
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023
355

LETTER Special Section on Cryptography and Information Security

Packer Identification Method for Multi-Layer Executables Using
Entropy Analysis with k-Nearest Neighbor Algorithm

Ryoto OMACHI†, Nonmember and Yasuyuki MURAKAMI†a), Member

SUMMARY The damage cost caused by malware has been increasing
in the world. Usually, malwares are packed so that it is not detected. It is
a hard task even for professional malware analysts to identify the packers
especially when the malwares are multi-layer packed. In this letter, we
propose a method to identify the packers for multi-layer packedmalwares by
using k-nearest neighbor algorithm with entropy-analysis for the malwares.
key words: malware, packer identification, multi-layer packing, k-nearest
neighbor algorithm, entropy analysis

1. Introduction

The malware attack is known to be one of the most popular
cyberattacks. The damage cost caused by malware has been
increasing in the world. Thus, reducing the damage cost is
an urgent issue.

Malware analysts must analyze the original code and
develop anti-malware softwares in order to protect personal
data frommalwares. If the original code cannot be analyzed,
it is difficult to reduce the incidents. Malwares are made by
various anti-analysis techniques so as not to be detected by
anti-malware softwares.

Packing is an obfuscation method by compressing or
encrypting codes in order to hide the original code. A soft-
ware for packing malwares is called a ‘packer’. Recovering
the original code from the packed code is called ‘unpacking.’
In order to analyze the malware, it is necessary to identify
the packer and unpack into the original code. It is hard task
even for professionalmalware analysts to identify the packers
from multi-packed malwares.

Themethods for identifying packers are roughly divided
into the following two methods. One is a method of detect-
ing OEP (Original Entry Point) before packing by comparing
the code with the run-time library [1]. This method is main-
stream, however, there exist following problems. Malware
writers usually change the entry point for jamming. It as-
sumes that malware writers used a well-known compiler. It
apply only to single-packedmalwares. The other is a method
of analyzing entropy without running malwares. The former
is highly versatile and automatically unpack the malwares
for single-packing The latter is relatively safer, but inferior
in accuracy because the entropy is made higher by pack.

Manuscript received March 13, 2022.
Manuscript revised June 29, 2022.
Manuscript publicized August 16, 2022.
†The authors are with the Osaka Electro-Communication Uni-

versity, Neyagawa-shi, 572-8530 Japan.
a) E-mail: yasuyuki@oecu.jp
DOI: 10.1587/transfun.2022CIL0002

There are three related researches on this letter.
Lyda et al. proposed a method of determining whether

the sample is a malware or not by using entropy analysis
[2]. Since it can be considered that the characteristics of
the executable file appear in the entropy, malwares might
be identified by analyzing the entropy. The advantage of
entropy analysis is that it is safe because users don’t have to
run the executables.

Sun et al. proposed a method to detect the single-packer
by pattern recognition techniques with k-nearest neighbor,
etc. [3]. From this result, we can consider that the k-nearest
neighbor algorithm might be also effective to detect packer
of multi-layer packing. However, there are no studies that
have performed entropy analysis and k-nearest neighbor al-
gorithms in the packer identification frommulti-packed mal-
ware.

Bat-Erdene et al. proposed a packer detection method
for multi-layer packed codes by using symbolic aggregate
approximation (SAX), which is a method of converting time-
series data into string data [4]. From this result, we consider
that SAXmethod is very useful and good accuracy in mupti-
packed malware analysis.

In this letter, we shall propose the method of identify-
ing the packers from multi-layer packed malwares by using
SAXmethod for the entropy vectors with k-nearest neighbor
method of pattern recognition. We downloaded the exe-
cutable pseudo malware files provided by eagle0wl [5] and
create double-packed malwares from them. Moreover, we
shall identify the packers from the double-packed malwares
by computer experiment so that we confirm the effectiveness
of the proposed method.

2. Preliminary

2.1 Packing

Packing is a file-conversion method to compress, encode,
and obfuscate a program while being kept executable.

There are three types of Packing: single-packing, re-
packing andmulti-layer packing. Let m be an executable file,
c be a packed file and p1, p2, . . . , pn be packing algorithms.

single-packing
c = p1(m).

re-packing
c = p1(. . . (p1(m)) . . .).

multi-layer packing

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

356
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Fig. 1 Process of multi-layer packing.

c = pn(. . . (p1(m)) . . .).

Figure 1 shows the process of multi-layer packing.

2.2 Entropy

In this letter, we consider the following entropy H(X) for a
byte-sequence X for the each component Xk ∈ Z28 :

H(X) = −
28−1∑
i=0

p(i) log2 p(i), (1)

where i denotes the value of 8-bit data (i ∈ Z28) and p(i)
denotes the probability of occurrence of i in X . Thus, the
entropy H(X) takes on a value of H(X) ∈ [0,8).

2.3 k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm is a traditional pattern
classification algorithm in the machine learning algorithm.
In k-nearest neighbor algorithm, the Minkowski distance
is used as index. The Minkowski distance d between two
points x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn is defined as
d =

(∑n
i=1 |xi − yi |

p
)1/p , where order p is a real number of

p ≥ 1. Minkowski distance of p = 2 is very typical, which
is called as Euclidean distance. We shall briefly describe the
k-nearest neighbor algorithm in Algorithm 1.

2.4 Symbolic Aggregate Approximation (SAX)

Symbolic Aggregate approXimation (SAX) is a method of
converting time-series data into string data.

SAX converts a time series of length n, C =

(C1,C2, . . . ,Cn), into the sequence of length w, C =

(C1, . . . ,Cw), as follows:

Step 1: Transform time series C into normalized time series
C ′ with mean of 0 and standard deviation of 1.

Step 2: The time series is divided into w segments as

Ci =
w

n

w
n i∑

j= w
n (i−1)+1

cj, (2)

where cj is one point of time series C for all j.

Algorithm 1 k-Nearest Neighbor Algorithm
Input: Hyperparameter: k, Sample vector: x, Set of all sample vectors S.
Output: Class label: L

// Calculate Minkowski Distances for all Samples
1: for s in S do
2: Calculate Minkowski distance s and x as d[s].
3: end for

// Choose k-Nearest Neighbor of Sample x
4: Sort d[s] for all s ∈ S in ascending order.
5: Let the set T be first k-number items of sorted vectors.

// Determine the Class Label of Sample x
6: n[l]=0 for all class labels l.
7: for t in T do
8: Find the class label l of t .
9: Increment the number of l: n[l]++.
10: end for
11: Determine the class label L = l if n[l] is maximum for all labels l, by

performing a majority rule.
12: return Class label L

Fig. 2 Proposed method.

3. Proposed Method

In this section, we shall propose an identifying method of
the packer from multi-layer packed malware with k-nearest
neighbor algorithm for entropies of the divided sequences.
The Fig. 2 illustrates the analyzing process of the proposed
method.

Step 1: The malware samples are divided into 256-byte
chunks with the method proposed by Lyda et al
[2]. Let (X1, . . . ,Xn) be a series of length n, s.t.
the number of each element is 256-byte units.

Step 2: Calculate the entropy H(Xi) of each series Xi and
Let the entropy series hi = H(Xi)(i = 1, . . . ,n).

Step 3: Divide the entropy series (h1, . . . , hn) into m sub-
sequences as equal in length as possible. Let
the average entropy of a sub-sequence be Hk(k =
1, . . . ,m).

Step 4: Let be the average entropy treated as the m-
dimensional vector. We attempt to detect the packer
of multi-layer packing by using the k-nearest neigh-
bor algorithmmethod for them-dimensional average
entropy vectors.

LETTER
357

Table 1 Executable combination.
2nd packer \ 1st packer Enigma PElock Themida UPX VMP

Enigma No Yes No Yes No
PElock No Yes Yes Yes Yes
Themida No Yes Yes Yes No
UPX No Yes No No No
VMP No No Yes No Yes

4. Experiment

Let the malware samples be 22 pseudo-malwares which are
obtained from eagle0wl’s crackme VOL.01 and VOL.02.
Let the packer be the followings: Enigma [6], PElock [7],
Themida [8], UPX [9] and VMP [10].

Enigma Protector (Enigma) The Enigma Protector is
a packer which can be freely downloaded from
enigmaprotector.com [6]. The packing algorithm is
private.

Demo version of PElock (PElock) The demo version of
PElock is a packer which can be freely downloaded
from pelock.com [7]. The packing algorithm is private.

Demo version of Themida x32 (Themida) The demo ver-
sion of Themida x32 is a packer which is provided by
Oreans Technologies [8]. The algorithm is private.

Ultimate Packer foe eXecutables (UPX) The ultimate packer
for executables is a packer provided by Free/Libre and
Open Source Software [9]. UPX supports various
executable-file formats of most OSs.

Demo version of VMProtect Ultimate (VMP) The demo
version of VMProtect Ultimate is a packer provided
in pelock.com [10]. The algorithm is private.

We show the first packer and the second packer in Ta-
ble 1. The ‘Yes-No’ represents the answer if the packed
malware is correctly executed.

Only 253 malware samples are correctly executed
among the created 22 × 12 = 264 double-packed malwares
by the combination of the status ‘Yes’.

If the dimension m is made larger, the feature amount
will increase but the average entropies become unstable.
Conversely, if m is made smaller, the average entropy will
be stable but the feature amount will decrease. Since the
classification accuracy decreases in both cases, it can be said
that there exists an optimum value of m. In this experiment,
let the dimension of the sub-sequence be m = 10, which was
determined by trial and error. We used k-nearest neighbor
algorithm of the library of Scikit-learn with leave-one-out
cross-validation.

The Fig. 3 shows the rate of correctly identifying the
combinations of the packers for k = 1,2, . . . ,n. The packer
detection rate is about 49.6% at maximum when k = 1.
From Fig. 3, we can conclude that the hyperparameter k = 1
is optimal in this experiment.

5. Conclusion

In this letter, we have proposed a method of specifying the

Fig. 3 Rate of detecting packer.

packers frommulti-packed executables with k-nearest neigh-
bor algorithm of the entropies. By computer experiment,
we can identify the packers about a half of malwares for
double-packed malwares when k = 1. This result suggests
that m-dimensional average entropy vectors of the proposed
method represent good feature amount for identifying multi-
layer packers. In order to confirm this, it is a future task to
experiment by other classification methods.

For deeper analysis, it is future tasks to investigate the
optimum value of m and visualize the entropy vectors. Ex-
perimenting for three or more layers of multi-pack malware
is also a future task.

Acknowledgments

Wewould like to thank reviewers and editors for useful com-
ments and suggestions.

References

[1] R. Isawa, M. Morii, and D. Inoue, “An unpacking method based on
instruction-trace similarity,” Proc. CSS2016, 2016.

[2] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted
and packed malware,” IEEE Secur. PrivacyMag., vol.5, no.2, pp.40–
45, 2007.

[3] L. Sun, S. Versteeg, S. Boztas, and T. Yann, “Pattern recognition
techniques for the classification of malware packers,” ACISP 2010,
LNCS 6168, pp.370–390, 2010.

[4] M. Bat-Erdene, T. Kim, H. Park, and Heejo Lee, “Packer detection
for multi-layer executables using entropy analysis,” Entropy, vol.19,
no.3, 125, 2017.

[5] “Web site of eagle0wl,” http://www.mysys.org/eagle0wl
[6] “The Enigma Protector,” https://enigmaprotector.com/en/about.html
[7] “PELock Software Protection & Software License Key System,”

https://www.pelock.com/products/pelock
[8] “Themida Overview,” https://www.oreans.com/Themida.php
[9] “UPX,” https://upx.github.io
[10] “Five Reasons To Use VMProtect,” https://vmpsoft.com

http://dx.doi.org/10.1109/msp.2007.48
http://dx.doi.org/10.1109/msp.2007.48
http://dx.doi.org/10.1109/msp.2007.48
http://dx.doi.org/10.1007/978-3-642-14081-5_23
http://dx.doi.org/10.1007/978-3-642-14081-5_23
http://dx.doi.org/10.1007/978-3-642-14081-5_23
http://dx.doi.org/10.3390/e19030125
http://dx.doi.org/10.3390/e19030125
http://dx.doi.org/10.3390/e19030125
http://www.mysys.org/eagle0wl
https://enigmaprotector.com/en/about.html
https://www.pelock.com/products/pelock
https://www.pelock.com/products/pelock
https://www.oreans.com/Themida.php
https://upx.github.io
https://vmpsoft.com

