α, x2 = α2,
y0 = (0, 0, 0, 0), y1 = (1, 1, 1, 1), y2 = (α, α, α, α), and
y3 = (α2, α2, α2, α2).

Each user uses two codewords in the same group (“Gr.”
in the table) of the chip-pair code. Table 2 shows the equiv-
alence classes in GF(22) and binary subsequences assigned
to the GF(22) elements. Two codewords assigned to a single
user have equal weight and are orthogonal, as shown in Ta-
ble 1. In addition, for each pair of codewords assigned to a
single user, every nonzero chip position in each codeword is
adjacent to that in the other codeword. In other words, when
we divide a codeword into eight small blocks, each having a
length of two chips, nonzero chips of these two codewords
are always in the same small blocks. It is this feature that
gives the chip-pair code the ability to remove interference
light with an intensity that varies by two chips.

Table 3 shows the code C∗ over GF(23) and its chip-
pair code C. Table 4 shows the equivalence classes in
GF(23) and binary subsequences assigned to the GF(23) el-
ements. In Tables 3 and 4, α is a primitive element of
GF(23) and π(x) = x3 + x + 1. In the construction of
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Table 8 Codewords in GMPSC constructed from GF(23).

Gr. User C∗ GMPSC
0 0 0 0 0 0 0 0 0 0 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000

1 1 1 1 1 1 1 1 01000000 01000000 01000000 01000000 01000000 01000000 01000000 01000000
1 α α α α α α α α 00100000 00100000 00100000 00100000 00100000 00100000 00100000 00100000

α2 α2 α2 α2 α2 α2 α2 α2 00010000 00010000 00010000 00010000 00010000 00010000 00010000 00010000
2 α3 α3 α3 α3 α3 α3 α3 α3 00001000 00001000 00001000 00001000 00001000 00001000 00001000 00001000

α4 α4 α4 α4 α4 α4 α4 α4 00000100 00000100 00000100 00000100 00000100 00000100 00000100 00000100
3 α5 α5 α5 α5 α5 α5 α5 α5 00000010 00000010 00000010 00000010 00000010 00000010 00000010 00000010

α6 α6 α6 α6 α6 α6 α6 α6 00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
1 4 0 1 α α2 α3 α4 α5 α6 10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

1 0 α3 α6 α α5 α4 α2 01000000 10000000 00001000 00000001 00100000 00000010 00000100 00010000
5 α α3 0 α4 1 α2 α6 α5 00100000 00001000 10000000 00000100 01000000 00010000 00000001 00000010

α2 α6 α4 0 α5 α α3 1 00010000 00000001 00000100 10000000 00000010 00100000 00001000 01000000
6 α3 α 1 α5 0 α6 α2 α4 00001000 00100000 01000000 00000010 10000000 00000001 00010000 00000100

α4 α5 α2 α α6 0 1 α3 00000100 00000010 00010000 00100000 00000001 10000000 01000000 00001000
7 α5 α4 α6 α3 α2 1 0 α 00000010 00000100 00000001 00001000 00010000 01000000 10000000 00100000

α6 α2 α5 1 α4 α3 α 0 00000001 00010000 00000010 01000000 00000100 00001000 00100000 10000000
2 8 0 α α2 α3 α4 α5 α6 1 10000000 00100000 00010000 00001000 00000100 00000010 00000001 01000000

1 α3 α6 α α5 α4 α2 0 01000000 00001000 00000001 00100000 00000010 00000100 00010000 10000000
9 α 0 α4 1 α2 α6 α5 α3 00100000 10000000 00000100 01000000 00010000 00000001 00000010 00001000

α2 α4 0 α5 α α3 1 α6 00010000 00000100 10000000 00000010 00100000 00001000 01000000 00000001
10 α3 1 α5 0 α6 α2 α4 α 00001000 01000000 00000010 10000000 00000001 00010000 00000100 00100000

α4 α2 α α6 0 1 α3 α5 00000100 00010000 00100000 00000001 10000000 01000000 00001000 00000010
11 α5 α6 α3 α2 1 0 α α4 00000010 00000001 00001000 00010000 01000000 10000000 00100000 00000100

α6 α5 1 α4 α3 α 0 α2 00000001 00000010 01000000 00000100 00001000 00100000 10000000 00010000
3 12 0 α2 α3 α4 α5 α6 1 α 10000000 00010000 00001000 00000100 00000010 00000001 01000000 00100000

1 α6 α α5 α4 α2 0 α3 01000000 00000001 00100000 00000010 00000100 00010000 10000000 00001000
13 α α4 1 α2 α6 α5 α3 0 00100000 00000100 01000000 00010000 00000001 00000010 00001000 10000000

α2 0 α5 α α3 1 α6 α4 00010000 10000000 00000010 00100000 00001000 01000000 00000001 00000100
14 α3 α5 0 α6 α2 α4 α 1 00001000 00000010 10000000 00000001 00010000 00000100 00100000 01000000

α4 α α6 0 1 α3 α5 α2 00000100 00100000 00000001 10000000 01000000 00001000 00000010 00010000
15 α5 α3 α2 1 0 α α4 α6 00000010 00001000 00010000 01000000 10000000 00100000 00000100 00000001

α6 1 α4 α3 α 0 α2 α5 00000001 01000000 00000100 00001000 00100000 10000000 00010000 00000010
.
.
.

.

.

.
.
.
.

.

.

.

C∗, we suppose g = (0, 1, α, α2, α3, α4, α5, α6), x0 = 0,
x1 = 1, x2 = α, x3 = α2, x4 = α3, x5 = α4, x6 = α5,
x7 = α6, y0 = (0, 0, · · · , 0), y1 = (1, 1, · · · , 1), y2 =

(α, α, · · · , α), y3 = (α3, α3, · · · , α3), y4 = (α2, α2, · · · , α2),
y5 = (α6, α6, · · · , α6), y6 = (α4, α4, · · · , α4), and y7 =

(α5, α5, · · · , α5). Because p is equal to 2, the chip-pair code
has the ability to remove interference light with an intensity
that varies by two chips.

Table 5 shows an example of the code C∗ over GF(32)
and its three-chip code C. Table 6 shows the equivalence
classes in GF(32) and binary subsequences assigned to the
GF(32) elements. In Tables 5 and 6, α is a primitive element
of GF(32) and π(x) = x2 + x + 2. In the construction of
C∗, we suppose g = (0, 1, α, α2, α3, α4, α5, α6, α7), x0 = 0,
x1 = 1, x2 = α, x3 = α2, x4 = α3, x5 = α4, x6 = α5,
x7 = α6, x8 = α7, y0 = (0, 0, · · · , 0), y1 = (1, 1, · · · , 1), y2 =

(α4, α4, · · · , α4), y3 = (α, α, · · · , α), y4 = (α7, α7, · · · , α7),
y5 = (α6, α6, · · · , α6), y6 = (α5, α5, · · · , α5), y7 =

(α2, α2, · · · , α2), and y8 = (α3, α3, · · · , α3). Because p is
equal to 3, three codewords are assigned to each user, as
shown in Table 5. If we divide a codeword into 27 small
blocks, each 3 chips long, nonzero chips of these 3 code-
words are always in the same small blocks. Then this three-
chip code has the ability to remove interference light with
an intensity that varies by three chips.

3. Algebraic Properties and Applications

In this section, we investigate algebraic properties and ap-
plications of the proposed p-chip codes.

The proposed p-chip codes have a unique property:
marks in the p codewords assigned to a single user always
exist in the same q small blocks when we divide a codeword
into q2/p small blocks whose lengths are p chips. We refer
to this property as the p-chip property and the small blocks
as sub-blocks. In particular, we refer to the property as the
chip-pair property for the case of p = 2.

The class of p-chip codes is a proper subset of the class
of GMPSCs. In other words, though some GMPSCs are p-
chip codes, many other GMPSCs are not p-chip codes. For
example, the GMPSC constructed from GF(22), which was
introduced in Ref. [5], is identical with the chip-pair code
shown in Table 1. However, the probability that a randomly
chosen GMPSC happens to be a p-chip is small when q is
large. In fact, the other GMPSCs introduced in Refs. [5]
and [21] are not p-chip codes. Table 7 shows the binary
codewords of the chip-pair code generated from C∗ over
GF(23) in Table 3. The values of g, xi, and y j for C∗ in
Table 7 are the same as those for C∗ in Table 3. We can
see that the codewords in this table have the chip-pair prop-
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erty. In contrast, Table 8 shows the binary codewords of
the GMPSC presented in Ref. [21]. The values of g and
xi for C∗ in Table 8 are the same as those for C∗ in Ta-
ble 3. However, the values of y j are determined not con-
sidering the equivalent relation R, and they are supposed
as follows: y0 = (0, 0, · · · , 0), y1 = (1, 1, · · · , 1), y2 =

(α, α, · · · , α), y3 = (α2, α2, · · · , α2), y4 = (α3, α3, · · · , α3),
y5 = (α4, α4, · · · , α4), y6 = (α5, α5, · · · , α5), and y7 =

(α6, α6, · · · , α6). Though both codes in Tables 7 and 8 are
constructed from GF(23) and have the same code length, the
codewords in Table 8 do not have the chip-pair property.

Because the class of p-chip codes is a subset of the
class of GMPSCs, p-chip codes retain the properties of
GMPSCs. For example, Eq. (4), which represents the cor-
relation property of GMPSC, also represents that of p-chip
codes.

In addition, any p-chip code generated from GF(pm)
has the p-chip property, that is, nonzero chips of p code-
words assigned to a single user are always in the same sub-
blocks. This property stems from the property of the code
C∗, in which all the elements at the same location in p code-
words assigned to a single user are in the same equivalence
class of the relation R. The code construction procedure in
Sect. 2.3 guarantees that all the elements at the same loca-
tion in p codewords assigned to a single user are in the same
equivalence class of the relation R. The reason is that β+γ0,
β+ γ1, · · · , and β+ γp−1 are in the equivalence class [β+ γ0]
for any element β in GF(pm), if γ0, γ1, · · · , and γp−1 are
in the equivalence class [γ0] in GF(pm). This fact can be
proved easily by Eq. (2). In the code construction procedure,
γ0, γ1, · · · , and γp−1 correspond to the elements in ykp, ykp+1,
· · · , and ykp+p−1, respectively, and β corresponds to each el-
ement in the vector xig in Eq. (5) for i = 0, 1, · · · , pm − 1
and k = 0, 1, · · · , pm−1 − 1. In addition, the p elements in
an equivalence class are always assigned to the binary sub-
sequences whose locations of nonzero chips are in the same
sub-block, when the codewords c∗i, j (i, j = 0, 1, · · · , pm − 1)
in the code C∗ are transformed into binary codewords ci, j
in the p-chip code C. Hence the code C constructed by the
procedure in Sect. 2.3 certainly possesses p-chip property.

For example, in Table 7, the red boxes show the equiv-
alence classes of R on GF(23) and sub-blocks in the green
boxes have the chip-pair property. As a consequence, any p-
chip code generated from GF(pm) has the ability to remove
interference light with an intensity that varies by p chips
when each user transmits p-ary data and the EWO scheme
is adopted. Optical CDMA systems using p-chip codes in-
stead of MPSCs or GMPSCs cancel not only MUI but also
interference light without requiring additional equipment.
In Appendix C, we explain how the EWO decoder using
a p-chip code removes interference light and MUI simulta-
neously, even if the intensity of interference light varies by
sub-block.

The value p can be set to any arbitrary prime number,
such as two or three. Although the optical CDMA systems
using conventional codes do not cancel interference light
with intensity varying by sub-blocks with a length of two

or three chips, the systems using the proposed p-chip codes
do cancel such interference light. Therefore, p-chip codes
including chip-pair codes have the capability to remove in-
terference light that cannot be removed by other coding
schemes. Using this property, the proposed system can be
used simultaneously with dimming-controlled illumination
that is realized by the pulse-width modulation (PWM) tech-
nique [12], when the PWM pulses are synchronized with a
duration of sub-blocks in each GMPSC slot.

4. Conclusion

This paper proposes a new GMPSC, referred to as a p-chip
code, for synchronous optical CDMA. A general method for
constructing the proposed code for an arbitrary extension
field GF(pm) is presented. This paper also shows that the
optical CDMA system using a p-chip code as a signature
code and the EWO MUI cancellation scheme removes inter-
ference light with an intensity that varies by p chips. In par-
ticular, chip-pair codes, which are p-chip codes for p = 2,
remove interference light with an intensity that varies by two
chips.

Acknowledgments

This work was supported by the Japan Society for the
Promotion of Science, KAKENHI Grants 19K04403 and
19K04402.

References

[1] P.R. Prucnal, Optical Code Division Multiple Access: Fundamentals
and Applications, CRC Press, Boca Raton, FL, 2006.

[2] H. Ghafouri-Shiraz and M.M. Karbassian, Optical CDMA Net-
works: Principles, Analysis and Applications, John Wiley & Sons,
Hoboken, NJ, 2012.

[3] W.C. Kwong, P.A. Perrier, and P.R. Prucnal, “Performance compari-
son of asynchronous and synchronous code-division multiple-access
techniques for fiber-optic local area networks,” IEEE Trans. Com-
mun., vol.39, no.11, pp.1625–1634, Nov. 1991.

[4] G.-C. Yang and W.C. Kwong, Prime Codes with Applications to
CDMA Optical and Wireless Networks, Artech House, Mobile com-
munications series, Norwood, MA, 2002.

[5] T.K. Matsushima and Y. Teramachi, “Generalized MPSC and its per-
formance in synchronous optical CDMA systems,” Proc. Int. Symp.
Information Theory and Its Applications, Seoul, Korea, Tue3-4-5,
Oct. 2006.

[6] T.K. Matsushima, T. Nagao, N. Ochiai and Y. Teramachi, “General-
ization of modified prime sequence codes and its properties,” IEICE
Trans. Fundamentals (Japanese Edition), vol.J91-A, no.5, pp.559–
573, May 2008.

[7] H.M.H. Shalaby, M.A. Mangoud, and S.E. El-Khamy, “A new inter-
ference cancellation technique for synchronous CDMA communica-
tion systems using modified prime codes,” Proc. 2nd IEEE Sympo-
sium on Computers and Communications, Alexandria, pp.556–560,
July 1997.

[8] M.-Y. Liu and H.-W. Tsao, “Cochannel interference cancellation via
employing a reference correlator for synchronous optical CDMA
systems,” Microwave and Optical Technology Letters, vol.25, no.6,
June 2000.

[9] N. Ochiai, S. Kushibiki, T.K. Matsushima, and Y. Teramachi, “Per-
formance analysis of synchronous optical CDMA systems with

http://dx.doi.org/10.1201/9781315221113
http://dx.doi.org/10.1201/9781315221113
http://dx.doi.org/10.1002/9781119941330
http://dx.doi.org/10.1002/9781119941330
http://dx.doi.org/10.1002/9781119941330
http://dx.doi.org/10.1109/26.111444
http://dx.doi.org/10.1109/26.111444
http://dx.doi.org/10.1109/26.111444
http://dx.doi.org/10.1109/26.111444
http://dx.doi.org/10.1109/iscc.1997.616064
http://dx.doi.org/10.1109/iscc.1997.616064
http://dx.doi.org/10.1109/iscc.1997.616064
http://dx.doi.org/10.1109/iscc.1997.616064
http://dx.doi.org/10.1109/iscc.1997.616064
https://doi.org/10.1002/(SICI)1098-2760(20000620)25:6%3C390::AID-MOP8%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(20000620)25:6%3C390::AID-MOP8%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(20000620)25:6%3C390::AID-MOP8%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(20000620)25:6%3C390::AID-MOP8%3E3.0.CO;2-3


1626
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.11 NOVEMBER 2021

EWO signaling,” IEICE Trans. Fundamentals (Japanese Edition),
vol.J86-A, no.9, pp.957–968, Sept. 2003.

[10] N. Ochiai, S. Kushibiki, T.K. Matsushima, and Y. Teramachi, “Per-
formance analysis of synchronous optical CDMA systems with
EWO signaling,” Electron. Comm. Jpn. Pt. III, vol.87, no.12, pp.37–
48, Dec. 2004.

[11] A. Kamikata, T.K. Matsushima, S. Yamasaki, S. Miyazaki, and
K. Omura, “A study on synchronous optical CDMA systems cancel-
ing multi-user interference and background light simultaneously,”
IEICE Trans. Fundamentals (Japanese Edition), vol.J103-A, no.7,
pp.126–141, July 2020.

[12] S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible
light communication: Modulation schemes and dimming support,”
IEEE Commun. Mag., vol.50, no.3, pp.72–82, Oct. 2012.

[13] H. Miyakawa, Y. Iwadare, and H. Imai, Coding Theory, Shokodo,
Tokyo, 1973 (in Japanese).

[14] K. Ono, S. Yamasaki, and T.K. Matsushima, “An optical
CDMA scheme combining modified prime sequence codes and bi-
orthogonal codes,” IEICE Technical Report, WBS2019-65, March
2020 (in Japanese).

[15] K. Ono, S. Yamasaki, S. Miyazaki, and T.K. Matsushima, “Optical
CDMA scheme using generalized modified prime sequence codes
and extended bi-orthogonal codes,” IEICE Trans. Fundamentals,
vol.E104-A, no.9, pp.1329–1338, Sept. 2021.

[16] S. Yamasaki, T.K. Matsushima, and K. Ono, “A study on code con-
struction method for optical CDMA with variable spreading factor,”
IEICE Technical Report, IT2020-9, May 2020 (in Japanese).

[17] T.K. Matsushima, S. Yamasaki, and K. Ono, “Study on construction
method of generalized modified prime sequence codes — Proposal
and applications of chip-pair codes —,” IEICE Technical Report,
WBS2020-2, July 2020 (in Japanese).

[18] T.K. Matsushima, S. Yamasaki, and K. Ono, “A study on chip-pair
codes for synchronous optical CDMA systems,” IEICE Technical
Report, IT2020-19, Sept. 2020.

[19] R.E. Blahaut, Algebraic Methods for Signal Processing and Com-
munications Coding, Section 3, Springer-Verlag, New York, NY,
1992.

[20] T. Kojima, “Hadamard-type matrices on finite fields and complete
complementary codes,” IEICE Trans. Fundamentals, vol.E102-A,
no.12, pp.1651–1658, Dec. 2019.

[21] T.K. Matsushima, N. Ochiai, T. Nagao, and Y. Teramachi, “On the
construction of codes over GF(pm) for synchronous optical CDMA
systems,” IEICE Technical Report, WBS2005-39, Oct. 2005.

[22] A.W. Lam and A.M. Hussain, “Performance analysis of direct-
detection optical CDMA communication systems with avalanche
photodiodes,” IEEE Trans. Commun., vol.40, no.4, pp.810–820,
April 1992.

[23] H. Habuchi and F. Ono, “Optical code shift keying with modi-
fied prime sequences,” IEICE Technical Report, WBS2003-74, Oct.
2003 (in Japanese).

[24] S. Tanaka and S. Usami, “Consideration on multiplexing code shift
keying on optical CDMA system,” IEEJ Trans. EIS, vol.130, no.12,
pp.2174–2175, Dec. 2010 (in Japanese).

Appendix A: Proof that the Relation R is an Equiva-
lence Relation

A relation is an equivalence relation if it is reflexive, sym-
metric, and transitive. The relation R on F in Sect. 2.1 is
an equivalence relation because R has the following three
properties:

Reflexive: For every x ∈ F, x − x = 0 ∈ {0, 1, · · · , p − 1}.
Hence ∀x ∈ F, xRx.

Symmetric: If x − y ∈ {0, 1, · · · , p − 1}, then y − x ∈
{0, 1, · · · , p − 1}. Hence xRy⇒ yRx.

Transitive: If x−y ∈ {0, 1, · · · , p−1} and y−z ∈ {0, 1, · · · , p−
1}, then x − z ∈ {0, 1, · · · , p − 1}. Hence xRy ∧ yRz ⇒
xRz.

Appendix B: Cancellation of Interference Light Vary-
ing by Block for GMPSCs

It has been reported that the EWO scheme cancels interfer-
ence light and MUI simultaneously, when the interference
light intensity is constant within a slot and a GMPSC, in-
cluding MPSC, is employed as the signature code [11]. In
this appendix, we provide a theoretical explanation of how
the EWO decoder using a GMPSC removes interference
light and MUI simultaneously, even if the intensity of in-
terference light varies by block as shown in Fig. 1(c).

The EWO scheme for optical CDMA was originally in-
troduced in Ref. [22]. Later, it was reported that the EWO
scheme using an MPSC cancels MUI completely [9], [10].
The EWO scheme employs code shift keying as a signaling
method [23], [24]. Figure A· 1 illustrates a block diagram
of the EWO decoder for p = 2. In the EWO scheme, two
equal-weight and orthogonal codewords wk,0 and wk,1 are
assigned to the kth user, and the user uses wk,I to spread a
datum I (I ∈ {0, 1}) [9], [10]. The kth user’s decoder com-
putes Γ0 and Γ1, which are correlation values between the
received sequence r, which is a multiplexed sequence of all
the sequences transmitted synchronously, and the two code-
words wk,0 and wk,1, respectively.
Γ0 and Γ1 are represented as follows:

Γ0 = Γ(r,wk,0), (A· 1)
Γ1 = Γ(r,wk,1). (A· 2)

Then the decoder calculates the difference Γ1 − Γ0. If the
difference is greater than or equal to the threshold zero, the
decoder outputs Î = 1 as a decoded datum. Otherwise, the
decoder outputs Î = 0. Because the threshold in the EWO
decoder is always zero, this scheme cancels MUI without
needing to estimate the received light intensity.

Now we consider an optical CDMA employing a
GMPSC with q = 2m and the EWO scheme. We suppose
a link where MUI and interference light are the primary
performance-degrading factors, and other factors are negli-
gible. We also suppose that the intensity of interference light
is constant during a single block, and the intensity at the ith
block is L(i)

b for i = 0, 1, · · · , q − 1. The interference light is
received at the receiver together with the optical sequences

Fig. A· 1 Block diagram of EWO decoder (p = 2).
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Fig. A· 2 Example of received signals with interference light varying by
block (pm chips) and user sequences (p = 2, q = 4).

from the desired user and the interfering users. Figure A· 2
shows an example of received signals that include interfer-
ence light and users’ sequences.

GMPSC codewords are assigned to q2/2 users in total.
From Eqs. (4), (A· 1), and (A· 2), the correlation values Γ0
and Γ1 calculated at each user’s decoder are represented as
follows:

Γ0 = q(1 − I)Ls +
q2 − q

2
Ls +

q−1∑
i=0

L(i)
b , (A· 3)

Γ1 = qILs +
q2 − q

2
Ls +

q−1∑
i=0

L(i)
b , (A· 4)

where I (I ∈ {0, 1}) is a transmitted datum and Ls is the re-
ceived light intensity of each mark. In Eqs. (A· 3) and (A· 4),
((q2 − q)/2)Ls and

∑q−1
i=0 L(i)

b are the terms representing MUI
and interference light, respectively. When the decoder cal-
culates the difference Γ1−Γ0, these two terms are eliminated
completely. Thus, the EWO decoder removes interference
light and MUI simultaneously, even if the intensity of inter-
ference light varies by block.

In the cases of p , 2 and q = pm, each of q2/p users
transmits p-ary data. The p codewords wk,0,wk,1, · · · , and
wk,p−1 are assigned to the kth user and the user uses wk,I to
spread a datum I (I ∈ {0, 1, · · · , p−1}). Each user’s decoder
has p correlators and computes Γ0,Γ1, · · · , and Γp−1, which
are correlation values between the received sequence r and
the codewords wk,0,wk,1, · · · , and wk,p−1, respectively. Γ` is
represented as follows:

Γ` = Γ(r,wk,`), (A· 5)

for ` = 0, 1, · · · , p − 1. Then, the decoder chooses the max-
imum value in Γ0,Γ1, · · · , and Γp−1. If the maximum value
is Γ`, the decoder outputs Î = ` as the decoded datum.

When we suppose a link where other performance-
degrading factors are negligible except for MUI and inter-
ference light, the correlation value Γ` in Eq. (A· 5) is repre-
sented as follows:

Γ` =


qLs +

q2−q
p Ls +

∑q−1
i=0 L(i)

b if I = `,

q2−q
p Ls +

∑q−1
i=0 L(i)

b if I , `.
(A· 6)

In Eq. (A· 6), ((q2 − q)/p)Ls and
∑q−1

i=0 L(i)
b are the terms rep-

resenting MUI and interference light, respectively. When
the decoder chooses the maximum among the p correlation
values, these two terms are eliminated completely. Thus,

Fig. A· 3 Example of received signals with interference light varying by
sub-block (p chips) and user sequences (p = 2, q = 4).

when p , 2, the EWO decoder also removes interference
light and MUI simultaneously, even if the intensity of inter-
ference light varies by block.

Appendix C: Cancellation of Interference Light Vary-
ing by Sub-Block for p-Chip Codes

In this appendix, we provide a theoretical explanation of
how the EWO decoder using a p-chip code removes interfer-
ence light and MUI simultaneously, even if the intensity of
interference light varies by sub-block as shown in Fig. 1(d).

We consider an optical CDMA employing a p-chip
code with q = pm and the EWO scheme. We also suppose
that the intensity of interference light is constant during a
single sub-block, which consists of p chips, and the inten-
sity at the ith block is L(i)

sb for i = 0, 1, · · · , q2/p − 1. The
interference light is received at the receiver together with
the optical sequences from the desired user and the interfer-
ing users. Figure A· 3 shows an example of received signals
that include interference light and user sequences.

There are q2 codewords in a p-chip code. Each
of q2/p users transmits a p-ary datum I in each slot
(I ∈ {0, 1, · · · , p − 1}). Suppose that the p codewords
wk,0,wk,1, · · · , and wk,p−1 are assigned to the kth user (k =

0, 1, 2, · · · , q2/p−1), and that wk,I is used to spread a datum
I. Because of the p-chip property, the locations of the marks
in the p codewords for a single user are in the same q sub-
blocks. We define the set Φk = {φk,0, φk,1, · · · , φk,q−1}, where
the q marks in each codeword for the kth user are in the
φk,0th, φk,1th, · · · , and φk,q−1th sub-blocks, respectively. For
example, for the chip-pair code in Table 1, Φ0 = {0, 2, 4, 6},
Φ1 = {1, 3, 5, 7}, · · · , and Φ7 = {1, 2, 5, 6}.

Each user’s decoder has p correlators and com-
putes Γ0,Γ1, · · · , and Γp−1, which are correlation val-
ues between the received sequence r and the codewords
wk,0,wk,1, · · · , and wk,p−1, respectively. Γ` is represented
as Eq. (A· 5). Then, the decoder chooses the maximum
value in Γ0,Γ1, · · · , and Γp−1. If the maximum value is
Γ`, the decoder outputs Î = ` as the decoded datum (` ∈
{0, 1, · · · , p − 1}).

When we consider a link in which performance-
degrading factors other than MUI and interference light are
negligible, the correlation value Γ` is represented as follows:
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Γ` =


qLs +

q2−q
p Ls +

∑
φ∈Φk

L(φ)
sb if I = `,

q2−q
p Ls +

∑
φ∈Φk

L(φ)
sb if I , `,

(A· 7)

where Ls is the received light intensity for each mark.
In Eq. (A· 7), ((q2 − q)/p)Ls is the term representing

MUI, and
∑
φ∈Φk

L(φ)
sb is the term representing interference

light varying by sub-block. When the decoder chooses the
maximum among the p correlation values, these two terms
are eliminated completely. Thus, the decoder removes inter-
ference light and MUI simultaneously, even if the intensity
of interference light varies by sub-block.
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