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Linear Algebraic Approach to Strongly Secure Ramp Secret
Sharing for General Access Structures with Application to
Symmetric PIR∗∗

Reo ERIGUCHI†∗a), Noboru KUNIHIRO††, Nonmembers, and Koji NUIDA†††∗, Member

SUMMARY Ramp secret sharing is a variant of secret sharing which
can achieve better information ratio than perfect schemes by allowing some
partial information on a secret to leak out. Strongly secure ramp schemes can
control the amount of leaked information on the components of a secret. In
this paper, we reduce the construction of strongly secure ramp secret sharing
for general access structures to a linear algebraic problem. As a result,
we show that previous results on strongly secure network coding imply
two linear transformation methods to make a given linear ramp scheme
strongly secure. They are explicit or provide a deterministic algorithm
while the previous methods which work for any linear ramp scheme are
non-constructive. In addition, we present a novel application of strongly
secure ramp schemes to symmetric PIR in a multi-user setting. Our solution
is advantageous over those based on a non-strongly secure scheme in that it
reduces the amount of communication between users and servers and also
the amount of correlated randomness that servers generate in the setup.
key words: secret sharing, general access structure, strong security, private
information retrieval

1. Introduction

1.1 Backgrounds

Secret sharing [2], [3] is a cryptographic primitive to share
a secret s = (s1, . . . , sL) among a set P of n participants
in such a way that authorized sets in a family Φ ⊆ 2P are
able to recover s while forbidden sets in Ψ ⊆ 2P learn no
information. If a secret sharing scheme is perfect, that is,
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Φ∪Ψ = 2P , then s is perfectly private against an adversary.
However, the perfect secrecy is too strong for real-world
applications and may result in large storage overhead. It is
then more important to reduce the overhead even at the cost
of giving up the perfect secrecy, that is, Φ ∪ Ψ , 2P . For
this purpose, the notion of ramp secret sharing was proposed
[4]–[6]. A ramp secret sharing scheme for an L-level access
structureAL = (Γj)0≤ j≤L guarantees that ΓL is the family of
authorized sets, Γ0 is the family of forbidden sets, and every
set in Γj obtains information on s with a ratio of j/L.

1.1.1 Strong Security

Secret sharing is directly applied to distributed data storage,
in which each sub-secret sj represents a confidential file
and shares are stored, e.g., by servers. We should prevent
meaningful information on sj from being revealed when
some fraction of s is leaked. To address this problem, the
notion of strong security [6], [7] guarantees that for each j,
no subset in Γj obtains information on any L − j sub-secrets.

Iwamoto and Yamamoto [7] proposed an explicit
method to make a given ramp scheme for a general access
structure strongly secure, assuming that the initial scheme
satisfies a special property of partial decryptability. Then
Eriguchi and Kunihiro [8] gave probabilistic methods as-
suming that the initial scheme satisfies linearity, which is a
more common property of secret sharing. However, their
methods are non-constructive and there is no method to ver-
ify the resulting scheme is indeed strongly secure except for
the brute-force approach, which involves checking exponen-
tially many matrices for non-singularity. In summary, it is
unknownwhether there is an explicit construction of strongly
secure schemes from a given linear ramp scheme.

1.1.2 Application to Symmetric PIR

Another important application of secret sharing is private
information retrieval (PIR) [9], in which a user can retrieve
a value in a database replicated among the set P of n servers
without letting them know the index. A PIR scheme has a
response pattern Φ ⊆ 2P if the user can retrieve one from
responses of any set of servers A ∈ Φ, and has a collusion
patternΨ ⊆ 2P if any collusion of B ∈ Ψ gets no information
on the user’s index. Symmetric PIR (SPIR) [10] is a variant
of PIR which additionally guarantees that the user does not
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learn database records that he does not query. Recently, Song
and Hayashi [11] have shown a transformation from a linear
ramp secret sharing scheme forAL = (Γj)0≤ j≤L to an SPIR
scheme with response pattern ΓL and collusion pattern Γ0.

In a real-world situation, there are many users having
different response patterns that reflect their individual re-
quirements, e.g., some user has access to a smaller number
of servers than others. We consider a systemmodel, in which
there are non-colluding users each of whom has one of M
response patterns Φ1 ⊇ · · · ⊇ ΦM . We aim at realizing
SPIR for (Φi,Ψ) between every user with response pattern
Φi and servers. There are two naive solutions based on [11].

Solution I: To construct an SPIR schemeΠ1 for (Φ1,Ψ) and
use it for every user.

Since Φi ⊆ Φ1, it works regardless of a user’s response
pattern. However, always assuming the worst case Φ1 leads
to a loss of efficiency. If Π1 is constructed based on [11],
a user with other response patterns Φi receives shares of a
ramp scheme whose family of authorized sets is Φ1, which
results in unnecessarily higher communication cost.

Solution II: To construct M independent SPIR schemes
Π1, . . . ,ΠM such that Πi works for (Φi,Ψ) and use Πi

between a user and servers if the user has a response
pattern Φi .

In this solution, however, servers need to generate M kinds
of correlated randomness in the setup, each of which is a
share of a ramp secret sharing scheme corresponding to Πi .
It is then important to devise a solution which provides the
best of both worlds: it achieves minimal communication for
a user with response pattern Φi and only needs correlated
randomness whose amount is independent of M .

1.2 Our Results

1.2.1 Explicit and Deterministic Constructions of Strongly
Secure Schemes

We propose two different methods to transform any linear
ramp secret sharing scheme for a general access structure to
a strongly secure one (Table 1). Our methods only require
that an initial scheme satisfies linearity, which is a more
common property of secret sharing than partial decryptabil-
ity. The first one explicitly provides a desired transformation
(Theorem 1). As a result, it always provides a strongly secure
scheme and does not need to verify the correctness. Further-
more, the transformation is universal [13] in the sense that
the same transformation is applicable to any ramp scheme.
It has a drawback that the resulting scheme must be defined
over an extension field, which means that the domains of
secrets and shares have to be enlarged. To overcome it, we
also show a deterministic algorithm to make any linear ramp
scheme strongly secure while its time complexity is doubly
exponential in the number of participants n (Theorem 2).
The advantage is that it need not enlarge the domains if an
initial scheme is defined over a sufficiently large field. See

Table 1 Comparison of methods to make a ramp secret sharing scheme
realizing AL strongly secure. Let q, q′ denote the sizes of the fields over
which the initial and resulting schemes are defined, respectively. Let m∗
denote the total number of shares distributed among participants in the
optimal multiple assignment scheme.

Method Initial scheme Field size q′ Design
[7] Partially decryptable 2L Explicit

[12] Multiple assignment L +m∗ Optimization

[8] Linear qO(L2) Non-constructive

[8] Linear O(2L+n) Non-constructive

Theorem 1 Linear q2L Explicit

Theorem 2 Linear 2O(L2n ) Deterministic

Sect. 4.3 for a more detailed comparison.
Our technical novelty is abstraction of a linear alge-

braic property common to both strongly secure linear ramp
schemes for general access structures and strongly secure
network codes [14]. As pointed out in [14], network codes
were connected to threshold schemes in the sense that an
adversary wiretapping j edges in a network code is viewed
as the one who obtains j shares of a threshold scheme. How-
ever, it is not straightforward to generalize the connection to
general access structures since the amount of leaked infor-
mation is determined by Γj rather than the number of shares.
The connection revealed by our result shows that two algo-
rithms to construct strongly secure network codes [15], [16]
can be used to make linear ramp schemes strongly secure.

1.2.2 Application to Multi-User SPIR

Based on a strongly secure ramp scheme, we provide a more
efficient solution to SPIR in the above multi-user setting.
We first formalize that problem by introducing a notion of
dynamic SPIR scheme Π for (Φ1, . . . ,ΦM ;Ψ), in which ev-
ery user can choose any Φi before generating queries but
possibly after servers generate correlated randomness, and
then it proceeds as an SPIR scheme with response patternΦi

and collusion pattern Ψ (Definition 4). We then construct a
more efficient dynamic SPIR scheme than those based on the
naive solutions described above (Theorem 4). Our solution
has the following advantages:

• If a user has a response patternΦM , the communication
ratio of our scheme is the minimal information ratio of
a linear ramp scheme whose family of authorized sets is
ΦM , which is generally smaller than that of Solution I.

• The servers need to generate only one share of the un-
derlying ramp scheme as correlated randomness while
they must generate M shares in Solution II.

We note that in our scheme, the communication ratio for
a user with response pattern Φi , i , M is possibly larger
than that of Solution I. Our solution is especially useful in
applications in which most of users have ΦM while only a
small fraction of them have Φi , i , M .
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1.3 Related Work

Strongly secure ramp schemes for threshold access struc-
tures are studied in [6], [17], [18]. Matsumoto [12] showed
a construction of strongly secure ramp schemes based on
a multiple assignment technique [19]. Specifically, it as-
signs each participant a set of multiple shares generated by
a threshold ramp scheme. By solving a certain optimization
problem, one can find the optimal assignment as well as op-
timal parameters including the total number m∗ of shares.
However, it is shown in [19] that there exists an access struc-
ture which cannot be realized by that technique. Moreover,
the associated optimization problem involves exponentially
many variables.

Although related notions of multi-user PIR are studied
in [20], [21], their results do not apply to our setting since
database privacy is not considered. In the single-user setting,
PIR and SPIR have been extensively studied in the literature
to determine the optimal capacity since they were introduced
in [9], [10]; e.g., see [11], [22] and references therein.

2. Preliminaries

2.1 Notations

Let [m] = {1, . . . ,m} and Fq denote the field of size q.
Throughout the paper all vectors are row vectors unless oth-
erwise indicated. Let ei denote the vector whose i-th entry
is 1 and others are all 0. Let 0m denote the zero vector of
length m. Unless otherwise indicated, the sets indexing the
rows and columns of a matrix M ∈ Fr×cq are identified with
[r] and [c], respectively. Let row(M) ⊆ Fcq denote the row
space of M . For C ⊆ [c], we write M[C] ∈ Fr×|C |q for the
sub-matrix obtained by restricting the columns to C. For a
family of matrices (Mi ∈ F

ri×c
q )i∈I and A ⊆ I, we defineMA

as the (
∑

i∈A ri)-by-c matrix obtained by vertically concate-
nating Mi , i ∈ A. Let Im denote the identity matrix of size
m and Om, j denote the m-by- j zero matrix.

2.2 Secret Sharing

Let P = [n] be the set of n participants and let 2P denote the
power set of P. A family F ⊆ 2P is called monotonically
increasing (resp. decreasing) if A ∈ F and A ⊆ B (resp.
B ⊆ A) imply B ∈ F for any A,B ∈ 2P . An L-level access
structure AL = (Γj)0≤ j≤L on P is a tuple of L + 1 families
such that

⋃
0≤ j≤L Γj = 2P , Γj ∩ Γk = ∅ for j , k, and⋃

`≥ j Γ` is monotonically increasing for any j ∈ [L].
Let S = (S1, . . . ,SL) be a tuple of L mutually inde-

pendent uniform random variables over the alphabet X and
V1, . . . ,Vn be n random variables. Write SB = (Si)i∈B for
B ⊆ [L] and VA = (Vi)i∈A for A ⊆ P. We say that
Σ = (S,V1, . . . ,Vn) is a ramp secret sharing scheme real-
izing an L-level access structure AL = (Γj)0≤ j≤L [23] if
Γj = {A ⊆ P : H(S |VA) = ((L − j)/L)H(S)} for any
0 ≤ j ≤ L, where H(·) and H(·|·) are the entropy and

the conditional entropy, respectively. A set of participants is
called authorized (resp. forbidden) if it is in ΓL (resp. Γ0).
The information ratio σ(Σ) is defined by

∑
i∈P H(Vi)/H(S).

Strongly secure ramp secret sharing schemes guarantee
that no set in Γj has information on L − j sub-secrets.

Definition 1 ([6], [7]). Let Σ = (S,V1, . . . ,Vn) be a ramp
secret sharing scheme realizing an L-level access struc-
ture AL = (Γj)0≤ j≤L . We say that Σ is strongly secure
if H(SB |VA) = H(SB) for any j ∈ [L − 1], A ∈ Γj , and
B ⊆ [L] of size L − j.

A ramp secret sharing scheme Σ = (S,V1 . . . ,Vn) is
called Fq-linear if there exist L + n full row-rank matrices
U` ∈ F

1×e
q , ` ∈ [L] andWi ∈ F

di×e
q , i ∈ P such that the distri-

bution of S` is given byU`(R1, . . . ,Re)
> and that ofVi is given

by Wi(R1, . . . ,Re)
>, where the Rj’s are mutually indepen-

dent uniform random variables on Fq . We can identify any
linear ramp scheme with a pair of two matrices (U[L],WP).
The information ratio is given by σ(Σ) =

∑
i∈P di/L. If

Σ realizes AL = (Γj)0≤ j≤L , a set A is in Γj if and only if
dim(row(U[L]) ∩ row(WA)) = j [24].

A linear ramp scheme Σ provides an efficient share
algorithm Σ.Share. Let s = (si)i∈[L] be a secret drawn
from the uniform distribution on FLq . Σ.Share on input s
chooses a vector ρ ∈ Feq uniformly at random conditioned on
s> = U[L]ρ

> and sets the i-th share as vi = (Wiρ
>)> ∈ Fdiq .

2.3 Network Coding

Let L be a message length. We call a vector in F := Fmq a
packet. A network instance is a tuple of a directed acyclic
graph G = (V,E), a source node sG , and a set of sink nodes
TG , where sG generates L packets X = (X1, . . . ,XL)

> ∈ FL

and each edge carries one packet. A linear network code N
is a family of vectors (We ∈ F

1×L
q )e∈E such that:

1. For any e = (u, v) ∈ E, We is an Fq-linear combination
of vectors Wf indexed by the incoming edges f to u.

2. For any t ∈ TG , rank(WA) = L, where A denotes the set
of all the incoming edges to t.

We can identify N with a matrix WE ∈ F
|E |×L
q . If we let

every edge e ∈ E carry a packet WeX , then every sink node
can recover X from packets transmitted over its incoming
edges. Let S = (S1, . . . ,SL) be a uniform random variable
on FL representing X . Let Ve be a random variable on
F representing a packet transmitted over e ∈ E. Write
SB = (Si)i∈B for B ⊆ [L] and VA = (Ve)e∈A for A ⊆ E.

Fix an integer k such that k < L. For j ∈ [k], we
consider an adversary who wiretaps a set of j edges A and
obtainsWAX . We may assume thatWA is full row-rank†. A
strongly secure network code protects every subset of all the
L packets X of size L− j from the wiretapper. We follow the
definition of strongly secure network codes given in [16].

†If We is spanned by the other rows Wf , f ∈ A \ {e}, then the
adversary can locally computeWeX without wiretapping e.
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Definition 2 ([16]). A linear network code N represented
by WE is said to be strongly k-secure if H(SB |VA) = H(SB)
for any j ∈ [k], A ⊆ E of size j, and B ⊆ [L] of size L − j.
We simply say that it is strongly secure if k = L − 1.

3. LinearAlgebraicProblemRelated toStrongSecurity

We abstract a linear algebraic problem which connects
strongly secure ramp schemes with network codes.

3.1 Strongly Secure Ramp Secret Sharing

Let Σ = (S,V1, . . . ,Vn) be an Fq-linear ramp secret sharing
scheme and (U[L],WP) be the associated pair of matrices.
The access structure and the information ratio of Σ do not
change if Σ is viewed as an Fqm -linear scheme for m ≥ 1.

We associate each subset A ⊆ P with a set of row
vectors CA(Σ) = {c ∈ FLq : cU[L] ∈ row(WA)}. It follows
that CA(Σ) is a j-dimensional vector space over Fq if A ∈ Γj ,
namely, an [L, j]-linear code over Fq . It is shown in [8]
that a linear ramp secret sharing scheme Σ corresponding
to (U[L],WP) is strongly secure if and only if CA(Σ) is an
MDS code for any A ⊆ P. Let GA ∈ F

j×L
q be a generator

matrix of CA(Σ). A well-known characterization of MDS
codes implies that Σ is strongly secure if and only if

det(GA[C]) , 0 (1)

for any j ∈ [L − 1], A ∈ Γj , and C ⊆ [L] of size j.
There is a framework for transforming a given Fq-linear

ramp scheme Σ into another scheme based on a non-singular
matrix [7]. Let (U[L],WP) be the pair of matrices asso-
ciated with Σ. For a non-singular matrix T ∈ FL×Lqm , de-
fine an Fqm -linear ramp scheme ΣT as the one associated
with (T−1U[L],WP). That is equivalent to applying the lin-
ear transformation T to a secret vector and then generating
shares for its image using Σ. The access structure and the
information ratio of ΣT are the same as Σ. A generator
matrix of CA(ΣT ) is given by GAT if GA is a generator ma-
trix of CA(Σ). Thus, ΣT is strongly secure if and only if
det((GAT )[C]) , 0 for any j ∈ [L − 1], A ∈ Γj , and C ⊆ [L]
of size j. Now, consider the following problem.

Problem 1. Let M j ⊆ F
j×L
q , j ∈ [L − 1] be given L − 1

families of full row-rank matrices. Let Fqm/Fq be a field
extension of degreem. Find a non-singular matrixT ∈ FL×Lqm

such that det((GT )[C]) , 0 for any j ∈ [L − 1], G ∈ M j ,
and C ⊆ [L] of size j.

The construction of strongly secure schemes based on
the transformation method of [7] is reduced to solving Prob-
lem 1 for M j = Sj(Σ) := {GA : A ∈ Γj}. Note that the
degree m should be as small as possible since the length of
each share of ΣT increases m times while σ(ΣT ) = σ(Σ).

3.2 Strongly Secure Network Coding

In the context of network coding, several methods have been

devised in [14]–[16] to transform a linear network code N
represented by WE into a strongly secure one. A basic
strategy used in the literature is as follows: (1) identifying
F = Fmq with Fqm , multiply a message X ∈ FL by a fixed
non-singular matrix T ∈ FL×Lqm and (2) send TX ∈ FL as an
input message using N . We denote this new linear network
code by NT . It follows from a similar argument in [13] that
NT is strongly secure if and only if S := T−1 satisfies

rank(SB) + rank(WA) = rank
[
SB

WA

]
, (2)

for any j ∈ [L − 1], A ⊆ E of size j, and B ⊆ [L] of size
L − j. Here, SB is the |B | × L matrix consisting only of
the rows S` , ` ∈ B of S. The left-hand side is equal to
L since SB and WA are full row-rank. By multiplying the
matrix [S>B,W

>
A ]
> on the right side by T and performing the

elementary row operation, we see that the right-hand side is
equal to L − j + rank((WAT )[C]), where C = [L] \ B. Thus,
Eq. (2) holds if and only if rank((WAT )[C]) = j.

We interpret the above discussion in the setting of Prob-
lem 1. Let N be a linear network code represented by a
matrix WE over Fq . For a non-singular matrix T ∈ FL×Lqm ,
a linear network code NT is strongly secure if and only if
T is a solution to Problem 1 forM j = Uj(WE) := {WA :
A is a subset of E of size j with rank(WA) = j}.

4. Explicit and Deterministic Constructions of Strongly
Secure Schemes

The above linear algebraic connection shows that previous
results on strongly secure network coding imply two con-
structions of strongly secure ramp secret sharing schemes.

4.1 Explicit Construction Based on Rank-Metric Codes

An explicit construction of strongly secure network codes
based on rank-metric codes is given in [15]. Rank-metric
code C is an [`, k]-linear code over Fqm . The distance be-
tween X ∈ C and Y ∈ C is given by rank(φ(X) − φ(Y )),
where φ is an isomorphism from Fqm to Fm×1

q and is applied
on the row vectors X and Y entry-wise. The rank-metric
code C is called MRD if m ≥ ` and d = ` − k + 1.

For any integers m and L satisfying m ≥ 2L, let
C ⊆ F2L

qm be an [2L, L]-linear MRD code with generator
matrix G ∈ FL×2L

qm . The existence of such codes is guar-
anteed by Gabidulin codes [25], which are generated by
G = (g

qi−1

j )i∈[L], j∈[2L] for linearly independent elements
gj ∈ Fqm over Fq . Without loss of generality, we may
assume that G has the form of G = [IL,T>] for some L-by-
L matrix T . The result of [15] implies that T is a solution to
Problem 1 forM j = R j(Fq) := {W ∈ Fj×Lq : rank(W ) = j}.

We provide a simpler proof of it for the convenience
of the reader. Suppose that det((WT )[C]) = 0 for some
j ∈ [L − 1], W ∈ M j , and C ⊆ [L] of size j. For ease of
notation, we assume that C = [ j]. Set M = T [C] ∈ FL×jqm .
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Let v ∈ Fjqm be a non-zero vector such thatWMv> = 0 and
let ṽ = (v,0L−j). Set Y = φ(̃vG) ∈ Fm×2L

q and let Y1,Y2 ∈

Fm×Lq be such thatY = [Y1,Y2]. Since vM>W> = 0, it holds
that Y2W

> = Om, j . The form of ṽG implies that Y1Z
> =

Om,L−j , where Z = [OL−j , j, IL−j] ∈ F
(L−j)×L
q . We obtain

rank(φ(̃vG)) ≤ 2L−(rank(Z>)+ rank(W>)) = L. However,
since C is MRD, we must have rank(φ(̃vG)) ≥ L + 1.

We show an explicit construction of strongly secure
ramp secret sharing schemes. Let m ≥ 2L and G =[
IL T>

]
be a generator matrix of an [2L, L]-linear MRD

code over Fqm . ThenT ∈ FL×Lqm is a solution to Problem 1 for
M j = R j(Fq). SinceSj(Σ) ⊆ R j(Fq) for any Fq-linear ramp
secret sharing scheme Σ, T is also a solution to Problem 1
forM j = Sj(Σ) and hence ΣT is strongly secure.

Theorem 1. For any m and L with m ≥ 2L, there exists an
explicit construction of T ∈ FL×Lqm such that ΣT is strongly
secure for any Fq-linear ramp scheme Σ.

4.2 Deterministic Algorithm

A deterministic algorithm to construct a strongly secure net-
work code is proposed in [16]. To explain it in the setting
of Problem 1, let (We ∈ F

1×L
q )e∈[N ] be a family of N row

vectors. Note that N corresponds to the number of edges in
the network. Let Ñ be the reduced size [16] of the matrix
W[N ], which is the number of rows of a maximal sub-matrix
WA such that any pair of rows is linearly independent. Set

K = Ñ +
L−2∑
i=1

(
L − 1

i

) (
Ñ

i + 1

)
. (3)

The algorithm of [16] takes as input W[N ] and any m sat-
isfying qm > K , and outputs a matrix T ∈ FL×Lqm such that
T is a solution to Problem 1 forM j = Uj(W[N ]). Its time
complexity is O((LN2 + L2K)poly(m, log q )).

Now, we can design a deterministic algorithm to obtain
T for a given linear ramp scheme Σ such that ΣT is strongly
secure. Let Σ be an Fq-linear ramp scheme with L-level
access structure AL = (Γj)0≤ j≤L . First, let GA ∈ F

j×L
q be

a generator matrix of CA(Σ) for j ∈ [L − 1] and A ∈ Γj .
Note that finding GA is equivalent to computing the kernel
of [U>

[L]
,W>A ], which can be done in polynomial time in j, L

and log q, e.g., by Gaussian elimination. Next, construct a
set G ⊆ FLq as G = {v : v is a row of GA for some A}. Set
N = |G| and write G = {We : e ∈ [N]}, that is, remove
repeated elements. Let Ñ be the reduced size of W[N ] and
set K as in Eq. (3). Finally, run the algorithm of [16] for
W[N ] and any m satisfying qm > K and obtain T ∈ FL×Lqm .
T is a solution to Problem 1 for M j = Uj(W[N ]). Since
Sj(Σ) ⊆ Uj(W[N ]), T is also a solution to Problem 1 for
M j = Sj(Σ), which implies that ΣT is strongly secure.

Theorem 2. Let Σ be an Fq-linear ramp scheme with L-
level access structure AL . Define N and K as above and
let m be any integer satisfying qm > K . Then there exists a

deterministic algorithm which outputs T ∈ FL×Lqm such that
ΣT is strongly secure.

The resulting scheme has a field size qm > K in
the worst-case. We have an upper bound K ≤ Ñ +
2L−1+Ñ = 2O(L2n) since N ≤

∑
j∈[L−1] j |Γj | ≤ L2n. Let-

ting σ = nσ(Σ), the above algorithm has time complexity
O(2npoly (L, σ, log q )) + O((LN2 + L2K)poly (m, log q )) =
2O(L2n)poly(L, σ,m, log q ) .

4.3 Comparison

In this section, we give a more detailed explanation of Ta-
ble 1. We compare our transformations in Theorems 1 and 2
with [7], [8], [12] in terms of the assumption on an initial
scheme, the design of transformations, and the field size.

(1) Assumption on an Initial Scheme

Theorems 1, 2, and [8] only require that an initial scheme
be linear, which is satisfied by most of the previously pro-
posed secret sharing schemes. To be precise, let Σ be an
Fq-linear ramp secret sharing scheme realizing an L-level
access structure AL = (Γj)0≤ j≤L . If q′ = qm exceeds the
field size shown in Table 1, they can give a matrixT ∈ FL×Lqm

to transform Σ into a strongly secure Fq′-linear scheme ΣT .
On the other hand, the method in [7] assumes that an initial
scheme is partially decryptable, which means that every sub-
set in Γj completely determines some j sub-secrets (see [7]
for the formal definition). However, there is no construction
of partially decryptable ramp schemes except one that must
have a higher information ratio than linear perfect schemes
[7]. The construction of [12] can only be applied to ramp
schemes obtained by a multiple assignment technique [19],
which are a subclass of linear schemes. It is also known
that there exists an access structure which cannot be realized
by that technique [19]. We conclude that our methods are
advantageous over [7], [12] in that it is applied to a wider
class of ramp schemes.

(2) Design of Transformation

Theorem 1 explicitly constructs a matrix T from a certain
MRD code. It is also universal [13] in the sense thatT is able
to transform any Fq-linear ramp scheme Σ into a strongly se-
cure one. Theorem 2 provides a deterministic algorithm to
obtain T while its time complexity is doubly exponential
in n. However, it still works since n is fairly small in ap-
plication to distributed data storage (e.g., n = 6) and also
since once T is found, we can efficiently share and recon-
struct secrets using the resulting strongly secure scheme.
Our constructions being explicit and providing a determinis-
tic algorithm are preferable to the non-constructive methods
of [8], which fail to find T with non-zero probability. More-
over, they provide no method to verify the resulting scheme
is indeed strongly secure except for the brute-force approach
of checking whether all the linear codes CA(ΣT ) are MDS.
Theorem 1 is preferable even to the construction of [12] in
that it gives an explicit transformation while [12] needs to
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solve an optimization problem with exponentially many (in
n) variables.

(3) Field Size

The field sizes q′ required by [7], [12], the second method
of [8], and Theorem 2 are independent of q. Thus, they
can be applied to Fq-linear ramp schemes Σ without taking
a field extension if q is sufficiently large. For example,
since we have K = 2O(L2n), Theorem 2 can transform an
Fq-linear scheme with q = 2Ω(L2n) into a strongly secure
one without increasing the share size. The construction of
[12] requires q′ ≥ L + m∗, where m∗ is the total number of
shares distributed to participants. Since m∗ is obtained only
after solving the associated optimization problem, we have
no explicit upper bound on m∗. On the other hand, the field
size required by Theorem 1 is q2L , which means that we
must take a field extension of degree 2L. It is smaller than
the first method of [8], which needs the degree to be O(L2).

4.4 Example

We provide a simple and concrete example of our construc-
tions to demonstrate how a ramp scheme is converted into a
strongly secure one with the help of a network code.

Assume that the set P of n = 7 participants is divided
into two parts P1,P2 with |P1 | = 4 and |P2 | = 3. Consider
the following four conditions on a subset A ⊆ P:
(C-1) |A ∩ P2 | ≥ 3;
(C-2) |A ∩ P1 | ≥ 1 and |A ∩ P2 | ≥ 2;
(C-3) |A ∩ P1 | ≥ 2 and |A ∩ P2 | ≥ 1;
(C-4) |A ∩ P1 | ≥ 4.
Let L = 3 and AL = (Γ0,Γ1,Γ2,Γ3) be a 3-level access
structure such that Γj consists of all subsets satisfying exactly
j out of the above four conditions.

Let q = 11. A possible construction of a ramp secret
sharing scheme Σ realizingAL is as follows: Given a secret
(s1, s2, s3) ∈ F

3
q , set (t(1), t(2), t(3), t(4)) = (s1, s1+s2, s2+s3, s3)

and share each t(i) in such a way that any set of participants
satisfying the condition (C-i) reconstructs t(i) and others
learn no information. The latter procedure can be done
by splitting t(i) into two random elements a1,a2 as t(i) =
a1 + a2 and sharing each aj among participants in Pj with
the threshold specified by (C-i).

Observe that the above ramp scheme Σ is not strongly
secure. Indeed, for any set A satisfying the condition (C-2)
only, the strong security requires that shares held by players in
A reveal no information on every set of two sub-secrets since
A ∈ Γ1. However, players in A can reconstruct t(2) = s1 + s2
and hence H(S1S2 |VA) = (1/2)H(S1S2) < H(S1S2).

To make the naive scheme strongly secure, we first
determine generator matrices GA of CA(Σ) for all A ∈ Γ1 ∪
Γ2. Take a set A satisfying the conditions (C-1) and (C-
2) as an example. Then, players in A learn t(1) = s1 and
t(2) = s1 + s2, and hence CA(Σ) is generated by

GA =

[
1 0 0
0 1 0

]
.

In general, we see that if A ∈ Γj , the rows of a generator
matrix GA are some j rows of a matrix

M =


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1


.

In view of Problem 1, we can make Σ strongly secure if
we find a 3-by-3 matrix T such that every minor of MT of
order 1 or order 2 is non-zero. A network codeN related to
Σ is the same as the one shown in [16, Fig. 1] except that
(m1,m2,m3) is replaced with (s1, s2, s3). Indeed, it can be
seen that a vector We associated with every edge e is one of
the rows of M .

If we move to an extension field Fq6 , we have a
[6,3]-linear MRD code over Fq6 with generator matrix
G =

[
G1 G2

]
= (g

qi−1

j )1≤i≤3,1≤ j≤6 ∈ F
3×6
q6 , where the

gj’s form a basis of Fq6 . Set T1 := G−1
1 G2. The result of

[15] shows that if T1(s1, s2, s3)
> is sent as an input message

inN instead of (s1, s2, s3)
>, then this new network codeNT1

is strongly secure. Based on the connection shown in Sect. 3,
by settingT1(s1, s2, s3)

> as a secret, we canmake Σ a strongly
secure ramp scheme, which is indeed the statements of The-
orem 1. Although the information ratio does not change, the
share size increases by six times due to the field extension
Fq6/Fq .

In this example, we can also find T from matrices over
Fq and hence do not need to increase the share size. As
shown in [16, Fig. 4], if one inputs the matrix M associated
with the network codeN to the deterministic algorithm [16],
it outputs the following matrix

T2 =


1 1 4
1 2 5
1 3 7

 ∈ F3×3
q .

Then, the transformed network code NT2 , in which
T2(s1, s2, s3)

> is sent as an input message in N , is strongly
secure. Again, based on the connection in Sect. 3, we can ob-
tain a strongly secure ramp scheme by setting T2(s1, s2, s3)

>

as a secret for Σ. We note that the bound on the field size
given by Theorem 2 is a sufficient condition. As in this case,
a desired matrix T can be found from ones over a smaller
field depending on an initial ramp scheme.

5. Application to Multi-User SPIR

5.1 System Model

Let P be a set of n servers. Suppose that every server has
a copy of a database D = (D1, . . . ,Dm) ∈ F

m
q . Let Ψ be a

monotonically decreasing family on P and suppose that a set
of servers B ∈ Ψ can collude. There are an arbitrary number
of non-colluding users each of whom wants to retrieve L
values DT := {Dτ : τ ∈ T} for a set T ⊆ [m] of size L. Let
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Φ1 ⊇ · · · ⊇ ΦM be a chain of M monotonically increasing
families on P such that Φi ∩ Ψ = ∅ for all i ∈ [M]. Each
user has a response pattern Φi for some i ∈ [M], that is, he
receives answers from servers in A ∈ Φi when computing
data items. Our aim is to realize a scheme such that it
serves as SPIR for (Φi,Ψ) between a user and servers (see
Definition 3) if the user has a response pattern Φi .

5.2 Formalization of Dynamic SPIR

We first recall the definition of SPIR [10].

Definition 3 ([10]). Let Φ,Ψ be monotonically increasing
and decreasing families on P, respectively, such thatΦ∩Ψ =
∅. An L-message SPIR (L-SPIR) scheme Π for (Φ,Ψ) is a
tuple of four algorithms Π = (Setup,Que,Ans,Rec), where:

• Setup takes no input and outputs correlated random-
ness (r1, . . . ,rn);

• Que takes as input a set T ⊆ [m] of size L and outputs
a query vector (q1, . . . ,qn);

• Ans takes as input i ∈ P, a query qi , a database D and
a random string ri , and outputs an answer ai;

• Rec takes as input A ∈ Φ and answers (ai)i∈A, and
outputs a set of values D̃†;

satisfying the following properties:

• Correctness. For any database D ∈ Fmq , any set
T ⊆ [m] of size L, any (r1, . . . ,rn) ← Setup(), any
(q1, . . . ,qn) ← Que(T) and any A ∈ Φ, it holds that
Rec(A, (Ans(i,qi,D,ri))i∈A) = DT ;

• User Privacy. For any D ∈ Fmq , any set T,T ′ ⊆ [m]
of size L and any B ∈ Ψ, the distributions (qi)i∈B and
(q′i )i∈B are perfectly identical, where (q1, . . . ,qn) ←
Que(T) and (q′1, . . . ,q

′
n) ← Que(T ′);

• Database Privacy. For any set T ⊆ [m] of
size L, any D,D′ ∈ Fmq such that DT = D′T ,
and any (q1, . . . ,qn) ← Que(T), the distributions
(Ans(i,qi,D,ri))i∈P and (Ans(i,qi,D′,ri))i∈P are per-
fectly identical, where (r1, . . . ,rn) ← Setup().

The communication (resp. randomness) ratio is defined
as CC(Π) =

∑
i∈P `Ans(i, ·)/(L log q) (resp. RC(Π) =

`Setup/(L log q)), where `Ans(i, ·) (resp. `Setup) is the output
length of Ans(i, ·) (resp. Setup()).

Next, we formalize the notion of dynamic SPIR.

Definition 4 (Dynamic SPIR). Let Ψ be a monotonically
decreasing family on P. Let Φ1 ⊇ · · · ⊇ ΦM be a chain of
M monotonically increasing families on P such that Φi ∩

Ψ = ∅ for all i ∈ [M]. A dynamic SPIR scheme Π for
F = (Φ1, . . . ,ΦM ;Ψ) is a tuple of four algorithms Π =
(Setup,Que,Ans,Rec), where:

• The syntax is the same as Definition 3 except that Que

†Rec is allowed to additionally take as input random strings
for Que since the same user runs both of them. For simplicity, we
avoid passing such strings explicitly from Que to Rec.

and Rec additionally take as input an index i ∈ [M];

satisfying the following property:

• For any i ∈ [M],

Πi = (Setup(),Que(·; i),Ans,Rec(·; i))

is an Li-SPIR scheme for (Φi,Ψ), where Li ∈ N.

The communication (resp. randomness) ratio is defined as
CC(Π) = (CC(Πi))i∈[M] (resp. RC(Π) = (RC(Πi))i∈[M]).

A dynamic SPIR scheme realizes SPIR between users
with different response patterns and servers. In the setup,
servers jointly generate (ri)i∈P ← Setup() and Server i stores
ri . A user with response pattern Φj generates (qi)i∈P ←
Que(T ; j) and sends qi to Server i. In response to that,
Server i returns ai = Ans(i,qi,D,ri). If the user receives
answers from a set of servers A ∈ Φj , he can compute
DT = Rec(A, (ai)i∈A; j). Since users are supposed to be non-
colluding, servers may use the same correlated randomness
for all users to protect database privacy.

5.3 Our Construction of Dynamic SPIR

We first show a technical property of strongly secure ramp
schemes that facilitates the construction of dynamic SPIR.

Theorem 3. Let Σ be a strongly secure Fq-linear ramp se-
cret sharing scheme with L-level access structure AL =

(Γj)0≤ j≤L on P. Let Φ be a monotonically increasing
family on P. Define α = αΣ(Φ) := max{ j : Φ ⊆
Γj ∪ · · · ∪ ΓL}. Then, there exists an algorithm Reconstα
such that Reconstα(A, (vi)i∈A) = s for any A ∈ Φ, s ∈ Fαq
and (vi)i∈P ← Σ.Share(s,0L−α).

Proof. The algorithm Reconstα is shown in Fig. 1. Let
A ∈ Φ, s ∈ Fαq and (vi)i∈P be an output of Σ.Share(s,0L−α).
There exists a vector ρ such that U[L]ρ> = (s,0L−α)

> and
Wiρ

> = v>i for i ∈ P. Since Σ is strongly secure, the
property (1) in Sect. 3.1 implies that every set of j column
vectors of GA is linearly independent. The rank of G1 ob-
tained at Step 3 is α and hence there is at most one solution
to the linear equation at Step 4. On the other hand, since
Λv>A = ΛWAρ

> = GAU[L]ρ
> = GA(s,0L−α)

> = G1 s
>, s is

the unique solution to G1x
> = Λv>A. Therefore, the output

Reconstα . Given a set A ∈ Φ and a tuple of shares (vi )i∈A:

1. Let j ≥ α be such that A ∈ Γj .
2. Compute a generator matrix GA ∈ F

j×L
q of CA(Σ) and a

matrix Λ such thatGAU[L] = ΛWA.
3. Let G1 ∈ F

j×α
q ,G2 ∈ F

j×(L−α)
q be such that GA =[

G1 G2
]
.

4. Output a solution x ∈ Fαq to a linear equationG1x
> = Λv>

A
,

where vA is the vector obtained by concatenating vi for
i ∈ A.

Fig. 1 The algorithm Reconstα .
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Setup. Output (ri )i∈P ← Σ.Share(0L ).
Que. Given i ∈ [M] and a set T = {τ1, . . . , τα } of α = Li indices:

1. Let
[
s>1 · · · s>m

]
=

[
e>τ1 · · · e>τα

]>
∈ Fα×mq .

2. For each j ∈ [m], compute (v j i )i∈P ← Σ.Share(s j , 0L−α).
3. Output qi = (v1i , . . . , vmi ) for i ∈ P.

Ans. Given i ∈ P, a query qi = (v j i ) j∈[m], a database D =

(D j ) j∈[m] ∈ F
m
q and a random string ri , output ai =∑

j∈[m] D j v j i + ri .

Rec. Given i ∈ [M], A ∈ Φi and answers (ai )i∈A, output D̃ =

Reconstα(A, (ai )i∈A), where α = Li .

Fig. 2 A dynamic SPIR scheme based on a strongly secure ramp scheme.

of Reconstα is equal to the correct secret s. �

Now, we present our construction of dynamic SPIR.

Theorem 4. Let AL = (Γj)0≤ j≤L be an L-level access
structure. Let Ψ be a monotonically decreasing family and
Φ1 ⊇ · · · ⊇ ΦM be a chain of monotonically increasing
ones such that Ψ ⊆ Γ0 and Φi ∩ Γ0 = ∅ for all i ∈ [M].
If there exists a strongly secure Fq-linear ramp scheme Σ
realizing AL with information ratio σ, there exists a dy-
namic SPIR scheme Π for F = (Φ1, . . . ,ΦM ;Ψ) such that
CC(Π) = RC(Π) = (Lσ/αΣ(Φi))i∈[M] .

Proof. Let Li = αΣ(Φi) for any i ∈ [M]. Consider the dy-
namic SPIR scheme shown in Fig. 2. We show that Πi =

(Setup,Que(·; i),Ans,Rec(·; i)) is an Li-SPIR scheme for
(Φi,Ψ). Let (U[L],WP) be a pair of matrices associated with
Σ, whereU` ∈ F1×e

q for ` ∈ [L] andWi ∈ F
di×e
q for i ∈ P. To

see the correctness, let (ri)i∈P be an output ofSetup. There is
a vector ρ0 such thatU[L]ρ>0 = 0L andWiρ

>
0 = r>i for i ∈ P.

At Step 2 of Que, for each j ∈ [m], there exists a vector ρ j

such thatU[L]ρ>j = (s j,0L−α)
> andWiρ

>
j = v

>
ji for i ∈ P. In

Ans, it holds that a>i =
∑

j DjWiρ
>
j +Wiρ

>
0 = Wiξ

>,where
ξ =

∑
j Djρ

>
j + ρ0. Then, (ai)i∈P is a possible output of

Σ.Share(Dτ1, . . . ,Dτα ,0L−α) since

U[L]ξ
> =

[∑
j Dj s

>
j

0>L−α

]
=

[
Dτ1 · · · Dτα 0L−α

]>
.

The correctness follows since Reconstα correctly recov-
ers s ∈ Fαq from (vi)i∈A if A ∈ Φ and (vi)i∈P ←
Σ.Share(s,0L−α). The user privacy follows from the pri-
vacy of Σ since a tuple of shares (qi)i∈B reveals nothing on
secrets s j , j ∈ [m] if B ∈ Ψ ⊆ Γ0.

To see the database privacy, let D,D′ be such that
DT = D′T . Let qi = (v ji)j∈[m] be a query sent to
i ∈ P. For each j ∈ [m], there exists a vector ρ j such
that U[L]ρ>j = (s j,0L−α)

> and Wiρ
>
j = v>ji for i ∈ P.

Note that the distribution of outputs of Setup is the same
as that of (Wiρ

>
0 )i∈P where ρ0 is randomly chosen from

V := {ρ ∈ Feq : U[L]ρ
> = 0L}. It is sufficient to show

a bijection θ : V → V such that (Ans(i, qi,D′, r ′i ))i∈P =
(Ans(i, qi,D, ri))i∈P for any ρ ∈ V , where r>i = Wiρ

> and
(r ′i )

> = Wiθ(ρ)
>. Set ζ =

∑
j∈[m](Dj − D′j)ρ j and define

Table 2 Comparison of dynamic SPIR schemes for F =

(Φ1, . . . ,ΦM ;Ψ) based on Solutions I, II [11] and ours (Corollary 1).
We show their communication and randomness ratios when a user chooses
(Φi , Ψ) for 1 ≤ i ≤ M .

Construction Communication Randomness
Solution I [11] λq ,L (Φ1, Ψ) λq ,L (Φ1, Ψ)

Solution II [11] λq ,L (Φi , Ψ)
∑M

j=1 λq ,L (Φ j , Ψ)

Ours (Corollary 1)
Lλq ,L (ΦM , Ψ)

αΣ(Φi )

Lλq ,L (ΦM , Ψ)

αΣ(Φi )

θ(ρ) = ρ + ζ . Since DT = D′T and s j = 0α for j < T ,
we have that U[L]ζ> =

∑
j<T (Dj − D′j)(s j,0L−α)

> = 0L and
hence ζ ∈ V . Since V is a linear space, θ is indeed a bijec-
tion. It also holds that Ans(i, qi,D′, r ′i ) − Ans(i, qi,D, ri) =∑

j∈[m](D′j − Dj)Wiρ
>
j +Wiζ

> = 0.
Finally, since

∑
j∈P `Ans(j , ·) = `Setup = Lσ log q, we

have that CC(Πi) = RC(Πi) = Lσ/αΣ(Φi) for i ∈ [M]. �

Since any linear ramp scheme can be made strongly
secure without increasing the information ratio, we have the
following corollary.

Corollary 1. Using the notations in Theorem 4, if there
exists an Fq-linear ramp scheme realizing AL with infor-
mation ratio σ, there exists a dynamic SPIR scheme Π
for F = (Φ1, . . . ,ΦM ;Ψ) such that CC(Π) = RC(Π) =
(Lσ/αΣ(Φi))i∈[M] .

5.4 Comparison

We show the advantage of our dynamic SPIR scheme over
two constructions that are naturally implied by the SPIR
scheme in [11] (Table 2). LetΦ (resp.Ψ) be a monotonically
increasing (resp. decreasing) family. Wedefine λq,L(Φ,Ψ) as
the minimum information ratio of Fq-linear ramp schemes
with L-level access structure AL = (Γj)0≤ j≤L such that
Φ = ΓL and Ψ = Γ0. According to [11], there exists an
L-SPIR scheme Π for (Φ,Ψ) such that CC(Π) = RC(Π) =
λq,L(Φ,Ψ). Let Φ1 ⊇ · · · ⊇ ΦM be a chain of M monotoni-
cally increasing families and Ψ be a monotonically decreas-
ing family of subsets of P such thatΦi∩Ψ = ∅ for all i ∈ [M].
Note that λq,L(Φ1,Ψ) ≥ λq,L(Φ2,Ψ) ≥ · · · ≥ λq,L(ΦM ,Ψ).
We first recall two naive solutions based on [11], which we
described in Sect. 1.1.2.

Solution I: To build an SPIR schemeΠ0 for (Φ1,Ψ) and use
it regardless of a user’s choice (Φi,Ψ).

Since Φi ⊆ Φ1, one obtains a dynamic SPIR scheme Π(1)
for F = (Φ1, . . . ,ΦM ;Ψ) such that CC(Π(1)) = RC(Π(1)) =
(λq,L(Φ1,Ψ))1≤i≤M . However, always assuming the worst
case (Φ1,Ψ) results in an unnecessarily high communication
ratio λq,L(Φ1,Ψ) when a user has a response pattern ΦM .

Solution II: To build M SPIR schemesΠi , each for (Φi,Ψ),
and use Πi if a user’s response pattern is (Φi,Ψ).

The resulting scheme is a dynamic SPIR scheme Π(2) for F
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such that CC(Π(2)) = (λq,L(Φi,Ψ))1≤i≤M . However, since
theΠi’s are possibly different schemes, servers must store M
shares of zero as correlated randomness. That is, RC(Π(2)) =
(
∑M

j=1 λq,L(Φj,Ψ))1≤i≤M .
Our solution is as follows. We build a ramp

scheme Σ realizing AL = (Γj)0≤ j≤L such that Γ0 = Ψ
and ΓL = ΦM . Corollary 1 implies a dynamic SPIR
scheme Π(3) for F such that CC(Π(3)) = RC(Π(3)) =
(Lλq,L(ΦM ,Ψ)/αΣ(Φi))1≤i≤M . Our solution is advanta-
geous when a user has a response pattern ΦM . Since
αΣ(ΦM ) = L, the communication and randomness ratios are
both λq,L(ΦM ,Ψ). Those of Solution I are both λq,L(Φ1,Ψ),
which is generally greater than λq,L(ΦM ,Ψ). The random-
ness ratio of Solution II is

∑M
j=1 λq,L(Φj,Ψ), which is at least

M times larger than λq,L(ΦM ,Ψ).
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