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PAPER
New Restricted Isometry Condition Using Null Space Constant for
Compressed Sensing

Haiyang ZOU†a) and Wengang ZHAO††b), Nonmembers

SUMMARY It has been widely recognized that in compressed sensing,
many restricted isometry property (RIP) conditions can be easily obtained
by using the null space property (NSP) with its null space constant (NSC)
0 < θ ≤ 1 to construct a contradicted method for sparse signal recovery.
However, the traditional NSP with θ = 1 will lead to conservative RIP con-
ditions. In this paper, we extend the NSP with 0 < θ < 1 to a scale NSP,
which uses a factor τ to scale down all vectors belonged to the Null space
of a sensing matrix. Following the popular proof procedure and using the
scale NSP, we establish more relaxed RIP conditions with the scale fac-
tor τ, which guarantee the bounded approximation recovery of all sparse
signals in the bounded noisy through the constrained `1 minimization. An
application verifies the advantages of the scale factor in the number of mea-
surements.
key words: compressed sensing, null space property, null space constant,
restricted isometry property, `1-norm minimization

1. Introduction

Compressed sensing (CS) [4], [5] has attracted much atten-
tion over the last decade due to the numerous applications
in imaging processing [6], compressive phase retrieval [7],
and statistics [8]. In particular, without the need of full sig-
nal recovery CS has also been applied into several signal
processing aspects, such as estimation, detection and clas-
sification [9]–[13]. A central problem of CS is to recover
an unknown sparse signal x ∈ Rp from the observed data
y ∈ Rn where

y = Ax + z. (1)

Here A ∈ Rn×p(n � p) is a measurement matrix, and z ∈ Rn

is a measurement error. It is well-known that the sparse re-
covery based on `0-norm minimization is a NP-hard prob-
lem. Thus, the constrained `1-norm minimization has been
well studied to provide an efficient method for sparse sig-
nal recovery. Generally speaking, the approach is to find the
sparsest signal by solving the following problem [14]:

x̂ = min
x
{‖x‖1 s.t. Ax − y ∈ B} , (2)

where B is a bounded set determined by the noise structure,
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particularly, B = {0} means the noiseless case. In the prob-
lem (2), the most well-known properties, such as the null
space property (NSP) [3], and the restricted isometry prop-
erty (RIP) [14], have been introduced and studied to recover
the sparse signals in the literatures [4], [5], [15]–[20]. For
k-sparse signal recovery, NSP satisfies an inequality that the
`1 norm of the largest k entries is less than that of the rests
in null space of the sensing matrix, while RIP considers the
smallest number to estimate the reconstruction bound by us-
ing k-sparse vectors. Based on NSP, there is a popular proof
procedure to obtain the RIP conditions (upper bounds of the
smallest number) by using contradicted methods to prove
the inequality of NSP [1], [2], [21]–[25]. For discussing the
proof procedure, we first introduce the NSP and RIP defini-
tions as follows.

1.1 NSP and RIP

Some basic notations are given. A vector v ∈ Rp is said to
be k-sparse if S = |supp(v)| < k, where S = {i, vi , 0} is the
support of v. vmax(k) is a vector v with all but the largest k
entries in absolute value set to zero and v−max(k) = v−vmax(k).
The kernel of matrix A is denoted as ker(A) = {v : Av = 0}.

One of the most widely used frameworks is the NSP
with a null space constant (NSC) θ (0 < θ ≤ 1) [24], [26]–
[34] for compressed sensing. Furthermore, θ can be tested
by using semidefinite programming [28] and sandwiching
algorithm [30]. Now we give the (k, θ)-NSP by following
the definition 2.1 [24].

Definition 1: [24] A matrix A satisfies the null space
property of order k if ∀v ∈ ker(A) \ {0} and ∀|S | < k,

‖vS ‖1 < θ‖vS c‖1, (3)

where S c is the complement set of S , and vS is the vector
that has the same entry as v on S , but 0 everywhere.

Based on the above NSP with θ = 1, there has a useful
characterization [35] of the matrix A that (2) with B = {0}
will produce the solution of (1) with z = 0 if and only if ∀v ∈
ker(A)\{0} and ∀|S | < k, ‖vS ‖1 < ‖vS c‖1. Of course, we need
not to check this inequality for all subsets S ; checking the
subset with the k largest (in absolute value) elements of v is
sufficient [35]. Thus we have the following lemma, which is
from [1].

Lemma 1 [1]: Using (2) with B = {0} one can recover
all k-sparse signal x if and only if ∀v ∈ ker(A) \ {0},

‖vmax(k)‖1 < ‖v−max(k)‖1. (4)
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Another one of the most widely used frameworks is the
RIP property [1], [2], [21], [22], [24] for compressed sens-
ing. Here, we follow the definition [14] and give the RIP
property as follows.

Definition 2 (RIP): [1], [14] Let A be a measurement
matrix and let 1 ≤ k, k1, k2 ≤ p be integers. We define the k-
restricted isometry constant (RIC) to be the smallest number
δA

k such that(
1 − δA

k

)
‖c‖22 ≤ ‖Ac‖22 ≤

(
1 + δA

k

)
‖c‖22,

for all k-sparse vectors c. Restricted orthogonality constant
(ROC) of order (k1, k2) is defined to be the smallest non-
negative number δA

k1,k2
such that

|〈Aa,Ab〉| ≤ δA
k1,k2
‖a‖2‖b‖2,

for all k1-sparse vectors a and k2-sparse vectors b with dis-
joint supports.

Simply, the RIC δA
k and ROC δA

k1,k2
in an orthonormal

system are used to measure how far subsets of cardinality
of columns of are. It is obvious that δk and ROC δk1,k2 are
increasing in each of their indices [1].

Following the inequality (4), the RIP conditions are
obtained by using an assumptive inequality ‖vmax(k)‖1 ≥

‖v−max(k)‖1 to result in contradictions for building upper
bounds in terms of the RIC and ROC, such as, δA

2k < 1/
√

2
[24], δA

1.25k + δA
k,1.25k < 1 [21] and δA

k + δA
2k + δA

3k < 1 [36].
Recently, Cai et al. developed new (sharp) RIP conditions to
ensure the sparse recovery, for example, δA

k + δA
k,k < 1 [1]

and δA
tk ≤

√
(t − 1)/t (t ≥ 4/3) [2]. Note that the above RIP

conditions obtained by using NSP is different from the hy-
brid of RIP and NSP in the definition 1.1 [24] because this
hybrid requires a matrix to satisfy both the NSP and RIP
conditions (the inequalities (3) and (4)).

1.2 Challenge

To further exploit the NSP property with the NSC θ, the
inequality (4) is rewritten as:

‖vmax(k)‖1 < θ‖v−max(k)‖1, (5)

with 0 < θ ≤ 1. Clearly, the inequality (5) is stronger than
the standard inequality (4) in the NSP property for sparse
recovery since ‖vmax(k)‖1 < θ‖v−max(k)‖1 ≤ ‖v−max(k)‖1,
where vmax(k), v−max(k) and v are shown in the orange, dark
blue, and green lines of Fig. 1, respectively. It obviously
holds a distance (1 − θ)‖v−max(k)‖1 shown in the red line of
Fig. 1. However, the inequality (5) results in conservative
RIP conditions as 0 < θ < 1 reduces the upper bounds of
RIC and ROC by directly using the assumptive inequalities
‖vmax(k)‖1 ≥ θ‖v−max(k)‖1, for example, the proposition 1 in
Sect. 2.1. Therefore, this leads to a natural but crucial chal-
lenge:

Challenge: How to improve the RIP conditions by using
the distance (1 − θ)‖v−max(k)‖1?

Fig. 1 The geometrical relationship of the distance τ, v ∈ ker(A) \ {0},
vmax(k), v−max(k), v ∈ ker(A) \ {0}, and v−max(k), where θ ≤ τ ≤ 1, vmax(k)
is a vector v with all but the largest k entries in absolute value set to zero,
v−max(k) = v − vmax(k), and ker(A) is defined in (10).

1.3 Motivation and Contributions

To address this important problem, the key idea is that the
inequality (5) is considered as a NSP characterization to
expand the inequality (4) for the improvement of the RIP
conditions. In this paper we introduce a factor τ to scale
down the vector v−max(k) into v−max(k) = τv−max(k) with
θ ≤ τ ≤ 1. This leads to a scale kernel with a noise
‖Av‖2 < (1 − τ)ρ‖v−max(k)‖2 (ρ =

√
λmax(AT A)) for all

vectors v = vmax(k) + v−max(k). Based on the scale kernel,
the inequality (5) is transformed into a pseudo-standard in-
equality ‖vmax(k)‖1 < ‖v−max(k)‖1. Similarly, the inequal-
ity (4) is also converted into novel inequality ‖vmax(k)‖1 <
‖v−max(k)‖1 = 1

τ
‖v−max(k)‖1, which is better than the pseudo-

standard inequality. According to the proof, therefore, this
novel inequality will conduct a new assumption ‖vmax(k)‖1 ≥
1
τ
‖v−max(k)‖1, which leads to an expansion of the upper

bounds of RIC δA
k and ROC δA

k,k, for studying more relaxed
RIP conditions. In summary, our contributions include the
following two parts.

• To the best of our knowledge, we are the first to in-
troduce a scale factor τ (θ ≤ τ ≤ 1) to breakthrough
the upper bound of the previous RIP conditions in the
bounded recovery as it is reached by proving a novel
inequality ‖vmax(k)‖1 <

1
τ
‖v−max(k)‖1 in the CS problem

(2).
• We establish new upper bounds of the RIP conditions

for sparse signal recovery in Table 1. More specifically,
it is shown that there exists a scale factor τ such that
δA

k +δA
k,k < 1+(1−

√
τ)δA

k,k and δA
tk <

(
1 + 1−τ2

τ2−1+2t

) √
t−1

t

(θ ≤ τ ≤ 1 and t ≥ 4
3 ) guarantee the bounded approxi-

mation recovery of all k-sparse signals in the noiseless
or noise cases.

Note that compared to the RIP conditions [1], [2], our re-

sults have ε1 = (1 −
√
τ)δA

k,k and ε2 =
(

1−τ2

τ2−1+2t

) √
t−1

t im-
provements, respectively. However, the Remark 2.1 [1] and
the Theorem 2.2 [2] show that for any ε > 0, the conditions
δA

k + δA
k,k < 1 + ε and δA

tk ≤
√

(t − 1)/t + ε are not sufficient
to ensure stably recovery using any method [1], [2] in the
bounded noisy set B. In fact, they are special cases τ = 1 of
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Table 1 Comparison on NSP and RIP conditions. Our RIP results are more relaxed conditions than
[1] and [2] in the bounded recovery.

Methods Previous results Our results Improvement
NSP ‖vmax(k)‖1 < ‖v−max(k)‖1 [3] ‖vmax(k)‖1 <

1
τ ‖v−max(k)‖1 \

RIP δA
k + δA

k,k < 1 [1] δA
k + δA

k,k < 1 + (1 −
√
τ)δA

k,k (1 −
√
τ)δA

k,k

RIP δA
tk <

√
t−1

t [2] δA
tk <

(
1 + 1−τ2

τ2−1+2t

) √
t−1

t

(
1−τ2

τ2−1+2t

) √
t−1

t

θ ≤ τ ≤ 1, t ≥ 4/3, v belongs to the Null space of A, vmax(k) is regarded as v with all but the largest k entries
in absolute value set to zero, and v−max(k) = v − vmax(k). δA

k and δA
k,k are respectively regarded as restricted

isometry constant (RIC) and restricted orthogonality constant (ROC).

our results. When τ = 1, ε1 = 0 and ε2 = 0, that means, we
have not any improvement. As long as θ ≤ τ ≤ 1, that is,
there is a nonzero distance (1−θ)‖v−max(k)‖1 > 0, we can use
the distance to breakthrough the upper bound of the previous
RIP condition [1], [2]. Although there exists an additional
noise ε, the more relaxed RIP conditions will lead to the
less number of measurements in practice when all v−max(k)
satisfy Av−max(k) = 0 or the recovery error can be tolerated.

2. Main Results

In this section, we first introduce a scale factor τ to scale
down v−max(k) in the inequality (4) for improving the RIP
conditions. Based on the scale factor τ, we propose two
more relaxed RIP conditions to ensure the bounded approx-
imation recovery of all k-sparse signals. Moreover, we also
establish two RIP conditions to expand the the sparsity order
k.

2.1 Scale Factor τ

Before introducing the scale factor τ, we first show the poor
RIP conditions by proving the inequality (5) with θ as fol-
lows.

Proposition 1. Consider the signal recovery model y =

Ax, where x is a k-sparse vector. If

δA
k + δA

k,k < 1 +

(
θ − 1
θ

)
δA

k,k, or (6)

δA
tk ≤

(
1 +

θ2 − 1
1 − θ2 + 2θ2t)

) √
t − 1

t
, (7)

for some 0 < θ ≤ 1 and t ≥ 4
3 , then x̂ recovers x exactly,

where x̂ is the `1 norm minimizer of (2) with B = {0}.
Unfortunately, Proposition 1 shows that the RIP con-

ditions (6) and (7) are less than δA
k + δA

k,k < 1 [1] and
δA

tk <
√

(t − 1)/t [2], respectively. Compared to the inequal-
ity (4), however, there is a distance (1 − θ)‖v−max(k)‖1 ≥ 0 in
the inequality (5). Thus, this distance leads us to study the
crucial challenge in the Sect. 1.2.

We propose a solution to transform the distance into the
inequality (4) for improving the RIP conditions. To keep the
orientation of v−max(k) and construct a relationship between
the distance and v−max(k), we introduce a scale factor τ to
scale down v−max(k) into v−max(k), which is defined as:

v−max(k) = τv−max(k). (8)

Fig. 2 Scale factor τ (θ ≤ τ ≤ 1). (A), (B), (C) and (D) respectively
show v, vmax(k), v−max(k) and v−max(k), where v−max(k) = τv−max(k). (E)
shows ‖vmax(k)‖1, ‖v−max(k)‖1 and ‖v−max(k)‖1, and the red bar exhibits a
compressed distance between ‖vmax(k)‖1 and ‖v−max(k)‖1.

In order to satisfy the inequality (5), it still holds
θ‖v−max(k)‖1 ≤ ‖v−max(k)‖1 = τ‖v−max(k)‖1 ≤ ‖v−max(k)‖1.
Clearly, θ ≤ τ ≤ 1. Note that the computation of the
scale factor τ is suspected to be NP-hard since it depends
on the smallest NSC θ, which is a NP-hard computation
[18]. Our aim is that the inequality (5) is transformed into a
pseudo-standard inequality ‖vmax(k)‖1 < ‖v−max(k)‖1 to ex-
plore the distance by expanding the inequality (4). The
whole process is shown in Fig. 2. When v is divided into
vmax(k) and v−max(k), Fig. 2(A) is changed into Fig. 2(B) and
Fig. 2(D). v−max(k) is transformed into v−max(k) by the scale
factor τ, that is, Fig. 2(D) is changed into Fig. 2(C). Fig-
ure 2(E) shows the `1 norms of vmax(k), v−max(k) and v−max(k),
and the red bar depicts the transformed distance.

Correspondingly, we have a new vector

v = vmax(k) + v−max(k), (9)

where v is shown in purple line of Fig. 1. Clearly, v <
ker(A). There has a recovery noise ‖Av‖2 = ‖Av − Av‖2 =

(1 − τ)‖Av−max(k)‖2 ≤ (1 − τ)‖A‖2‖v−max(k)‖2 = (1 −
τ)

√
λmax(AT A)‖v−max(k)‖2. Thus, v belongs to a scale ker-

nel defined as:

ker(A) = {v : ‖Av‖2 < (1 − τ)ρ‖v−max(k)‖2&Av = 0},
(10)



1594
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.12 DECEMBER 2022

where ρ =
√
λmax(AT A).

After the scale transformation in (8), we follow the
Lemma 1 [1], and have that using (2) with B = {0} one
can recover all k-sparse signal x if ∀v ∈ ker(A) \ {0},

‖vmax(k)‖1 < ‖v−max(k)‖1 =
1
τ
‖v−max(k)‖1. (11)

The above inequality (11) shows that the scale factor τ is
successfully joined into the inequality (4).

In the popular proof procedure, therefore, the RIP con-
ditions can be obtained by employing a new assumption
‖vmax(k)‖1 ≥

1
τ
‖v−max(k)‖1 to conduct contradictions for all

v ∈ ker(A) \ {0}. When τ = 1, ker(A) is same to ker(A).
When θ ≤ τ < 1, there exists a recovery error ρ in ker(A).
Although ker(A) has the error ρ, proving the inequality (11)
will lead to more relaxed RIP conditions due to 1

τ
> 1. More

importantly, these conditions will conduct the less num-
ber of measurements in practice when all v−max(k) satisfy
Av−max(k) = 0 or the recovery error (1 − τ)ρ can be toler-
ated. Thus, we will make use of the inequality (11) in the
following subsection.

2.2 New RIP Conditions by RIC and ROC

In this subsection, we study new RIP conditions by RIC and
ROC given in Definition 2. The following theorem shows a
sufficient condition guarantees the stable sparse recovery in
the noisy case through the constrained `1 minimization. We
denote that for 1 ≤ a ≤ k and b ≥ 1,

Ca,b,k,τ = max

 (1 + τ)k − a
√

ab
,

√
(1 + τ)k − a

a

 , (12)

where 0 < θ ≤ τ ≤ 1, and θ is given in (5).
We consider a bounded noise setting: ‖z‖2 < ε, and

a recovery noise setting: ‖Av‖2 < (1 − τ)ρ. The Gaussian
noise, which is significant interest in statistics, can be essen-
tially reduced to the bounded noise case.

Theorem 1. Denote that v−max(k) = τv−max(k) with θ ≤
τ ≤ 1, and ‖Av‖2 < (1−τ)ρ for all v ∈ ker(A)\{0}. Consider
the signal recovery model (1) with ‖z‖2 ≤ ε. Let x̂ be the
minimizer of (2) with B = {z : ‖z‖2 ≤ η} for some η ≥ ε. If
for some positive integers 1 ≤ a ≤ k and b ≥ 1,

δA
a + Ca,b,k,τδ

A
a,b < 1, (13)

with a scale factor θ ≤ τ ≤ 1, then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2
(
1 + δA

a
)

k/a
1 − δA

a −Ca,b,k,τδ
A
a,b

(ε + η + (1 − τ)ρ)

+ 2τχ‖x−max(k)‖1, (14)

where χ =

( √
2kCa,b,k,τδ

A
a,b(

1−δA
a−Ca,b,k,τδ

A
a,b

)
((1+τ)k−a)

+ 1
√

k

)
and ρ is defined in

(10).
Remark 1. Although there is an additional noise (1 −

τ)ρ
√

2(1+δA
a )k/a

1−δA
a −Ca,b,k,τδ

A
a,b

to increase the upper bound of recovery er-

ror, Ca,b,k,τ ≤ Ca,b,k and τ are used to decrease the first
and second terms of the right of the Eq. (14). Compared
to the upper bound of ‖̂β − β‖2 in the Eq. (19) in the lit-
erature [1], thus, it also has some additional gain in the
Eq. (14). Considering a = b = k, Ca,b,k,τ =

√
τ, Ca,b,k = 1

and ρ =
√

1 + δA
a ‖v−max(k)‖2, we get a better recovery error∥∥∥̂x − x

∥∥∥
2 ≤ ‖̂β − β‖2 if it holds the following condition

‖x−max(k)‖1 ≥

√
k
(
1 + δA

k

)
√

2(1 − δA
k −
√
τδA

k,k)
‖x−max(k)‖2. (15)

We now consider another bounded noise setting
‖AT z‖∞ < ε, and the recovery noise setting ‖AT Av‖∞ <
(1 − τ)ρ. This case is inspired by the Dantzig Selector
method [16] for the Gaussian noise case.

Corollary 1. Denote that v−max(k) = τv−max(k) with θ ≤
τ ≤ 1, and ‖AT Av‖∞ < (1 − τ)ρ for all v ∈ ker(A) \ {0}.
Consider the signal recovery model (1) with ‖AT z‖∞ < ε.
Let x̂ be the minimizer of (2) with B = {z : ‖AT z‖∞ ≤ η}
for some η ≥ ε. If the condition (13) holds for some positive
integers 1 ≤ a ≤ k, b ≥ 1, then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2k/a

1 − δA
a −Ca,b,k,τδ

A
a,b

(ε + η + (1 − τ)ρ)

+ 2τχ‖x−max(k)‖1,

where Ca,b,k,τ and χ are defined in (12) and (14), respec-
tively.

Theorem 1 and Corollary 1 show an important rela-
tionship between the stably bounded recovery accuracy and
our proposed scale factor τ defined in (8). Our RIP con-
dition is better than [1]. Specifically, when a = k and
b = k, it comes to δA

k + max{τ,
√
τ}δA

k,k < 1. Due to
θ ≤ τ ≤ 1, it is further rewritten as δA

k +
√
τδA

k,k < 1, that is,
δA

k +δA
k,k < γ = 1+(1−

√
τ)δA

k,k. Given θ = 0.6 and δA
k,k = 0.7,

Fig. 3 plots the changed trend γ with different τ. Moreover,
the more relaxed condition shown in the red line of Fig. 3
can be held when Av = 0 or the errors can be tolerated.

Remark 2. Theorems 2.6 and 2.7 in the literature [1] are
an our special case, that is, the scale factor τ is equivalent
to one. When τ = 1, it shows that there is no change in
scale, that is, v−max(k) = v−max(k). Thus we have the same
RIP condition. In fact, Theorem 1 reveals the condition (13)
can ensure stably recovery of all k-sparse signals in the CS
problem (2).

Remark 3. Following the bounded Gaussian noise
case [1], [37], we can immediately yield the corre-
sponding results. Let z ∼ N(0, σ2In/2) and A =

[ai j]n×p, where ai j
iid
∼ N

(
0, σ2

2(1−τ)2ν2(p−k)

)
and ν =

max
{
m̂ax{v−max(k)} : v ∈ ker(A)

}
, and m̂ax{v−max(k)} de-

notes the largest entry in absolute value of v−max(k). Then
Av ∼ N(0, σ2In/2). Define B`2 = {Av + z : ‖Av + z‖2 ≤

σ

√
n + 2

√
n log n} and BDS = {Av + z : ‖AT (Av + z)‖2 ≤
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Fig. 3 More relaxed RIP condition on δA
k + δA

k,k < γ = 1 + (1 −
√
τ)δA

k,k .
The green curve plots γ as a function of τ with δA

k,k = 0.7 and θ = 0.6 ≤ τ ≤
1. When τ = 0.6, the red line shows our upper boundary γ = 1.157, which
is better than Cai’s result γ = 1 [1] at blue line.

σ
√

2 log n}. Based on the Theorem 1 and Corollary 1, the
constraint minimizer x̂`2 defined in (2) with B`2 satisfies∥∥∥∥̂x`2 − x

∥∥∥∥
2
≤

2
√

2
√(

1 + δA
a
)

k/a
1 − δA

a −Ca,b,k,τδ
A
a,b

σ

√
n + 2

√
n log n

+ 2τχ‖x−max(k)‖1,

with probability at least 1−1/n, and the constraint minimizer
x̂DS defined in (2) with BDS satisfies∥∥∥∥̂xDS

− x
∥∥∥∥

2
≤

2
√

2
1 − δA

a −Ca,b,k,τδ
A
a,b

σ
√

2k log p

+ 2τχ‖x−max(k)‖1,

with probability at least 1 − 1/
√
π log p, where χ is defined

in (14).
Next, we turn to the noiseless case, that is, ‖z‖2 = 0.

Based on Theorem 1, we have the following corollary.
Corollary 2. Denote that v−max(k) = τv−max(k) with θ ≤

τ ≤ 1, and ‖Av−max(k)‖2 < ρ for all v ∈ ker(A)\{0}. Consider
the signal recovery model (1) with ‖z‖2 = 0. Let x̂ be the
minimizer of (2) with C = {z : ‖z‖2 = 0}. If the condition
(13) holds for some positive integers 1 ≤ a ≤ k, b ≥ 1, then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2
(
1 + δA

a
)

k/a
1 − δA

a −Ca,b,k,τδ
A
a,b

(1 − τ)ρ,

where Ca,b,k,τ are defined in (14).
Remark 4. Compared to Theorem 2.1 and 2.5 in litera-

ture [1], Corollary 1 shows that when a = k and b = k, we
can get the (1 −

√
τ)δA

k,k improvement in the noiseless case
because we propose a scale factor to promote the RIP con-
dition. But, it produces a recovery error

∥∥∥Av
∥∥∥

2 ≤ (1 − τ)ρ.
Fortunately, the more relaxed condition will lead to more ex-
tensive applications if the errors can be tolerated. This also
shows the “no free lunch” theorem.

2.3 New RIP Conditions by Higher-Order RIC

In this subsection, we establish new RIP conditions on the
high-order RIC [38] for sparse signal recovery by using the

Polytope technique†, since it represents a non-sparse vector
by the sparse ones, which provides a bridge between general
vectors and the RIP conditions [2].

Similar to Theorem 1 and Corollary 1, we consider two
bounded noise setting: ‖z‖2 < ε with ‖Av‖2 < (1 − τ)ρ, and
‖AT z‖∞ < ε with ‖AT Av‖∞ < (1 − τ)ρ, respectively.

Theorem 2. Denote that v−max(k) = τv−max(k) with θ ≤
τ ≤ 1, and ‖Av‖2 < (1−τ)ρ for all v ∈ ker(A)\{0}. Consider
the signal recovery model (1) with ‖z‖2 ≤ ε. Let x̂ be the
minimizer of (2) with B = {z : ‖z‖2 ≤ η} for some η ≥ ε. If

δA
tk <

(
1 +

1 − τ2

τ2 − 1 + 2t

) √
t − 1

t
, (16)

for some t ≥ 4
3 , then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2t(t − 1)(1 + δA

tk)

Ω
(ε + η + (1 − τ)ρ)

+
2‖x−max(k)‖1
√

k


√

2τ2δA
tk + τ

√
ΩδA

tk

Ω
+ 1

 , (17)

where Ω =
√

t(t − 1) − (t + (τ2 − 1)/2)δA
tk.

Remark 5. Similar to the Remark 1, it still has some
additional gain in the Eq. (17) compared to the upper bound
of ‖̂β− β‖2 in the Eq. (10) in the literature [2] as Ω and τ are
used to decrease the second terms of the right of the Eq. (17).
If we have the condition

‖x−max(k)‖1 ≥

√
kt(t − 1)(1 + δA

tk)

2(1 + τ)δA
tk +

√
2ΩδA

tk

‖x−max(k)‖2, (18)

then it get a better recovery error
∥∥∥̂x − x

∥∥∥
2 ≤ ‖̂β − β‖2.

Corollary 3. Denote that v−max(k) = τv−max(k) with θ ≤
τ ≤ 1, and ‖Av‖∞ < (1−τ)ρ for all v ∈ ker(A)\{0}. Consider
the signal recovery model (1) with ‖Az‖∞ < ε. Let x̂ be the
minimizer of (2) with B = {z : ‖Az‖∞ < ε} for some η ≥ ε.
If the condition (16) holds for some t ≥ 4

3 , then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2t2(t − 1)k

Ω
(ε + η + (1 − τ)ρ)

+
2‖x−max(k)‖1
√

k


√

2τ2δA
tk + τ

√
ΩδA

tk

Ω
+ 1

 ,
where Ω is defined in (17).

Theorem 2 and Corollary 3 also show that the con-
dition (16) is sufficient for the exactly and bounded re-
covery of sparse signals via the constrained `1 minimiza-
tion by employing the higher-order RIC. Figure 4 plots the
changed trend of δA

tk with different τ and t. We observe
that the red surface is higher than the green surface. This

†It shows an elementary geometric fact: any point in a polytope
can be represented as a convex combination of sparse vectors [2].
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Fig. 4 More relaxed RIP condition on δA
tk <

(
1 + (1 − τ2)/(τ2 − 1 + 2t)

)
√

(t − 1)/t. The red surface plots δA
tk as a function of τ and t with 0.6 ≤ τ ≤ 1

and t ≥ 4/3. This shows our upper boundary is better than the bule surface
δA

tk <
√

(t − 1)/t [2].

shows our condition (16) is better than the previous condi-
tion δA

tk <
√

(t − 1)/t [2].
Remark 6. Theorem 2 and Corollary 3 also confirm

the result of Theorem 2.2 [2], which shows that for some
t ≥ 4/3 and any ε, the condition δA

tk <
√

(t − 1)/t +

ε is not sufficient to ensure exactly recovery of all k-
sparse signals in the noiseless and noisy cases. Let ε =(
(1 − τ2)/(τ2 − 1 + 2t)

) √
(t − 1)/t. Clearly, ε is zero at τ =

1, that is, there is no any improvement. In particular, we ob-
serve that when t = 2 and τ = 1, δA

2k < ρ = 1/
√

2 = 0.7071
is drawn in the dotted blue line in Fig. 4. Clearly, it is same
to δA

2k < 1/
√

2 = 0.7071 [2]. When θ ≤ τ < 1, ε > 0,
that means, we have a new upper bound of the RIP con-
dition. This seems it contradicts to the Theorem 2.2 [2].
However, our more relaxed condition produce a recovery
error

∥∥∥Av
∥∥∥

2 ≤ (1 − τ)ρ. Fortunately, the results will lead to
the less number of measurements in many extensive appli-
cations when Av = 0 or we can tolerate the errors.

Remark 7. Following the settings of Remark 3, we also
consider the bounded Gaussian noise case [2], [37]. Ac-
cording to the Theorem 2 and Corollary 3, the constraint
minimizer x̂`2 defined in (2) with B`2 satisfies

∥∥∥∥̂x`2 − x
∥∥∥∥

2
≤

2
√

2t(t − 1)(1 + δA
tk)

Ω
σ

√
n + 2

√
n log n

+
2‖x−max(k)‖1
√

k


√

2τ2δA
tk + τ

√
ΩδA

tk

Ω
+ 1

 ,
with probability at least 1−1/n, and the constraint minimizer
x̂DS defined in (2) with BDS satisfies∥∥∥∥̂xDS

− x
∥∥∥∥

2
≤

4
√

2t2(t − 1)
Ω

σ
√

k log p

+
2‖x−max(k)‖1
√

k


√

2τ2δA
tk + τ

√
ΩδA

tk

Ω
+ 1

 ,

with probability at least 1 − 1/
√
π log p, where Ω is defined

in (17).
Next, we turn to the noiseless case, that is, ‖z‖2 = 0.

Based on Theorem 2, we have the following corollary.
Corollary 4. Denote that v−max(k) = τv−max(k) with θ ≤

τ ≤ 1, and ‖Av−max(k)‖2 < ρ for all v ∈ ker(A)\{0}. Consider
the signal recovery model (1) with ‖z‖2 = 0. Let x̂ be the
minimizer of (2) with C = {z : ‖z‖2 = 0}. If the condition
(16) holds for some t ≥ 4

3 , then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2t(t − 1)(1 + δA

tk)

Ω
(1 − τ)ρ,

where Ω is defined in (17).

2.4 An Expansion of Sparsity Order by (5)

Since sparsity order k is crucial to choose the appropriate
number of measurements [39], we will explore the distance
(1 − θ)‖v−max(k)‖1 to expand the sparsity order k in this sub-
section. We denote a middle vector to increase k as

v(m) = v−max(k) − v−max(k+m). (19)

Now, the relationship between m and θ is given in the fol-
lowing lemma.

Lemma 1. If the following inequity is satisfied

‖v(m)‖1 ≤
1 − θ
1 + θ

‖v−max(k+m)‖1, (20)

where θ is given in (5), then a new NSP property
‖vmax(k+m)‖1 < ‖v−max(k+m)‖1 holds.

Based on the Lemma 1 and the RIP conditions [1], [2],
we have two corollaries to expand the sparsity order from k
to k + m.

Corollary 5. Consider the signal recovery model (1)
with ‖z‖2 ≤ ε or ‖Az‖∞ < ε. Let x̂ be the minimizer of (2)
with B = {z : ‖z‖2 ≤ η} or B = {z : ‖Az‖∞ < ε} for some
η ≥ ε. If there exists m such that the condition (20) and
δA

a +Ca,b,k+mδ
A
a,b < 1 for some positive integers 1 ≤ a ≤ k+m

and b ≥ 1, then∥∥∥̂x − x
∥∥∥

2 ≤
Γ(ε + η)

1 − δA
a −Ca,b,k+mδ

A
a,b

+ 2χ‖x−max(k+m)‖1,

where Γ =
√

2
(
1 + δA

a
)

(k + m)/a or
√

2(k + m), χ =
√

2(k+m)Ca,b,k+mδ
A
a,b(

1−δA
a−Ca,b,k+mδ

A
a,b

)
(k+m−a)

+ 1
√

k+m
and Ca,b,k+m = max

{
k+m−a
√

ab
,√

k+m−a
a

}
.

Corollary 6. Consider the signal recovery model (1)
with ‖z‖2 ≤ ε or ‖Az‖∞ < ε. Let x̂ be the minimizer of (2)
with B = {z : ‖z‖2 ≤ η} or B = {z : ‖Az‖∞ < ε} for some
η ≥ ε. If there exists m such that the condition (20) and

δA
t(k+m) <

√
t−1

t for some t ≥ 4
3 , then

∥∥∥̂x − x
∥∥∥

2 ≤

√
2t(t − 1)Θ

Ω
(ε + η)
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+
2‖x−max(k+m)‖1
√

k + m


√

2δA
t(k+m) +

√
ΩδA

t(k+m)

Ω
+ 1

 ,
where Θ = (1 + δA

t(k+m)) or t(k + m), and Ω =
√

t(t − 1) −
tδA

t(k+m).
The proofs of Corollaries 5 and 6 are similar to [1],

[2] by using k + m instead of k. They show the important
relationships between the bounded recovery accuracy and
the expanded sparsity order m, which satisfies the Eq. (19).
Our RIP conditions have higher sparsity order than [1], [2].
Specifically, when a = k and b = k, they come to δA

k+m +

δA
k+m,k+m < 1 in the Corollary 5 and δA

t(k+m) <
√

(t − 1)/t for
some t ≥ 4/3 in the Corollary 6.

3. Application

In this section, we will show the number of measurements
n is changed with the scale factor τ under i.i.d. Gaussian or
Bernoulli random matrices to verify our more relaxed RIP
condition for efficiently sparse recovery.

Take for example i.i.d. Gaussian or Bernoulli random
matrices. Theorem 5.2 in [40] shows that if a random sens-
ing matrix satisfies A = [ai j]n×p, where

ai j
iid
∼N

(
0,

1
n

)
,

ai j
iid
∼

 1
√

n , with probability 1
2

− 1
√

n , with probability 1
2

,

ai j
iid
∼


√

3
n , with probability 1

6

0, with probability 2
3

−

√
3
n , with probability 1

6

,

then for any positive integer s < n and 0 < α < 1, the RIC
δA

s of the matrix A satisfies

P
(
δA

s < α
)
≥

1 − 2
(

12ep
sα

)s

exp
(
−n

(
α2

16
−
α3

48

))
. (21)

Our conditions (13) and (16) with θ ≤ τ ≤ 1 are suf-
ficient for the recovery of sparse signals in Theorems 1, 2,
Corollaries 1 and 2 when the error Υ = ε + η + (1 − τ)ρ can
be tolerated.

Suppose θ = 0.5 and for some given 0 < ε < 1 one
wishes the sensing matrix A to satisfy the RIP condition (13)
with probability at least 1 − ε. When a = k and b = k,
it comes to δA

k +
√
τδA

k,k < 1, which is easily implied by
δA

k +
√
τδA

2k < 1. Based on the Eq. (21) and the conditions
δA

k < 1 − 0.7
√
τ and δA

2k < 0.7 in Theorem 1, we have

P
(
δA

k < 1 − 0.7
√
τ
)
≥ 1 − 2 exp

(
k
(
log

(
12e/(1 − 0.7

√
τ)

)
+ log (p/k)

)
− n

(
(1 − 0.7

√
τ)2/16 − (1 − 0.7

√
τ)3/48

))
,

Fig. 5 Plot of n(τ) as a function of τ.

and

P
(
δA

2k < 0.7
)
≥ 1 − 2 exp

(
2k

(
log (60e/7) + log (p/k)

)
−n (49/1600 − 343/48000)) .

Note that for given k and p, n ≥ n1 with

n1(τ) =
1(

(1 − 0.7
√
τ)2/16 − (1 − 0.7

√
τ)3/48

)[
k(log(k/p) + log(12/(1 − 0.7

√
τ)) + 1) − log(ε/4)

]
,

guarantees δA
k < 1− 0.7

√
τ with probability at least 1− ε/2,

and n ≥ n2 with

n2 = 85.2
[
k(log(k/p) + 3.15) − log(ε/4)/2

]
,

ensures δA
2k < 0.7 with probability at least 1 − ε/2. Figure 5

plots the function n(τ). Thus, δA
k +
√
τδA

k,k < 1 satisfies with
probability at least 1 − ε/2 if the number of measurements
n satisfies n ≥ max{n1(τ), n2} with 0.6 < τ ≤ 1. Therefore,
for large k, p and 0.6 < c ≤ 1, the required number of
measurements n holds

n ≥ max
{(

(1 − 0.7
√
τ)2/16 − (1 − 0.7

√
τ)3/48

)
, 85.2

}
,

to ensure δA
k +

√
τδA

k,k < 1. When τ is set to 0.6, n ≥
max{90.1, 85.2} = 90.1. Therefore, compared to 115.4
[1], the required number of measurements to ensure δA

k +
√
τδA

k,k < 1 is less than 78.1% (90.1/115.4).
Based on Corollary 2, since τ = 0.6,

√
2(1 − τ) ≈

0.5657 and
√
τ ≈ 0.7746 and ρ =

√
1 + δA

k ‖α−max(k)‖2, there
has an upper bound for the error of recovery, where

∥∥∥̂x − x
∥∥∥

2 ≤
0.5657

(
1 + δA

k

)
1 − δA

k − 0.7746δA
k,k

‖α−max(k)‖2. (22)

Based on the Eq. (21) and the condition (16) in Theo-
rem 2, we have for t ≥ 4/3,

P

δA
tk <

(
1 +

1 − τ2

τ2 − 1 + 2t

) √
t − 1

t

 ≥
1 − 2 exp

(
tk

(
log

(
6e(τ2 − 1 + 2t)

t
√

t(t − 1)

)
+ log

( p
k

))
−n

(
t(t − 1)

4(τ2 − 1 + 2t)2 −
(t(t − 1))3/2

6(τ2 − 1 + 2t)3

))
.
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Fig. 6 Plot of n(τ, t) as a function of τ and t.

It is easy to see when p, k, and p/k → ∞, the lower

bound of n to ensure δA
tk <

(
1 + 1−τ2

τ2−1+2t

) √
t−1

t to hold with
high probability is n ≥ k log(p/k)n(t, τ), where

n(t, τ) , t/
(

t(t − 1)
4(τ2 − 1 + 2t)2 −

(t(t − 1))3/2

6(τ2 − 1 + 2t)3

)
.

Figure 6 plots the function n(τ, t). When t = 1.58 and
τ = 0.6, n(τ, t) has minimum 58.7, which is less than 70.5%
(58.7/83.2) [2].

Based on Corollary 4, we set τ = 0.6, t = 1.58,
√

t(t − 1) ≈ 0.9573,
√

t(t − 1) ≈ 0.9573, (1− τ)
√

2t(t − 1) ≈
0.5415 and (t + (τ2 − 1)/2) ≈ 0.4700, it has an upper bound
for the error of recovery, where

∥∥∥̂x − x
∥∥∥

2 ≤

0.5415
√

(1 + δA
1.58k)(1 + δA

k )

0.9573 − 0.4700δA
1.58k

‖α−max(k)‖2.

(23)

In addition, our results can also be used for certain the-
oretical analysis in signal processing. Similar to [1], [11],
we consider a finite window of a band-limited signal h(t) as

h(t) = Φ(α) =

p∑
j=1

α jφ j(t)

where φ j(t) = ei2π jt ( j is the imaginary unit) are the Fourier
basis functions, and α = [α1, · · · , αp] is k sparse. Assume
that the measurements y1, · · · , yn can be represented by

yi = 〈ϕi(t), h(t)〉 =

p∑
l=1

αl〈ϕi(t), φl(t)〉 ,
p∑

l=1

rilαl.

Then it can be written as y = Rα. As discussed above, when
R = [ril] with ril i.i.d. Gaussian or Bernoulli, as discussed
above, the measurement matrix satisfies the RIP condition
of order k or 2k with high probability provided that n &
κ0k log(p/k), where κ0 ≥ 90.1 or 58.7. Although there is a
lower number of the measurements, it also has upper bounds
for the error of recovery, which are similar to the Eqs. (22)

and (23).

4. Conclusion

In this paper, we proposed a factor τ to scale down v−max(k)
into v−max(k). By using this scale factor to transform the dis-
tance between ‖vmax(k)‖1 and ‖v−max(k)‖ into the scale NSP,
we established two more relaxed RIP conditions to guaran-
tee the bounded approximation recovery of all k-sparse sig-
nals in the noiseless and noisy cases. In fact, although the
scale factor τ created an error (1 − τ)ρ, we obtained an im-
provement to breakthrough the upper bound of the previous
RIP conditions. Our theoretical results led to more exten-
sive applications when the error is tolerated. In addition,
we also explored the distance to expand the sparsity order k.
An application verified our proposed RIP conditions needed
a smaller number of measurements.

5. Proofs

Following the popular proof procedure [1], [2], we prove
new RIP conditions by extending the NSP to the scale NSP.

5.1 Proof of Proposition 1

The proof of Proposition 1 is basically the same to Theo-
rem 2.1 [1] and Theorem 1.1 [2]. In particular, we only
need to use the inequality ‖vmax(k)‖1 ≤ θ‖v−max(k)‖1 instead
of ‖vmax(k)‖1 ≤ ‖v−max(k)‖1 in the Theorem 2.1 [1] and the
Theorem 1.1 [2].

5.2 Proof of Theorem 1

We set v = x̂ − x. We usually use the contradiction method
to prove the following well-known inequality [1]: for all
v ∈ ker(A) \ {0},

‖v−max(k)‖1 ≤ ‖vmax(k)‖1 + 2‖x−max(k)‖1. (24)

We introduce the scale factor τ to describe v−max(k) =

τv−max(k) with θ ≤ τ ≤ 1 in (8), and denote v = vmax(k) +

v−max(k). In fact vmax(k) = vmax(k). To replace v−max(k) by
v−max(k), the inequality (24) is be equivalent to the following
inequality, for all v ∈ ker(A) \ {0},

‖v−max(k)‖1 ≤ τ‖vmax(k)‖1 + 2τ‖x−max(k)‖1. (25)

Following the proof of Theorem 2.2 [1], thus, we only
need to prove (25). By the boundedness of z and the defini-
tion of the feasible set for x̂, it has

‖Av‖2 =‖A
(
vmax(k) + τv−max(k)

)
‖2

=‖A
(
vmax(k) + v−max(k) − v−max(k) + τv−max(k)

)
‖2

=‖A
(
v − (1 − τ)v−max(k)

)
‖2

≤‖Av − (1 − τ)Av−max(k)‖2

≤‖Ax − y‖2 + ‖Ax̂ − y‖2 + (1 − τ)‖Av−max(k)‖2

≤ε + η + (1 − τ)ρ. (26)
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On the other hand, let v =
∑p

i=1 diui, where {di}
p
i=1 is a

non-negative and non-increasing sequence and {ui}
p
i=1 are

indicator vectors with different supports in Rp. Clearly,
vmax(k) =

∑k
i=1 diui and v−max(k) =

∑p
i=k+1 diui. According to

v−max(k) = τv−max(k) in (8), we have v = vmax(k) + v−max(k) =∑p
i=k+1 diui +

∑p
i=k+1 diui, where di = τdi. Then we obtain

p∑
i=k+1

di ≤ τ

k∑
i=1

di + 2τ‖x−max(k)‖1. (27)

Hence, when 1 ≤ a ≤ k, we have vmax(a) = vmax(a),

‖v−max(a)‖∞

=da+1 ≤

∑a
i=1 di

a
=
‖vmax(a)‖1

a

≤
‖vmax(a)‖1

a
+

2τ‖x−max(k)‖1

(1 + τ)k − a
, (28)

and

‖v−max(a)‖1

=

k∑
i=a+1

di +

p∑
i=k+1

di

≤
k − a

k

a∑
i=1

di + τ

k∑
i=1

di + 2τ‖x−max(k)‖1

≤
k − a

a

a∑
i=1

di + τ
k
a

a∑
i=1

di + 2τ‖x−max(k)‖1

=
(1 + τ)k − a

a
‖vmax(a)‖1 + 2τ‖x−max(k)‖1. (29)

Then we set λ =
‖vmax(a)‖1

a +
2τ‖x−max(k)‖1

(1+τ)k−a , k1 = a and k2 =

(1 + τ)k − a. By the Lemma 5.1 in [1], it follows that∣∣∣〈A (
vmax(a)

)
,A

(
v−max(a)

)〉∣∣∣
≤δA

a,(1+τ)k−a

√
(1 + τ)k − a

∥∥∥vmax(a)
∥∥∥

2

×

(
‖vmax(a)‖1

a
+

2τ‖x−max(k)‖1

(1 + τ)k − a

)
. (30)

Because
∥∥∥A

(
v
)∥∥∥

2 < ε + η + (1 − τ)ρ when considering
the noise, we have∣∣∣〈A (

v
)
,A

(
vmax(a)

)〉∣∣∣
≤

∥∥∥A
(
v
)∥∥∥

2

∥∥∥A
(
vmax(a)

)∥∥∥
2

≤(ε + η + (1 − τ)ρ)
√

1 + δA
a

∥∥∥vmax(a)
∥∥∥

2 . (31)

On the other hand, we have

(ε + η + (1 − τ)ρ)
√

1 + δA
a

∥∥∥vmax(a)
∥∥∥

2

≥
∣∣∣〈A (

v
)
,A

(
vmax(a)

)〉∣∣∣
≥

∣∣∣〈A (
vmax(a)

)
,A

(
vmax(a)

)〉∣∣∣−

∣∣∣〈A (
v−max(a)

)
,A

(
vmax(a)

)〉∣∣∣
≥

∥∥∥A
(
vmax(a)

)∥∥∥2
2 −

∣∣∣〈A (
v−max(a)

)
,A

(
vmax(a)

)〉∣∣∣
≥

(
1 − δA

a

) ∥∥∥vmax(a)
∥∥∥2

2 −

δA
a,(1+τ)k−a

√
(1 + τ)k − a

∥∥∥vmax(a)
∥∥∥

2 ×(
‖vmax(a)‖1

a
+

2τ‖x−max(k)‖1

(1 + τ)k − a

)
≥

1 − δA
a − δ

A
a,(1+τ)k−a

√
(1 + τ)k − a

a

 ∥∥∥vmax(a)
∥∥∥2

2

− δA
a,(1+τ)k−a

∥∥∥vmax(a)
∥∥∥

2

2τ‖x−max(k)‖1
√

(1 + τ)k − a
. (32)

Hence,∥∥∥vmax(a)
∥∥∥

2

≤
(ε + η + (1 − τ)ρ)

√
1 + δA

a

1 − δA
a − δ

A
a,(1+τ)k−a

√
(1+τ)k−a

a

+

δA
a,(1+τ)k−a

1 − δA
a − δ

A
a,(1+τ)k−a

√
(1+τ)k−a

a

2τ‖x−max(k)‖1
√

(1 + τ)k − a
. (33)

It follows from the Lemma 5.4 in [1] that

δA
a,(1+τ)k−a ≤

√
(1 + τ)k − a

min{b, (1 + τ)k − a}
δA

a,min{b,(1+τ)k−a}

≤max


√

(1 + τ)k − a
b

, 1

 δA
a,b

=

√
a

(1 + τ)k − a
Ca,b,k,τδ

A
a,b. (34)

Then∥∥∥vmax(a)
∥∥∥

2 ≤
(ε + η + (1 − τ)ρ)

√
1 + δA

a

1 − δA
a −Ca,b,k,τδ

A
a,b

+
δA

a,(1+τ)k−a

1 − δA
a −Ca,b,k,τδ

A
a,b

2τ‖x−max(k)‖1
√

(1 + τ)k − a

≤
Y

1 − δA
a −Ca,b,k,τδ

A
a,b

, (35)

where Y = (ε + η + (1 − τ)ρ)
√

1 + δA
a +

2τδA
a,(1+τ)k−a‖x−max(k)‖1
√

(1+τ)k−a
.

Since 0 < θ ≤ τ ≤ 1, 1 ≤ a ≤ k, ‖x−max(k)‖1 > 0,
ρ > 0, ε > 0, η > 0, δA

a ≥ 0 and δA
a,(1+τ)k−a ≥ 0, it has

Y > 0. If it holds the condition δA
a + Ca,b,k,τδ

A
a,b < 1, then

the inequality (35) implies
∥∥∥vmax(a)

∥∥∥
2 < 0, which contradicts

a basic fact that
∥∥∥vmax(a)

∥∥∥
2 ≥ 0. Clearly, the inequality (35)

contradicts the condition that δA
a +Ca,b,k,τδ

A
a,b < 1. Therefore,

we obtain this more relaxed RIP condition. Next, we prove
the approximation errors.

By applying the Lemma 5.3 [22] with α = 2 and λ =

2‖x−max(k)‖1, we obtain
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‖v‖2 =

√√√ k∑
i=1

d2
i +

p∑
i=k+1

d2
i

≤

√√√√√√ k∑
i=1

d2
i + k


√∑k

i=1 d2
i

k
+

2τ‖x−max(k)‖1

k


2

≤

√√√√√√√ k∑
i=1

d2
i +


√√√ k∑

i=1

d2
i +

2τ‖x−max(k)‖1
√

k


2

≤

√√√
2

k∑
i=1

d2
i +

2τ‖x−max(k)‖1
√

k

≤

√
2k
a

√√ a∑
i=1

d2
i +

2τ‖x−max(k)‖1
√

k

≤
(ε + η + (1 − τ)ρ)

√
2(1+δA

a )k
a

1 − δA
a −Ca,b,k,τδ

A
a,b

+

2c


√

2k
a δ

A
a,(1+τ)k−a

1 − δA
a −Ca,b,k,τδ

A
a,b

1
√

(1 + τ)k − a
+

1
√

k


‖x−max(k)‖1. (36)

Finally, it holds (14). The proof of Theorem 1 is complete.
�

5.3 Proof of Corollary 1

The proof of Corollary 1 is basically the same to Theorem
1. Particularly, we only need to use the inequalities

‖AT Av‖∞ ≤‖AT (Av + (1 − τ)Av−max(k))‖∞
≤‖AT (Ax − y)‖∞ + ‖AT (Ax̂ − y)‖∞

+ (1 − τ)‖AT Av−max(k)‖∞

≤ε + η + (1 − τ)ρ, (37)

and ∣∣∣〈A (
v
)
,A

(
vmax(a)

)〉∣∣∣
≤

∥∥∥vT
max(a)A

T A
(
v
)∥∥∥
∞

≤(ε + η + (1 − τ)ρ)
√

a
∥∥∥vmax(a)

∥∥∥
2 (38)

instead of (26) and (31).

5.4 Proof of Corollary 2

The proof of Corollary 2 is almost the same to Theo-
rem 1. Particularly, we only need to use the inequalities
‖v−max(k)‖1 ≤ τ‖vmax(k)‖1 instead of (25).

5.5 Proof of Theorem 2

Based on the proof procedure of the Theorem 1, we also

use the contradiction method to prove the inequality (25),
that is, ‖v−max(k)‖1 ≤ τ‖vmax(k)‖1 + 2τ‖x−max(k)‖1, for all v ∈
ker(A) \ {0}.

Similar to the proof method [2], we suppose tk is an
integer and set v = x̂ − x. By the boundedness of z, it also
has (26), that is, ‖Av‖2 ≤ ε + η + (1 − τ)ρ.

We set α =
‖vmax(k)‖1+2‖x−max(k)‖1

k , and divide v−max(k) into
two parts, v−max(k) = v(1)

+ v(2), where

v(1)
= v−max(k) · 1{i||v−max(k)(i)|> τα

t−1 }
, (39)

v(2)
= v−max(k) · 1{i||v−max(k)(i)|≤ τα

t−1 }
. (40)

Denote |supp(v(1))| = ‖v(1)
‖0 = m. Since ‖v−max(k)‖1 ≤

ταk and |v(1)(i)| ≥ τα
t−1 for any v(1)(i) , 0, we obtain

ταk ≥ ‖v(1)
‖1 =

∑
i∈supp(v(1))

|v(1)(i)|

≥
∑

i∈supp(v(1))

τα

t − 1
=

mτα
t − 1

. (41)

Then m ≤ k(t − 1). On the other hand, we have

‖v(2)
‖1 = ‖v−max(k)‖1 − ‖v(1)

‖1

≤ (k(t − 1) − m)
τα

t − 1
, (42)

‖v(2)
‖∞ ≤

τα

t − 1
. (43)

Besides, ‖vmax(k) + v(1)
‖0 = k + m ≤ tk, it has∣∣∣∣〈A

(
vmax(k) + v(1)

)
,Av

〉∣∣∣∣
≤

∥∥∥∥A
(
vmax(k) + v(1)

)∥∥∥∥
2

∥∥∥Av
∥∥∥

2

≤

√
1 + δA

k (ε + η + (1 − τ)ρ)
∥∥∥vmax(k) + v(1)

∥∥∥
2 . (44)

By applying the Lemma 1.1 [2] with s = k(t − 1) − m,
v(2) can be expressed as a convex combination of sparse vec-
tors v(2)

=
∑N

i=1 λiui, where s-sparse ui satisfies supp(ui) ⊆
supp

(
v(2)

)
, ‖ui‖1 = ‖v(2)

‖1, ‖ui‖∞ ≤
τα
t−1 . Set x = ‖vmax(k) +

v(1)
‖2 and P =

2‖x−max(k)‖1
√

k
. Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t − 1) − m

τα

t − 1
≤

√
k

t − 1
τα

≤ τ


∥∥∥vmax(k)

∥∥∥
2

√
t − 1

+
2‖x−max(k)‖1
√

k(t − 1)


≤ τ


∥∥∥vmax(k) + v(1)

∥∥∥
2

√
t − 1

+
2‖x−max(k)‖1
√

k(t − 1)


=
τ(x + P)
√

t − 1
. (45)

For some 1 ≥ µ ≥ 0, c ≥ 0, 1 ≥ τ ≥ θ, we denote that
βi = vmax(k) + v(1)

+ µui, and have
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N∑
j=1

λ jβ j − cβi = vmax(k) + v(1)
+ µv(2)

− cβi

= (1 − µ − c)
(
vmax(k) + v(1)

)
− cµui + µv. (46)

Then
∑N

j=1 λ jβ j − cβi − µv are are tk-sparse vectors as
vmax(k), v(1),ui are k,m, (k(t−1)−m)-sparse respectively. We
check the `2 identity [2] as follows:

N∑
i=1

λi

∥∥∥∥∥∥∥∥A

 N∑
j=1

λ jβ j − cβi


∥∥∥∥∥∥∥∥

2

2

+

(1 − 2c)
∑

1≤i, j≤N

λiλ j‖A(βi − β j)‖22

=

N∑
i=1

λi(1 − c)2‖Aβi‖
2
2. (47)

We set c = 1
2 and compute the left hand side of (47) as

follow:

N∑
i=1

λi

∥∥∥∥∥∥∥∥A

 N∑
j=1

λ jβ j − cβi


∥∥∥∥∥∥∥∥

2

2

=

N∑
i=1

λi

∥∥∥∥∥∥A
(
(
1
2
− µ)

(
vmax(k) + v(1)

)
−
µ

2
ui

)∥∥∥∥∥∥2

2
+

µ(1 − µ)
〈
A

(
vmax(k) + v(1)

)
,Av

〉
(48)

It also has that βi, ( 1
2 − µ)

(
vmax(k) + v(1)

)
−

µ
2 ui are tk-

sparse vectors because vmax(k), v(1),ui are k,m, (k(t−1)−m)-
sparse vectors, respectively. By substituting (44), (45), and
(48) into (47), we set Υ = ε + η + (1 − τ)ρ, µ =

√
t(t − 1) −

(t − 1), and have

0 =

N∑
i=1

λi

∥∥∥∥∥∥A
(
(
1
2
− µ)

(
vmax(k) + v(1)

)
−
µ

2
ui

)∥∥∥∥∥∥2

2
+

µ(1 − µ)
〈
A

(
vmax(k) + v(1)

)
,Av

〉
−

N∑
i=1

λi(1 − p)2
∥∥∥∥A

(
vmax(k) + v(1)

+ µui

)∥∥∥∥2

2

≤
(
1 + δA

tk

)
·

N∑
i=1

λi

(
(
1
2
− µ)‖vmax(k) + v(1)

‖22 +
µ2

4
‖ui‖

2
2

)
+ µ(1 − µ)

√
1 + δA

tkΥ
∥∥∥vmax(k) + v(1)

∥∥∥
2

−
(
1 − δA

tk

)
·

N∑
i=1

λi

4

(
‖vmax(k) + v(1)

‖22 + µ2‖ui‖
2
2

)
=

N∑
i=1

λi

[((
1 + δA

tk

)
(
1
2
− µ) −

(
1 + δA

tk

) 1
4

)
∥∥∥vmax(k) + v(1)

∥∥∥2

2 +
1
2
δA

tkµ
2‖ui‖

2
2

]
+ µ(1 − µ)

√
1 + δA

tkΥ
∥∥∥vmax(k) + v(1)

∥∥∥
2

≤

[
(µ2 − µ) + δA

tk

(
1
2
− µ + µ2 +

τ2

2(t − 1)
µ2

)]
x2

+

µ(1 − µ)
√

1 + δA
tkΥ +

δA
tkµ

2τ2P
t − 1

 x +
δA

tkµ
2τ2P2

2(t − 1)

= − t
(
(2t − 1) − 2

√
t(t − 1)

) √ t − 1
t
− δA

tk
2t + τ2 − 1

2t

 x2

+

µ2

√
t

t − 1

√
1 + δA

tkΥ +
δA

tkµ
2τ2P

t − 1

 x +
δA

tkµ
2τ2P2

2(t − 1)

=
µ2

t − 1

−t

√ t − 1
t
− δA

tk
2t + τ2 − 1

2t

 x2+

(√
t(t − 1)(1 + δA

tk)Υ + δA
tkτ

2P
)

x +
δA

tkτ
2P2

2


Clearly, it is an second-order inequality for x. By solving

above inequality we denote Ω = t
(√

t−1
t − δ

A
tk

2t+τ2−1
2t

)
, and

have

x ≤
1

2Ω

{(√
t(t − 1)(1 + δA

tk)Υ + δA
tkτ

2P
)
+[(√

t(t − 1)(1 + δA
tk)Υ + δA

tkτ
2P

)2
+ 2ΩδA

tkτ
2P2

]1/2
≤

√
t(t − 1)(1 + δA

tk)

Ω
Υ +

2τ2δA
tk + τ

√
2ΩδA

tk

2Ω
P

This contradicts the following fact that

δA
tk ≤

(
1 +

1 − τ2

τ2 − 1 + 2t

) √
t − 1

t
,

‖ui‖2 ≤

√
k

t − 1
α ≤
‖vmax(k)‖2
√

t − 1

≤
‖vmax(k) + v(1)

‖2
√

t − 1
.

Finally, based on ‖v−max(k)‖1 ≤ ‖vmax(k)‖1 + P
√

k, we
have ‖v−max(k)‖2 ≤ ‖vmax(k)‖2 + P. Following the (36), we get

‖v‖2 =

√
‖vmax(k)‖

2
2 + ‖v−max(k)‖

2
2

≤

√
‖vmax(k)‖

2
2 +

(
‖vmax(k)‖2 + P

)2

≤

√
2‖vmax(k)‖

2
2 + P ≤

√
2x + P

≤

√
2t(t − 1)(1 + δA

tk)

Ω
Υ +

2‖x−max(k)‖1
√

k
√

2τ2δA
tk + τ

√
ΩδA

tk + Ω

Ω


When tk is not an integer, note t′ = dtke/k, then t′ > t,

t′k is an integer. It can be deduced to the same result.
The proof of Theorem 2 is complete. �
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5.6 Proof of Corollary 3

The proof of Corollary 3 is basically the same to Theorem 2.
Particularly, we only need to use the inequalities (37), that
is, ‖AT Av‖∞ ≤ ε + η + (1 − τ)ρ, and∣∣∣∣〈A

(
vmax(k) + v(1)

)
,Av

〉∣∣∣∣
≤

∣∣∣∣〈vmax(k) + v(1),AT Av
〉∣∣∣∣

≤
∥∥∥vmax(k) + v(1)

∥∥∥
1 (ε + η + (1 − τ)ρ)

≤
√

tkΥ
∥∥∥vmax(k) + v(1)

∥∥∥
2 .

instead of ‖Av‖2 ≤ ε + η + (1 − τ)ρ and (31).

5.7 Proof of Corollary 4

The proof of Corollary 4 is almost the same to Theorem 2. In
particular, we only need to use the inequalities ‖v−max(k)‖1 ≤

τ‖vmax(k)‖1 +2τ‖x−max(k)‖1 and α =
‖vmax(k)‖1+2‖x−max(k)‖1

k instead
of ‖v−max(k)‖1 ≤ τ‖vmax(k)‖1 and α =

‖vmax(k)‖1

k .

5.8 Proof of Lemma 1

If ‖v(m)‖1 ≤
1−θ
1+θ
‖v−max(k+m)‖1, then it holds that

‖v(m)‖1 ≤
1 − θ
1 + θ

‖v−max(k+m)‖1

⇒2‖v(m)‖1 − (1 − θ)‖v(m)‖1 ≤ (1 − θ)‖v−max(k+m)‖1

⇒2‖v(m)‖1 ≤ (1 − θ)
(
‖v(m)‖1 + ‖v−max(k+m)‖1

)
⇒‖v(m)‖1 ≤ (1 − θ)‖v−max(k)‖1/2 (49)

There is a fact that

‖vmax(k)‖1 < θ‖v−max(k)‖1 ≤ ‖v−max(k)‖1

⇒‖vmax(k)‖1 + (1 − θ)‖v−max(k)‖1/2
< ‖v−max(k)‖1 − (1 − θ)‖v−max(k)‖1/2

By using (49)
⇒‖vmax(k)‖1 + ‖v(m)‖1 < ‖v−max(k)‖1 − ‖v(m)‖1

⇒‖vmax(k+m)‖1 < ‖v−max(k+m)‖1.

References

[1] T. Cai and A. Zhang, “Compressed sensing and affine rank min-
imization under restricted isometry,” IEEE Trans. Signal Process.,
vol.61, no.7, pp.3279–3290, 2013.

[2] T. Cai and A. Zhang, “Sparse representation of a polytope and re-
covery of sparse signals and low-rank matrices,” IEEE Trans. Inf.
Theory, vol.60, no.1, pp.122–132, 2014.

[3] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Inf. Theory, vol.47, no.7, pp.2845–
2862, 2001.

[4] E. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?,” IEEE Trans. Inf. The-
ory, vol.52, no.12, pp.5406–5425, 2006.

[5] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.52,

no.4, pp.1289–1306, 2006.
[6] J. Romberg, “Imaging via compressive sampling,” IEEE Signal Pro-

cess. Mag., vol.25, no.2, pp.14–20, 2008.
[7] S. Bahmani and J. Romberg, “Efficient compressive phase retrieval

with constrained sensing vectors,” NIPS, 2015.
[8] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation

when p is much larger than n,” Ann. Statist., vol.35, no.6, pp.2313–
2351, 2007.

[9] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” ICML, 2010.

[10] M.A. Davenport, P.T. Boufounos, M.B. Wakin, and R.G. Baraniuk,
“Signal processing with compressive measurements,” IEEE J. Sel.
Topics Signal Process., vol.4, no.2, pp.445–460, 2010.

[11] M. Davenport, J. Laska, J. Treichler, and R. Baraniuk, “The pros and
cons of compressive sensing for wideband signal acquisition: Noise
folding versus dynamic range,” IEEE Trans. Signal Process., vol.60,
no.9, pp.4628–4642, 2012.

[12] S.K. Sharma, E. Lagunas, S. Chatzinotas, and B. Ottersten, “Appli-
cation of compressive sensing in cognitive radio communications: A
survey,” IEEE Commun. Surveys Tuts., vol.18, no.3, pp.1838–1860,
2016.

[13] J. Li, H. Liu, and Y. Fu, “Predictive coding machine for compressed
sensing and image denoising,” Proc. AAAI Conf. on Artif. Intell.,
pp.3506–3513, 2018.

[14] E. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol.51, no.12, pp.4203–4215, 2005.

[15] B. Olshausen and D. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?,” Vision Research, vol.37,
no.23, pp.3311–3325, 1997.

[16] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation
when is much larger than n,” Ann. Statist., vol.35, no.6, pp.2313–
2351, 2007.

[17] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,”
SIAM Review, vol.51, no.1, pp.34–81, 2009.

[18] A. Tillmann and M. Pfetsch, “The computational complexity of the
restricted isometry property, the nullspace property, and related con-
cepts in compressed sensing,” IEEE Trans. Inf. Theory, vol.60, no.2,
pp.1248–1259, 2014.

[19] J. Wang and B. Shim, “Exact recovery of sparse signals using or-
thogonal matching pursuit: How many iterations do we need?,”
IEEE Trans. Signal Process., vol.64, no.16, pp.4194–4202, 2016.

[20] J. Wang, S. Kwon, P. Li, and B. Shim, “Recovery of sparse signals
via generalized orthogonal matching pursuit: A new analysis,” IEEE
Trans. Signal Process., vol.64, no.4, pp.1076–1089, 2016.

[21] T. Cai, L. Wang, and G. Xu, “Shifting inequality and recovery of
sparse signals,” IEEE Trans. Signal Process., vol.58, no.3, pp.1300–
1308, 2010.

[22] T. Cai and A. Zhang, “Sharp RIP bound for sparse signal and low-
rank matrix recovery,” Applied and Computational Harmonic Anal-
ysis, vol.35, no.1, pp.74–93, 2013.

[23] S. Dirksen, G. Lecue, and H. Rauhut, “On the gap between restricted
isometry properties and sparse recovery conditions,” IEEE Trans.
Inf. Theory, vol.64, no.8, pp.5478–5487, 2018.

[24] J. Cahill, X. Chen, and R. Wang, “The gap between the null space
property and the restricted isometry property,” Linear Algebra and
its Applications, vol.501, pp.363–375, 2016.

[25] M. Ahsen, N. Challapalli, and M. Vidyasagar, “Two new approaches
to compressed sensing exhibiting both robust sparse recovery and
the grouping effect,” J. Machine Learning Research, vol.18, pp.1–
24, 2017.

[26] M. Elad and A. Bruckstein, “A generalized uncertainty principle and
sparse representation in pairs of bases,” IEEE Trans. Inf. Theory,
vol.48, no.9, pp.2558–2567, 2002.

[27] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol.49, no.12, pp.3320–3325, 2003.

[28] L.G.A. d’Aspremont, “Testing the nullspace property using semidef-

http://dx.doi.org/10.1109/tsp.2013.2259164
http://dx.doi.org/10.1109/tsp.2013.2259164
http://dx.doi.org/10.1109/tsp.2013.2259164
http://dx.doi.org/10.1109/tit.2013.2288639
http://dx.doi.org/10.1109/tit.2013.2288639
http://dx.doi.org/10.1109/tit.2013.2288639
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/tit.2006.885507
http://dx.doi.org/10.1109/tit.2006.885507
http://dx.doi.org/10.1109/tit.2006.885507
http://dx.doi.org/10.1109/tit.2006.871582
http://dx.doi.org/10.1109/tit.2006.871582
http://dx.doi.org/10.1109/msp.2007.914729
http://dx.doi.org/10.1109/msp.2007.914729
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1109/jstsp.2009.2039178
http://dx.doi.org/10.1109/jstsp.2009.2039178
http://dx.doi.org/10.1109/jstsp.2009.2039178
http://dx.doi.org/10.1109/tsp.2012.2201149
http://dx.doi.org/10.1109/tsp.2012.2201149
http://dx.doi.org/10.1109/tsp.2012.2201149
http://dx.doi.org/10.1109/tsp.2012.2201149
http://dx.doi.org/10.1109/comst.2016.2524443
http://dx.doi.org/10.1109/comst.2016.2524443
http://dx.doi.org/10.1109/comst.2016.2524443
http://dx.doi.org/10.1109/comst.2016.2524443
http://dx.doi.org/10.1109/tit.2005.858979
http://dx.doi.org/10.1109/tit.2005.858979
http://dx.doi.org/10.1016/s0042-6989(97)00169-7
http://dx.doi.org/10.1016/s0042-6989(97)00169-7
http://dx.doi.org/10.1016/s0042-6989(97)00169-7
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1109/tit.2013.2290112
http://dx.doi.org/10.1109/tit.2013.2290112
http://dx.doi.org/10.1109/tit.2013.2290112
http://dx.doi.org/10.1109/tit.2013.2290112
http://dx.doi.org/10.1109/tsp.2016.2568162
http://dx.doi.org/10.1109/tsp.2016.2568162
http://dx.doi.org/10.1109/tsp.2016.2568162
http://dx.doi.org/10.1109/tsp.2015.2498132
http://dx.doi.org/10.1109/tsp.2015.2498132
http://dx.doi.org/10.1109/tsp.2015.2498132
http://dx.doi.org/10.1109/tsp.2009.2034936
http://dx.doi.org/10.1109/tsp.2009.2034936
http://dx.doi.org/10.1109/tsp.2009.2034936
http://dx.doi.org/10.1016/j.acha.2012.07.010
http://dx.doi.org/10.1016/j.acha.2012.07.010
http://dx.doi.org/10.1016/j.acha.2012.07.010
http://dx.doi.org/10.1109/tit.2016.2570244
http://dx.doi.org/10.1109/tit.2016.2570244
http://dx.doi.org/10.1109/tit.2016.2570244
http://dx.doi.org/10.1016/j.laa.2016.03.022
http://dx.doi.org/10.1016/j.laa.2016.03.022
http://dx.doi.org/10.1016/j.laa.2016.03.022
http://dx.doi.org/10.1109/tit.2002.801410
http://dx.doi.org/10.1109/tit.2002.801410
http://dx.doi.org/10.1109/tit.2002.801410
http://dx.doi.org/10.1109/tit.2003.820031
http://dx.doi.org/10.1109/tit.2003.820031
http://dx.doi.org/10.1007/s10107-010-0416-0


ZOU and ZHAO: NEW RESTRICTED ISOMETRY CONDITION USING NULL SPACE CONSTANT FOR COMPRESSED SENSING
1603

inite programming,” Math. Program., Series B, vol.127, no.1,
pp.123–144, 2011.

[29] Q. Sun, “Sparse approximation property and stable recovery of
sparse signals from noisy measurements,” IEEE Trans. Signal Pro-
cess., vol.59, no.10, pp.5086–5090, 2011.

[30] M. Cho and W. Xu, “New algorithms for verifying the null space
conditions in compressed sensing,” Asilomar Conference on Sig-
nals, Systems and Computers, pp.1038–1042, 2013.

[31] A. Bourrier, M. Davies, T. Peleg, P. Pérez, and R. Gribonval, “Fun-
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