
350
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

LETTER Special Section on Cryptography and Information Security

On the Limitations of Computational Fuzzy Extractors

Kenji YASUNAGA†a), Member and Kosuke YUZAWA††, Nonmember

SUMMARY We present a negative result of fuzzy extractors with com-
putational security. Specifically, we show that, under a computational
condition, a computational fuzzy extractor implies the existence of an
information-theoretic fuzzy extractor with slightly weaker parameters. Our
result implies that to circumvent the limitations of information-theoretic
fuzzy extractors, we need to employ computational fuzzy extractors that are
not invertible by non-lossy functions.
key words: fuzzy extractor, error-correcting code, computational security

1. Introduction

Cryptographic primitives generally require uniformly ran-
dom strings. A fuzzy extractor is a primitive proposed by
Dodis et al. [1] that can reliably derive uniformly random
keys from noisy sources, such as biometric data (fingerprint,
iris, facial image, etc.) and long pass-phrases. More for-
mally, a fuzzy extractor consists of a pair of procedures
(Gen,Rep). The key generation procedure Gen receives a
sample w from a noisy sourceW with some entropy, and out-
puts a uniformly random key r and a helper string p. After
that, the reproduction procedure Rep can be used to derive
the same key r from the helper string p and a sample w ′ that
is close to the original sample w. Notably, this framework
does not need secret keys other than w. The derived key
r is close to uniform even if the helper string p was given.
See [2], [3] for surveys of results related to fuzzy extractors.

Dodis et al. [1] introduced a primitive, called a secure
sketch, to construct fuzzy extractors. On input w, a secure
sketch produces recovery information. It enables the recov-
ery of w from any close value w ′, but does not reveal much
information about w. They showed that a combination of a
secure sketch and a strong extractor gives a fuzzy extractor,
where the strong extractor means that the seed can be used
as a part of the output [1].

Fuzzy extractors were firstly introduced as information-
theoretic primitives, and several limitations regarding param-
eters in fuzzy extractors were also studied in [1]. The entropy
loss is the difference between the entropy of w and the length
of the extracted key r . In the setting of information-theoretic

Manuscript received March 11, 2022.
Manuscript revised June 21, 2022.
Manuscript publicized August 10, 2022.
†The author is with the Department of Mathematical and Com-

puting Science, Tokyo Institute of Technology, Tokyo, 152-8552
Japan.
††The author was a student at Kanazawa University, Kanazawa-

shi, 920-1192 Japan.
a) E-mail: yasunaga@c.titech.ac.jp
DOI: 10.1587/transfun.2022CIL0001

security, entropy loss is known to be inevitable [4]. This lim-
itation is a major problem for applications using low entropy
sources such as biometric data.

Fuller et al. [5] considered the computational security of
fuzzy extractors to construct lossless fuzzy extractors, which
circumvent the entropy loss of information-theoretic fuzzy
extractors. They gave both negative and positive results.
As a negative result, they showed that a computational se-
cure sketch implies the existence of an information-theoretic
secure sketch with slightly weaker parameters. The result in-
dicates that combining a computational secure sketch and a
strong extractor may not give lossless fuzzy extractors. As a
positive result, they directly constructed a lossless fuzzy ex-
tractor based on the hardness of learning with errors (LWE)
problem. The computational security of fuzzy extractors has
been studied in subsequent work [6]–[12].

In this work, we further study the limitations of compu-
tational fuzzy extractors. First, we observe that the negative
result of [5] can be applied to computational fuzzy extractors
under a specific condition. The condition is that the genera-
tion procedure Gen is efficiently and uniquely invertible in a
sense such that, on input (r, p), the inverter recovers the same
w that was used to generate (r, p) by Gen. See Sect. 1.1 for
details.

Next, as a negative result, we show that computational
fuzzy extractors imply information-theoretic fuzzy extractors
if Gen is efficiently invertible by non-lossy functions. This
condition includes the case that the inverter may recover
different w ′ than the original input w. Thus, we extend a
negative result of [5] by relaxing the uniqueness requirement
of inverters of Gen. In proving the result, we fix a flaw in a
proof in [5].

1.1 On the Negative Results of [5]

Fuller et al. noted in [5, footnote 3] that, if the generation
procedure Gen is efficiently invertible, their negative results
for computational secure sketches can also be applied to
computational fuzzy extractors. We observe that the claim
is true if the inverter of Gen satisfies some condition, but it
is unclear without it. We describe the observation below in
more detail.

Let (Gen,Rep) be a computational fuzzy extractor. As-
sume that there is an efficient algorithm InvGen that, given
(r, p), outputs w, where (r, p)was generated by Gen(w). One
can construct a computational secure sketch (SS,Rec) (see
Definition 3 for the definition of secure sketch) by defining

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

LETTER
351

SS(w) = {(r, p) ← Gen(w);Output p} and Rec(w ′, p) =
{r ← Rep(w ′, p); w ← InvGen(r, p);Output w}. Thus, by
the negative results of [5], this implies the existence of an
information-theoretic fuzzy extractor. However, the above
observation can be applied only if InvGen(r, p) outputs the
same w from which (r, p)was actually generated. In general,
there could exist different w1 and w2 such that the outputs of
Gen(w1) and Gen(w2) are the same. A standard construction
of [1] using universal hashing is the case. In such a case,
one of w1 and w2 may not be recovered by InvGen, and thus
it is difficult to use InvGen for constructing secure sketches.

If Gen is injective, then there are no different w1 and w2
satisfying Gen(w1) = Gen(w2), and thus the negative results
of [5] can be generally applied to such computational fuzzy
extractors. However, this assumption seems too restrictive.
As far as we know, there is no construction of injective fuzzy
extractors. Also, there is an intuitive reason for this fact. For
a fuzzy extractor (Gen,Rep), consider two inputs w1 and w2
that are close to each other. If Gen(w1) outputs (r, p), then
it must be that Rep(w1, p) = r and Rep(w2, p) = r . Then, it
seems natural that the output range of Gen(w2) also contains
(r, p). If so, the extractor is not injective.

2. Preliminaries

For t ∈ N, we write [0 : t] = {0,1, . . . , t}. Let X
and Y be random variables over some alphabet Z . The
min-entropy of X is H∞(X) = − log(maxx Pr[X = x]).
The average min-entropy of X given Y is H̃∞(X |Y) =
− log(Ey∈Z maxx∈Z Pr[X = x |Y = y]). The statistical
distance between X and Y is ∆(X,Y) = 1

2
∑

z∈Z | Pr[X =
z] − Pr[Y = z]|. If ∆(X,Y) ≤ ε , we say X and Y are ε-close.
The support of X is Supp(X) = {x ∈ Z : Pr[X = x] > 0}.
We denote by U` the uniformly distributed random vari-
able on {0,1}` . For a finite set S, we denote by a ← S
the event that a is chosen uniformly at random from S.
For s ∈ N, the computational distance between X and Y
is ∆s(X,Y) = maxD∈Cs |E[D(X)] − E[D(Y)]|, where Cs is
the set of randomized circuits of size at most s that output
0 or 1. A metric space is a setM with a distance function
dis : M ×M → R+ = [0,∞). We always consider finite
metric spaces and distance functions with finite images. For
the Hammingmetric over Zn, dis(x, y) is the number of posi-
tions in which x and y differ. For a probabilistic experiment
E and a predicate P, we denote by Pr[E : P] the probability
that the predicate P is true after the experiment E occurred.
For a probabilistic algorithm A, we denote by A(x; r) the
output of A, given x as input and r as random coins.

We give definitions of fuzzy extractor, computational
fuzzy extractor, secure sketch, and strong extractor.

Definition 1 (Fuzzy Extractor). An (M,m, `, t, ε)-fuzzy ex-
tractor with error δ is a pair of randomized procedures
(Gen,Rep) with the following properties:

• The generation procedure Gen on input w ∈ M outputs
an extracted string r ∈ {0,1}` and a helper string p ∈
{0,1}∗.

• The reproduction procedureRep takes w ′ ∈ M and p ∈
{0,1}∗ as inputs. The correctness property guarantees
that for any w,w ′ ∈ M with dis(w,w ′) ≤ t, if (r, p) ←
Gen(w), then Rep(w ′, p) = r with probability at least
1 − δ, where the probability is taken over the coins
of Gen and Rep. If dis(w,w ′) > t, no guarantee is
provided about the output of Rep.

• The security property guarantees that for any distribu-
tion W onM of min-entropy m, if (R,P) ← Gen(W),
then ∆((R,P), (U`,P)) ≤ ε .

Definition 2 (Computational Fuzzy Extractor). An (M,m, `,
t, s, ε)-computational fuzzy extractor with error δ is a pair of
randomized procedures (Gen,Rep) that is an (M,m, `, t, ε)-
fuzzy extractor with error δ in which the security property is
replaced by the following one:

• For any distribution W on M of min-entropy m, if
(R,P) ← Gen(W), then ∆s((R,P), (U`,P)) ≤ ε .

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch
with error δ is a pair of randomized procedures (SS,Rec)
with the following properties:

• The sketching procedure SS on input w ∈ M outputs a
string s ∈ {0,1}∗.

• The recovery procedure Rec takes w ′ ∈ M and
s ∈ {0,1}∗ as inputs. The correctness property guar-
antees that for any w,w ′ ∈ M with dis(w,w ′) ≤ t,
Pr[Rec(w ′,SS(w)) = w] ≥ 1− δ, where the probability
is taken over the coins of SS and Rec. If dis(w,w ′) > t,
no guarantee is provided about the output of Rec.

• The security property guarantees that for any distribu-
tion W onM of min-entropy m, H̃∞(W |SS(W)) ≥ m̃.

Definition 4. We say that Ext : {0,1}n → {0,1}` is an
(n,m, `, ε)-strong extractor if for any W on {0,1}n of min-
entropy m, ∆((Ext(W ; X),X), (U`,X)) ≤ ε , where X is the
uniform distribution on {0,1}r .

3. Limitations of Computational Fuzzy Extractors

We show that a computational fuzzy extractor satisfying
some condition implies the existence of an information-
theoretic fuzzy extractor with slightly weaker parameters.

We follow a similar approach to Fuller et al. [5],
who showed that a computational secure sketch implies
an information-theoretic secure sketch. They proved that
the existence of a computational secure sketch implies an
error-correcting code for random errors. The result follows
by observing that such a code is sufficient to construct an
information-theoretic secure sketch [1].

Our result also needs some invertibility condition on
Gen, which does not require the unique invertibility as de-
scribed in Sect. 1.1. Intuitively, our condition is that Gen is
efficiently invertible by non-lossy function. The following is
the formal definition.

Definition 5. Let (Gen,Rep) be a fuzzy extractor for a metric

352
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

spaceM. We say Gen is (s, η, ξ)-invertible if

1. there exists a deterministic circuit InvGen of size at most
s such that

Pr
[
w ′← InvGen(R, p) :

∃ rG ∈ {0,1}∗ s.t.
Gen(w ′; rG) = (R, p)

]
≥ 1 − η

for any p that can be generated as (r, p) ← Gen(w) for
w ∈ M, where R = U`;

2. in addition, InvGen satisfies that

|{w ′ : w ′← InvGen(R, p)}| ≥ (1 − ξ)2`

for any p that can be generated as (r, p) ← Gen(w) for
w ∈ M, where R = U` .

In Definition 5, we consider that InvGen succeeds in
inverting Gen if it outputs w ′ from which the input (r ′, p)
can be generated by Gen, and thus w ′ is not necessarily the
same as w from which p was actually generated.

The first condition of Definition 5 is a natural invert-
ibility condition by considering the roles of r and p. As an
attacker (inverter) A of the fuzzy extractor (Gen,Rep), the
string r is an extracted random string A may not be accessi-
ble, and the helper string p is public information assumed to
be unchanged. Thus, the first condition captures the success
of attacks by A for the task of inverting Gen.

The second condition excludes the possibility of InvGen
to output some “easy-to-answer” value w∗. This non-lossy
condition seems necessary to capture the situation that the
recovered w ′ may differ from the original w. The attacker
may always output specific w∗ for most input (r, p). How-
ever, such an attack seems unsuccessful because the output
distribution of w∗ has low entropy, while input w should have
enough entropy to be extracted.

(1) Proof Idea

We start from the existence of a computational fuzzy extrac-
tor (Gen,Rep). The idea for constructing an error-correcting
code is that an efficient inverter of Gen can work as a gener-
ator of a codeword from a message. Here, a sample w and
an extracted string r from w are considered a codeword and
a message, respectively. By fixing the helper string p, we
can see that the inverter of Gen is an encoder and the repro-
duction procedure Rep is a decoder of an error-correcting
code. The second condition on the inverter of Gen is used
to guarantee a high information-rate of the resulting code.
The structure used in our approach is different from that
in [5]. For a secure sketch (SS,Rec), they used the fact that
by fixing the sketch ss = SS(W), the procedure of sampling
W conditioned on ss is a random sampling of codewords
and the recovery procedure Rec can work as a decoder that
outputs a corrected codeword, not message.

(2) Coding Theory

We provide some notions and a technical lemma regarding
coding theory.

Definition 6. We say a metric space (M,dis) is (s, t)-
bounded-error samplable if there exists a randomized circuit
ErrSmp of size s such that for all 0 ≤ t ′ ≤ t and w ∈ M,
ErrSmp(w, t ′) outputs a random point w ′ ∈ M satisfying
dis(w,w ′) = t ′.

Definition 7. Let C be a set over a metric spaceM. We say
C is a (t, ε)-maximal-error Shannon code if there exists an
efficient recovery procedure Rec such that for all 0 ≤ t ′ ≤ t
and c ∈ C, Pr[Rec(ErrSmp(c, t ′)) , c] ≤ ε .

Definition 8. Let (M,dis) be a metric space that is (s, t)-
bounded-error samplable by a circuit ErrSmp. For a distri-
bution C overM, we say C is a (t, ε)-average-random-error
Shannon code if there exists an efficient recovery procedure
Rec such that Pr[c ← C, t ′ ← [0 : t] : Rec(ErrSmp(c, t ′)) ,
c] ≤ ε .

The following is obtained by Markov’s inequality†.

Lemma 1. Let C be a (t, ε)-average-random-error Shannon
code with recovery procedure Rec such that H∞(C) ≥ k.
There exists a set C ′ with |C ′ | ≥ 2k−1 that is (t,2ε(t + 1))-
maximal-error Shannon code with recovery procedure Rec.

Proof. Since C is a (t, ε)-average-random-error Shannon
code, we have that∑

c∈Supp(C)
Pr[c← C] Pr

t′←[0:t]
[Rec(ErrSmp(c, t ′)) , c] ≤ ε .

For c ∈ Supp(C), let εc = Prt′←[0:t][Rec(ErrSmp(c, t ′)) , c].
By Markov’s inequality, it holds that

Pr
c←C
[εc ≤ 2ε] = Pr

c←C
[εc ≤ 2Ec′←C[εc′]] ≥

1
2
.

Since H∞(C) ≥ k, there are at least 2k−1 codewords c ∈
Supp(C) satisfying εc ≤ 2ε . Let C ′ be the set of such
codewords. For every c ∈ C ′, we have that∑
t′∈[0:t]

Pr[t ′←[0 : t]]Pr[Rec(ErrSmp(c, t ′)) , c] ≤ 2ε, (1)

which implies that Pr[Rec(ErrSmp(c, t ′)) , c] ≤ 2ε(t + 1)
for every t ′ ∈ [0 : t]. Otherwise, there exists t ′ ∈ [0 : t]
such that Pr[t ′ ← [0 : t]]Pr[Rec(ErrSmp(c, t ′)) , c] >

1
t+12ε(t + 1) = 2ε , which contradicts (1). Therefore, C ′ is a
(t,2ε(t + 1))-maximal-error Shannon code. �

(3) Our Negative Result

We prove that if the generation procedure is invertible, then
the existence of a computational fuzzy extractor implies the
†A similar lemma was given in [5], but the proof has a flaw,

which an anonymous reviewer pointed out. In their proof, a code
was chosen by a probabilistic argument for every t ′ ∈ [0 : t].
However, it is not guaranteed that the code is the same for every t ′.
Instead, we consider a code that corrects random errors for random
t ′, which is guaranteed to correct random errors for every t ′ with a
worse decoding error probability.

LETTER
353

existence of a maximal-error Shannon code.

Lemma 2. Let (M,dis) be a metric space that is
(ssmp, t)-bounded-error samplable. Let (Gen,Rep) be an
(M,m, `, t, ssec, ε)-computational fuzzy extractor with error
0. Let srep denote the size of the circuit that computes
Rep. If Gen is (sinv, η, ξ)-invertible, and it holds that ssec ≥
sinv + ssmp + srep, then there exists a value p and a set C with
|C | ≥ (1 − ξ)2`−1 that is a (t,2(ε + η)(t + 1))-maximal-error
Shannon code with recovery procedure InvGen(Rep(·, p), p).

Proof. Let W be an arbitrary distribution on M of
min-entropy m. By the security property of the
computational fuzzy extractor (Gen,Rep), we have that
∆ssec ((R,P), (U`,P)) ≤ ε for (R,P) ← Gen(W).

Define the following procedure D:

1. On input r ∈ {0,1}`, p ∈ {0,1}∗, and t ∈ N, compute
w ← InvGen(r, p).

2. t ′← [0 : t].
3. w ′← ErrSmp(w, t ′).
4. If Rep(w ′, p) , r , output 0. Otherwise, output 1.

The procedure D efficiently checks whether Rep can cor-
rectly output the string r from the corresponding p andwwith
random t-bounded errors. We need the efficiency of D since
otherwise, the error-correcting property of Rep may not be
taken over from the computational security of (Gen,Rep).
The procedure D can be implemented by a circuit of size
sinv + ssmp + srep.

By the invertibility of Gen and the correctness property
of (Gen,Rep), we have that Pr[D(R,P, t) = 1] ≥ 1 − η,
where (R,P) ← Gen(W). Since ∆ssec ((R,P), (U`,P)) ≤ ε , if
ssec ≥ sinv + ssmp + srep, it holds that

Pr[D(U`,P, t) = 1] ≥ 1 − (ε + η).

By the averaging argument, there exists a value p such
that Pr[D(U`, p, t) = 1] ≥ 1 − (ε + η). This implies that

Pr

w ← InvGen(R, p),
t ′← [0 : t],
w ′← ErrSmp(w, t ′)

: Rep(w ′, p) = R

 ≥ 1 − (ε + η),

(2)

where R = U` . Thus, the distribution InvGen(U`, p) is a
(t, ε + η)-average-random-error Shannon code with recovery
procedure InvGen(Rep(·, p), p). By applying Lemma 1, we
can show that there is a set C with |C | ≥ 2k−1 that is a
(t,2(ε + η)(t + 1))-maximal-error Shannon code for k ≥
H∞(InvGen(U`, p)).

It follows from the invertibility of Gen that |{w ′ : w ′←
InvGen(U`, p)| ≥ (1 − ξ)2` . Thus, H∞(InvGen(U`, p)) ≥
` − log(1/(1 − ξ)). Therefore, the statement follows. �

It is known that a secure sketch can be constructed
from a Shannon code, which is explicitly presented in [5],
and implicitly stated in [1, Sect. 8.2].

Lemma 3 ([1], [5]). For an alphabet Z , let C be a (t, δ)-
maximal-error Shannon code over Zn. Then, there exists a
(Zn,m,m− (n log |Z | − log |C |), t) secure sketch with error δ
for the Hamming metric over Zn.

An information-theoretic fuzzy extractor can be con-
structed from a secure sketch and a strong extractor [1]. In
particular, if we use universal hashing as strong extractor, we
obtain the following result.

Lemma 4 ([1]). Let (SS,Rec) be an (M,m, m̃, t)-secure
sketch with error δ, and Ext an (n, m̃, `, ε)-strong extrac-
tor given by universal hashing (any ` ≤ m̃ − 2 log(1ε) + 2
can be achieved). Then, the following (Gen,Rep) is an
(M,m, `, t, ε)-fuzzy extractor with error δ:

• Gen(w; r, x) : set P = (SS(w; r), x), R = Ext(w; x), and
output (R,P).

• Rep(w ′, (s, x)) : recover w = Rec(w ′, s) and output
R = Ext(w; x).

By combining Lemmas 2, 3, and 4, we obtain the fol-
lowing theorem.

Theorem 1. Let Z be an alphabet. Let (Gen,Rep) be
a (Zn,m, `, t, ssec, ε)-computational fuzzy extractor with er-
ror 0. Let srep denote the size of the circuit that com-
putes Rep. If Gen is (sinv, η, ξ)-invertible, and it holds that
ssec ≥ sinv+n log |Z |+srep, then there exists a (Zn,m, `′, t, ε ′)
(information-theoretic) fuzzy extractor with error 2(ε+η)(t+
1) for any `′ ≤ m + ` − n log |Z | − log(1

1−ξ) − 2 log(1
ε ′) + 1.

In particular, in the above theorem, if we choose m =
n log |Z |, then a (Zn,n log |Z |, `, t, ssec, ε)-computational
fuzzy extractor implies a

(
Zn,n log |Z |, ` − log

(1
1−ξ

)
−

2 log
(1
ε ′

)
+ 1, t, ε ′

)
-fuzzy extractor with error 2(ε + η)(t + 1).

As in the negative result of [5], we do not claim the
efficiency of the resulting fuzzy extractor. In our case, the
non-explicit parts are (1) fixing the value p in Lemma 2,
and (2) constructing a maximal-error Shannon code from an
average-random-error one in Lemma 1.

Acknowledgments

The authors are grateful to Masahiro Mambo for his helpful
comments. This work was supported in part by JSPS/MEXT
Grant-in-Aid for Scientific Research Numbers 23500010,
23700010, 24240001, 25106509, 15H00851, 16H01705,
and 17H01695.

References

[1] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM J. Comput., vol.38, no.1, pp.97–139, 2008.

[2] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors,” Secu-
rity with Noisy Data, P. Tuyls, B. Skoric, and T. Kevenaar, eds.,
pp.79–99, Springer, 2007. An updated version is available at http://
www.cs.bu.edu/˜reyzin/fuzzysurvey.html

http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1137/060651380
http://www.cs.bu.edu/~reyzin/fuzzysurvey.html
http://www.cs.bu.edu/~reyzin/fuzzysurvey.html
http://www.cs.bu.edu/~reyzin/fuzzysurvey.html
http://www.cs.bu.edu/~reyzin/fuzzysurvey.html

354
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

[3] X. Boyen, “Robust and reusable fuzzy extractor,” SecuritywithNoisy
Data, P. Tuyls, B. Skoric, and T. Kevenaar, ed., pp.101–112, Springer,
2007.

[4] J. Radhakrishnan and A. Ta-Shma, “Bounds for dispersers, extrac-
tors, and depth-two superconcentrators,” SIAM J. Discrete Math.,
vol.13, no.1, pp.2–24, 2000.

[5] B. Fuller, X.Meng, and L. Reyzin, “Computational fuzzy extractors,”
ASIACRYPT (1), pp.174–193, 2013.

[6] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A.D. Smith,
“Reusable fuzzy extractors for low-entropy distributions,” Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8–12, 2016, Proceedings, Part I,
M. Fischlin and J. Coron, eds., Lecture Notes in Computer Science,
vol.9665, pp.117–146, Springer, 2016.

[7] D. Apon, C. Cho, K. Eldefrawy, and J. Katz, “Efficient, reusable
fuzzy extractors from LWE,” Cyber Security Cryptography and
Machine Learning - First International Conference, CSCML 2017,
Beer-Sheva, Israel, June 29–30, 2017, Proceedings, S. Dolev and
S. Lodha, ed., Lecture Notes in Computer Science, vol.10332, pp.1–
18, Springer, 2017.

[8] C. Herder, L. Ren, M. van Dijk, M.M. Yu, and S. Devadas, “Trap-
door computational fuzzy extractors and stateless cryptographically-
secure physical unclonable functions,” IEEE Trans. Dependable Se-
cure Comput., vol.14, no.1, pp.65–82, 2017.

[9] Y. Wen, S. Liu, and S. Han, “Reusable fuzzy extractor from the de-
cisional Diffie-Hellman assumption,” Des. Codes Cryptogr., vol.86,
pp.2495–2512, 2018. https://doi.org/10.1007/s10623-018-0459-4

[10] Y. Wen and S. Liu, “Reusable fuzzy extractor from LWE,” Informa-
tion Security and Privacy - 23rd Australasian Conference, ACISP
2018, Wollongong, NSW, Australia, July 11–13, 2018, Proceedings,
W. Susilo and G. Yang, eds., Lecture Notes in Computer Science,
vol.10946, pp.13–27, Springer, 2018.

[11] Y. Wen and S. Liu, “Robustly reusable fuzzy extractor from standard
assumptions,” Advances in Cryptology - ASIACRYPT 2018 - 24th
International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Brisbane, QLD, Australia, Dec. 2–6,
2018, Proceedings, Part III, T. Peyrin and S.D. Galbraith, eds., Lec-
ture Notes in Computer Science, vol.11274, pp.459–489, Springer,
2018.

[12] Y. Wen, S. Liu, and D. Gu, “Generic constructions of robustly
reusable fuzzy extractor,” Public-Key Cryptography - PKC 2019
- 22nd IACR International Conference on Practice and Theory of
Public-Key Cryptography, Beijing, China, April 14–17, 2019, Pro-
ceedings, Part II,D. Lin andK. Sako, eds., LectureNotes inComputer
Science, vol.11443, pp.349–378, Springer, 2019.

http://dx.doi.org/10.1007/978-1-84628-984-2_6
http://dx.doi.org/10.1007/978-1-84628-984-2_6
http://dx.doi.org/10.1007/978-1-84628-984-2_6
http://dx.doi.org/10.1137/s0895480197329508
http://dx.doi.org/10.1137/s0895480197329508
http://dx.doi.org/10.1137/s0895480197329508
http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1109/tdsc.2016.2536609
http://dx.doi.org/10.1109/tdsc.2016.2536609
http://dx.doi.org/10.1109/tdsc.2016.2536609
http://dx.doi.org/10.1109/tdsc.2016.2536609
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4
http://dx.doi.org/10.1007/978-3-319-93638-3_2
http://dx.doi.org/10.1007/978-3-319-93638-3_2
http://dx.doi.org/10.1007/978-3-319-93638-3_2
http://dx.doi.org/10.1007/978-3-319-93638-3_2
http://dx.doi.org/10.1007/978-3-319-93638-3_2
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-03332-3_17
http://dx.doi.org/10.1007/978-3-030-17259-6_12
http://dx.doi.org/10.1007/978-3-030-17259-6_12
http://dx.doi.org/10.1007/978-3-030-17259-6_12
http://dx.doi.org/10.1007/978-3-030-17259-6_12
http://dx.doi.org/10.1007/978-3-030-17259-6_12
http://dx.doi.org/10.1007/978-3-030-17259-6_12

