2022 Volume E105.A Issue 9 Pages 1340-1347
The fast evolving credential attacks have been a great security challenge to current password-based information systems. Recently, biometrics factors like facial, iris, or fingerprint that are difficult to forge rise as key elements for designing passwordless authentication. However, capturing and analyzing such factors usually require special devices, hindering their feasibility and practicality. To this end, we present WiASK, a device-free WiFi sensing enabled Authentication System exploring Keystroke dynamics. More specifically, WiASK captures keystrokes of a user typing a pre-defined easy-to-remember string leveraging the existing WiFi infrastructure. But instead of focusing on the string itself which are vulnerable to password attacks, WiASK interprets the way it is typed, i.e., keystroke dynamics, into user identity, based on the biologically validated correlation between them. We prototype WiASK on the low-cost off-the-shelf WiFi devices and verify its performance in three real environments. Empirical results show that WiASK achieves on average 93.7% authentication accuracy, 2.5% false accept rate, and 5.1% false reject rate.