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SUMMARY Proof of Work (PoW), which is a consensus algorithm for
blockchain, entails a large number of meaningless hash calculations and
wastage of electric power and computational resources. In 2021, it is esti-
mated that the PoW of Bitcoin consumes as much electricity as Pakistan’s
annual power consumption (91 TWh). This is a serious problem against
sustainable development goals. To solve this problem, this study pro-
poses Meaningful-PoW (mPoW), which involves a meaningful calculation,
namely the application of a genetic algorithm (GA) to PoW. Specifically,
by using the intermediate values that are periodically generated through
GA calculations as an input to the Hashcash used in Bitcoin, it is possible
to make this scheme a meaningful calculation (GA optimization problem)
while maintaining the properties required for PoW. Furthermore, by apply-
ing a device-binding technology, mPoW can be ASIC resistant without the
requirement of a large memory. Thus, we show that mPoW can reduce the
excessive consumption of both power and computational resources.
key words: blockchain, proof of work, energy consumption, genetic algo-
rithm, proof of work

1. Introduction

1.1 Background

In cryptocurrencies, an important problem is how to prevent
double payments. A simple solution is trading through a
trusted third-party central authority (such as a bank). How-
ever, this solution has the risks of shutting down the entire
system owing to an attack on the central server and the risk of
misuse by the central authority itself. Therefore, decentral-
ized cryptocurrencies such as Bitcoin [1], use a blockchain
system. The basic idea of blockchain is to prevent double
payments by maintaining accurate transaction data. Specifi-
cally, if the transaction data are stored and if it is impossible
to alter the data, then double payments can be prevented.

The Proof of Work (PoW) is the foundational technol-
ogy used for consensus building in blockchains [2]. Consid-
ering the PoW, the majority of participants in the network
vote to verify the transaction data. Thus, it is a decentralized
system, making it challenging to tamper the data stored in
the blockchain. In public blockchains such as Bitcoin, PoW
is used to achieve resistance to data tampering attacks.
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1.2 Problems of PoW

There are two problems of the current PoW.

Problem 1: Excessive Power Consumption

As a social problem, It has been indicated that PoW wastes
a large amount of power [3]–[6]. Hashcash, a PoW applied
to Bitcoin, forces the network participants to compute the
preimage-finding problem [7]. Because the preimage dis-
covered by Hashcash is not used elsewhere, it consumes
power for meaningless calculations. In 2021, it is estimated
that the electricity spent on Hashcash will be equivalent to
the annual electricity consumption of Pakistan (91 TWh) and
it will continue to increase. Therefore, it is a serious problem
that goes against the sustainable development goals (SDGs)
[6], [8].

Various consensus protocols have been devised as al-
ternatives to PoW to solve the problem of the huge amount
of power required to maintain cryptocurrencies. While these
protocols consume less power, they are not fully decentral-
ized, or they often have protocol-specific problems. Proof
of work is superior to other alternative protocols in terms of
security, and many cryptocurrencies are based on PoW.

Various other PoW schemes [9]–[13] have also been
devised to solve the power consumption problem. However,
each of these PoWs has problems, such as social demand and
dependence on external systems. The PoW devised by Shi-
bata allows participants to freely set optimization problems
and provide power for meaningful computations while main-
taining a decentralized system [12]. Compared to Hashcash,
which consumes a large amount of power for meaningless
computations, this algorithm is better for the environment.
However, this study only proposes a system and does not
discuss whether this PoW works well for security.

Problem 2: Excessive Computational Resources

Proof of work prevents data tampering; however, if a ma-
licious attacker has a majority of the computational power
in the entire network, then data tampering is possible. This
method of data tampering requiresmore than or equal to 51%
of the computational power in the entire network; hence, the
attack is known as a 51% attack. Considering a PoW pre-
venting the 51% attack, it is necessary to eliminate the dif-
ference in computational power between dedicated hardware
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(ASIC) specialized for PoW computation and a normal CPU
[2]. Many existing PoWs achieve ASIC resistance by mak-
ing the problem memory-hard; nevertheless, this is wasteful
because it requires excessive computational resources.

1.3 Contribution

In this study, we propose a meaningful-PoW (mPoW) that
applies a genetic algorithm (GA) to Hashcash. The mPoW
is a PoW that solves an optimization problem set by net-
work participants using GA and is ASIC resistant, without
requiring excessive computational resources.

Solution to Problem 1: mPoW with GA

Most existing PoWs [2], [14] require a large amount of
power for meaningless computation, which is harmful to
the environment. Considering the mPoW, the problem is the
optimization of the GA, which requires a large amount of
computation, similar to other schemes. Specifically, it is a
problem of inputting intermediate values generated by GA
computation periodically into Hashcash and continuing the
GA computation until a hash value satisfying the condition
is obtained. Based on the Hashcash problem, it is possible to
compute the optimization problem with the GA while satis-
fying the security requirements of a PoW. Furthermore, the
optimization problem can be freely proposed by the network
participants; therefore, the system can freely use the current
excessive computational power. Although several PoWs us-
ing GA have been devised, no PoW has been proved to meet
ASIC resistance[12], [13].

Solution to Problem 2: mPoW using Device-binding

Many of the existing PoWs are ASIC resistant by mak-
ing them a memory-hard problem, which requires excessive
computational resources. Considering mPoW, ASIC resis-
tance is achieved by applying a device-binding technology.
Device-binding enables PoW computation only on specific
devices that have been approved in advance. Regarding the
hardware where PoW is performed for the first time, a sym-
metric key is shared between the software and hardware. The
symmetric key is generated using a hardware-specific value,
which indicates that the software has registered the device.
In addition, by using the symmetric key for mPoW compu-
tation, it is possible to monitor if the computation is being
performed on the registered device. In mPoW, the results
of the computations performed on dedicated devices (such
as ASIC) are not accepted at verification; thereby, achiev-
ing ASIC resistance without excessive demand for computa-
tional resources such as memory.

1.4 Study Organization

In Sect. 2, we provide an overview of PoW, its security re-
quirements, and the problems of the existing PoWs. In

Sect. 3, we present an overview of GA. In Sect. 4, we re-
veal the flow of mPoW. Section 5 shows how to make the
mPoW ASIC resistant, and the conclusion is in Sect. 6.

2. Proof of Work

Proof of work is a computational problem that requires a cer-
tain amount of computation and is used as a consensus algo-
rithm in a blockchain. It also prevents 51% attacks that can
tamper with past data stored in the blockchain. This section
describes the purpose and definition of PoWs, their security
requirements, and the problems of the existing PoWs.

2.1 Role of PoWs

A PoW is a problem that requires a certain amount of com-
putation to solve it, and this technology enables a consen-
sus in decentralization [15]. For example, Bitcoin uses the
preimage finding problem with the hash function as PoW.
Hashcash, a PoW for Bitcoin, has a predefined target value
and requires a preimage whose hash value is less than the
target. This is the problem of finding a specific preimage of
the hash function, and Hashcash, which is based on SHA-
2 and RIPEMD with sufficient cryptographic resistance to
preimage attacks can guarantee computational security.

The transaction data are linked to the blockchain when
the provers request inputs that satisfy the conditions and are
approved by the validators. Participants can view the data on
the blockchain; however, it is very difficult to tamper with the
data. As the name suggests, blocks consisting of multiple
transaction data are linked in the form of a chain and are
influenced by the previous block. To tamper with the data in
a block, that data and all subsequent blocksmust be tampered
with. This indicates that all subsequent PoW have to be
unpacked by the attacker. However, because other provers
continue to generate new blocks, it will be difficult for the
attacker to complete the tampering. Therefore, the security
of the cryptocurrency is guaranteed. Specifically, if the
attacker does not have more than or equal to 51% of the total
computational power of all the participants, tampering with
the data is difficult, and double payments can be prevented.
The PoW enables electronic commerce over peer-to-peer
(P2P) networks, without the need for a trusted third party.

2.2 Definition of PoW

As defined in [14], PoW has defined the problem

P : R × I × S → {true, f alse}.

as hardcore predicates, where R is the set of parameters that
determine hardness, I is the set of inputs conforming to
R, and S is the set of possible solutions. We assume that
there exists an algorithm (or a family of algorithms) AR

that solves PR on any I, indicating that it finds S such that
P(R, I,S) = true.

A PoW scheme based on P is an interactive protocol
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that operates as follows:

1. The Verifier sends a challenge input I ∈ I and param-
eters R ∈ R to the prover.

2. The Prover finds solution S such that P(R, I,S) = true
and sends it to the Verifier.

3. The Verifier computes P(R, I,S).

A non-interactive version (e.g., cryptocurrencies) can be de-
rived easily. Considering this setting, I contains some public
values (the last block hash in Bitcoin) and the prover’s ID.
The prover publishes S to facilitate the verification of the
proof by every party.

2.3 Security Requirements for PoW

Proof of work is used as a consensus algorithm for
blockchains; nevertheless, it is also responsible for secu-
rity, such as preventing 51% attacks. To develop a PoW
scheme, we discuss two security requirements.

2.3.1 Efficient Verification

Considering PoW, the computation requires a large amount
of computation and memory, whereas the validation must be
cost effective. This requirement is known as asymmetry and
is defined by Biryukov et al. as a requirement for the PoW
[2]. If asymmetry is not satisfied, a DoS attack that requires
repeated verification in succession is possible, and the entire
blockchain system can be shut down.

2.3.2 ASIC Resistance to Prevent Faster Computation

Because PoW is a race for solving a computational problem,
there are advantages and disadvantages owing to differences
in hardware performance. If dedicated devices (such as
ASIC) are developed to speed up the computation, the pos-
sibility of monopolizing the computing power will increase.
The monopoly of the computing power leads to the danger
of 51% attacks. Therefore, PoW needs to be designed to
prevent ASIC from accelerating the computation.

2.4 Problems with the Existing PoWs

The following are the problems with the existing PoWs.

(1) High power consumption.
(2) Excessive memory and other resources.

For example, “transaction data,” “hash value of the pre-
vious block,” and “nonce” are hashed together with SHA-2
in Hashcash. If the output is smaller than the target, it is
accepted as the solution, and if it is larger, the nonce must
be changed and hashed again. This is the problem of find-
ing a preimage for the hash function. If the hash function
has sufficient cryptographic resistance to preimage attacks,
it is guaranteed to be secure (considering the computational
complexity) and requires a number of computations. In June

2021, it took approximately 276 hash computations to solve
Hashcash [16]. To make Hashcash prevent a 51% attack,
it must be a difficult problem with a large amount of com-
putation; nevertheless, the preimage-finding problem is not
meaningful in itself, and any computational problem that can
meet the security requirementswhilemaintaining the amount
of computation can be substituted [2]. In 2020, the power
consumed by Hashcash was equivalent to the annual power
consumption of Belgium (82 TWh) and would continue to
increase [6]. The huge amount of power consumed by PoW
is indicated as an international environmental problem.

In addition, PoW must be ASIC resistant. If special-
ized equipment such as ASIC is developed and used, there
will be a performance gap with the normal hardware used by
the provers, which increases the possibility of the monopo-
lization of the computational power, increasing the risk of a
51% attack. Because ASIC has difficulty in accelerating the
computation with a large memory, it is possible to achieve
ASIC resistance by making the PoW memory difficult. The
existing PoW (such as Equihash [14] and the Merkle Tree
Proof [2]) also have difficulty in achieving ASIC resistance.
However, the more difficult it is for the memory, the more
excessive hardware resources it requires.

3. Genetic Algorithm

In a previous study by Shibata, a PoW applying GAwas pro-
posed [12]. However, that paper did not discuss the security
requirements that PoWs must meet. Therefore, we propose a
GA-based PoW that would satisfy the security requirements
based on the previous study. The GA is a computational
method inspired by the adaptive evolution of biological sys-
tems and is used in circuit design, building structure design
scheduling, etc. as meta-heuristics applicable to various op-
timization problems. This section describes an overview of
GA and its operation.

3.1 Overview of GA

AGA is a meta-heuristic that imitates the process by a living
organism to adapt to its environment and evolve. The study
of GA was initiated by Holland and his colleagues at the
University of Michigan in the late 1960s and early 1970s,
and has now been applied in many fields [17].

In the evolutionary process in nature, individuals in a
population that are better adapted to the environment can
survive and have a higher probability of producing offspring
in the next generation. The concept of GA is to model this
mechanism and to find the individual that best fits the en-
vironment (i.e., the solution that gives the optimal value for
the objective function). Considering GA, an individual is
represented by a string known as a chromosome in which
the values of the design variables are coded, and by decod-
ing this chromosome, the design variables are read out, and
the values of the objective function are calculated. The GA
searches for a solution by repeatedly performing genetic op-
erations such as selection, crossover, and mutation in this
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Fig. 1 Flowchart of the process in GA.

population. Generally, the population generated by the ge-
netic operations is counted as a generation, and the number
of generations until the end of the search is known as the
number of final generations. Figure 1 shows the flow of the
GA process.

3.2 Operation of GA

The flow of the GA is shown in Fig. 1 and each operation is
explained.

• Initialize the Population
Randomly generate a predetermined number of indi-
viduals.

• Evaluation
The chromosomes of each individual are decoded to
calculate the evaluation value of each individual. Gen-
erally, the fitness value of an individual is determined
based on this evaluation value. Fitness expresses the
degree to which an individual is adapted to its envi-
ronment and quantitatively indicates how likely it is to
survive to the next generation. Therefore, the higher
the fitness is, the more adapted the individual is to their
environment. Fitness is used in the selection operation.

• Selection
This process imitates the survival of the fittest in living
organisms. In this operation, the surviving individuals
are determined based on their fitness.

• Crossover
This is a process that imitates sexual reproduction in
organisms. In this operation, chromosomal information
is exchanged between individuals. If individuals with
high fitness are crossed with each other, there is a high
probability that the individuals closer to the optimal
solution will be obtained. The number of individuals to
be crossed in a population is determined by a parameter
known as the crossover rate.

• Mutation
A chromosome comprises several loci that contain
genes, and a gene that can enter a locus is referred to as
an allele. Mutation is the process of replacing a gene at

a locus on a chromosome with another allele, imitating
the copy errors that occur during a DNA replication
in nature. Considering each locus, the probability of
mutation was determined by a parameter known as the
mutation rate.

• Terminate Check
This operation is used to terminate the GA based on
predetermined termination conditions.

4. Protocol of mPoW

In this study, we propose a PoWwith a GA to solve the prob-
lem that the existing PoW consumes power unnecessarily.
Considering this scheme, the optimization problem using
GAs proposed by network participants is the computational
problem of the PoW. The power consumption of PoW can
be estimated from the computation complexity [18]. There-
fore, we can reduce wasted power consumption by changing
some of the calculation contents that have been consuming
power unnecessarily into optimization problems that are in
demand.

4.1 Problem of the PoW Composed of Only GA

We consider a PoW that consists only of GA. This scheme
is a GA computational problem, and the provers who are
the first to obtain a solution are given the right to generate
a new block. In addition, it receives an incentive from the
participants who present the problem.

There are various approaches to problems with huge
computational requirements, such as distributed computing
and GA. Among them, GA can be computed in basically a
similar flow by setting the objective function, constraints,
design variables, and other parameters. For a fully dis-
tributed system, the network participants must present prob-
lems freely, and the requirement for an administrator to set
up each problem must not exist. Therefore, a GA that allows
network participants to specify how to solve an optimization
problem by setting the objective function and parameters is
highly compatible with PoW.

To maintain the scalability of a blockchain, the compu-
tation time until a solution is obtained (known as the block
time) must be constant. Regarding Bitcoin, the block time
was maintained at approximately 10min [4]. However, the
GA depends on randomness, and the amount of computation
required for the GA is impossible to estimate; therefore, it is
difficult to maintain the block time with only the GA.

4.2 Solution: Maintaining Block Time with Hashcash

To solve the scalability problem of PoWs consisting of only
a GA, we use the idea of Hashcash. Hashcash maintains
the block time by controlling the amount of computation by
adjusting the target, which is the criterion for the solution
[7].

The general flow of the GA is illustrated in Fig. 1, where
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Fig. 2 Processing of the mPoW.

the same process is repeated for each generation until the ter-
mination criteria is satisfied. Owing to the iterative property,
the GA continuously and periodically generates intermedi-
ate values (populations of each generation). Considering
the GA, the form and size of the intermediate values can be
predicted in advance for all optimization problems. There-
fore, using the intermediate values of GA as the input for
the hashcash nonce, the problem becomes a PoW that can
maintain the block time by adjusting the target.

According as theGAproblem, theremay be caseswhere
the computation time is less than 10min or the GA compu-
tation terminates before the Hashcash solution is obtained.
Regarding either case, the block time cannot be maintained;
therefore, the same optimization problem must be contin-
ued until the Hashcash calculation is completed. However,
considering GA, the individuals converge at the end of the
computation. This leads to a bias in the number of individ-
uals, and the same individuals are continuously input to the
Hashcash. If we keep inputting the same values, we will not
obtain a solution forever. Therefore, it is necessary to input
the “number of generations” into the Hashcash to maintain
the change in the input values.

4.3 Hashcash-Based mPoW Protocol Applying GA

We propose an mPoW that enables block time maintenance.
Figure 2 shows the flow of the mPoW. Considering our
scheme, the value generated by the GA is regarded as a nonce
and is inputted to Hashcash. The values generated by GA
are “seed values,” “number of generations,” and “individu-
als with the highest fitness in each generation” After each
generation is “evaluated,” a hash calculation is performed in
Hashcash. The hash value of “the hash value of the previous
block”, “transaction data,” and “the value generated by the
GA” is calculated by SHA-3, and it is determined whether
the hash value is less than the target. If the output is less
than the target, validation by other network participants is
initiated. The validator splits the verify into tasks among
them and traces the computation of the GA by the prover.

If the problem of GA is not provided, the PoW will be

stopped and the blockchain system will be shut down. To
avoid this situation, the Hashcash calculation will continue
like Bitcoin as long as the GA problem is exhausted.

4.4 Verifiability by the GA Calculation

When a hash value satisfying the condition is found in Hash-
cash, the hash value must be approved through a majority
vote by other network participants for its validity. The val-
idator splits the verify into tasks among them and traces the
computation of the GA by the prover. For the GA computa-
tion to be reproducible, the provers need to fix the random
numbers with “seed” before the GA computation and pass
the “seed” to the validators. In addition, it is necessary to
store the surviving individuals of each generation at regular
intervals to enable the division of the validation calculation
as shown in Fig. 2. Although the GA consumes memory as
the computation proceeds, it is not memory-hard. Consid-
ering the example of the optimization problem to create a
nurse’s work schedule in the study by Takaba et al., which
used the nurse scheduling problem to schedule several peo-
ple to satisfy a condition, approximately 177.5 kB of the
memory was required [19].

4.5 Security Requirements of the mPoW

We list two security requirements of PoW and verify whether
mPoW satisfies them.

4.5.1 Efficiency Verification

After the provers have solved the computational problem,
other participants perform verification. The proof must re-
quire a large amount of computation, memory, and other
costs, whereas the validation must be computationally inex-
pensive.

Considering the mPoW, the proof requires a large
amount of computation, and the intermediate values are
stored in the memory. By fixing the random number as
a seed and storing the intermediate value, the GA compu-
tation can be divided and validated. Thus, the proof of the
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mPoW requires a large amount of computation and memory,
but performing the validation can be inexpensive.

4.5.2 ASIC Resistance to Prevent Faster Computation

When a dedicated device such as ASIC is developed and
used, there is a performance difference between the hard-
ware used by the provers, increasing the risk of a 51% at-
tack owing to the faster computation. Therefore, PoW must
be ASIC resistant to computational problems that are not
affected by hardware performance differences. For some
PoWs, it is difficult for ASIC to speed up computations with
a large amount of memory; therefore, the ASIC resistance is
achieved by making the problem memory difficult.

Considering the mPoW, memory is consumed as the
computation proceeds because intermediate values are stored
during the computation. However, depending on the prop-
erty of the optimization problem and solution of the PoW,
it is possible to perform the calculation with approximately
no memory usage. Specifically, by computing only the first
few generations of the GA, if no solution for Hashcash is
obtained, the seed is reset, and the calculation is repeated.
Using thismethod, it is possible to performcalculationswith-
out using a large amount of memory. Therefore, we cannot
conclude that mPoW is memory-hard and ASIC resistant.

4.6 Hardness to Maintain the Block Time

The mPoW can maintain a block time by adjusting the target
of the Hashcash. Because the processing time per generation
depends on the difficulty of the optimization problem, we
adjust the target for each problem to maintain the block
time. In the optimization problem of the GA that requires
2n of computation, if the running time per generation is
timeGA and hash per hash, the running time required for the
optimization problem is given by (1):

2n(timeGA + hash). (1)

However, because the processing time per generation
cannot be theoretically estimated, it is difficult to maintain
the exact block time of the GA. Therefore, the participant
presenting the optimization problem needs to perform cal-
culations of several generations in advance to determine the
average execution time per generation. Incentives for simple
problems that can be solved by this precomputation are not
expected. If the problem can be solved in less than 10min,
wastage occurs.

4.7 Eliminating Excessive Calculations

Hashcash requires about 10 minutes of computation to find
a solution. If the GA calculation finishes within 10 minutes,
Hashcash will not find a solution. In such a case, even af-
ter the solution of GA has converged, the calculation must
continue until the solution of Hashcash is found. Since the
solution of GA has converged, the output will be the same

intermediate value. However, since the number of genera-
tions is also input to Hashcash, the result of the Hashcash
calculation will never be the same. Thus, it is possible to
find a solution to Hashcash by continuing the calculation
of GA even after the solution of GA has converged. On
the other hand, we would like to estimate whether the GA
calculation requires more than 10 minutes to avoid as much
wasteful computation as possible. Then, wewill discuss how
to estimate the minimum computation time for the GA.

Such a calculation is considered redundant and wastes
power. Therefore, in order to estimate the computation time
of GA in advance, we consider the minimum computation
time of GA.

There is a stochastic convergence generation number
for GA [20]. A study by Rylander et al. shows how to
estimate the expected number of convergent generations in
the OneMax problem [21]. The OneMax problem is an
optimization problem in which all design variables are set to
one by genetic operations in GA, and it is a simple example
of a problem used as a tutorial for GA. The expected number
of generations converged for the OneMax problem is given
by (2), where gene x and constant c are used.

c × log(x) (2)

Alternatively, the number is a constant c multiplied by the
gene size log(x).

Assuming the OneMax problem is the easiest of all
the optimization problems using GA, the minimum com-
putational complexity of the optimization problem set in
mPoW is expected to be more than the expected number
of converged generations of the OneMax problem. We ex-
perimentally compared the computational complexity of the
OneMax problem and the traveling salesman problem (TSP).
Figure 3 shows the result of the experiment, and it is found
that OneMax<TSP at all times. The TSP is an optimization
problem that minimizes the total travel cost for a travel be-
tween several cities. Considering this experiment, we used
the open tool vcopt [22] to calculate the average generation
number for 1000 trials. After finding the constant c in (2)
by drastically reducing the design variables with the same
parameters in the optimization problem and performing the
calculations, we can estimate the minimum computational
complexity of the set optimization problem by finding the

Fig. 3 Change in the average computational complexity depending on the
number of design variables (OneMax vs TSP).
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expected number of converged generations in the design vari-
ables similar to the actual optimization problem. Therefore,
by substituting the minimum computational complexity of
the optimization problem and running time per generation
into (1), we can determine whether the computational com-
plexity of the GA is more than 10min.

5. ASIC Resistant mPoW

The mPoW can provide enormous computational power to
the network participants. However, this scheme may not be
memory-hard (depending on how to solve the PoW), and
it is not ASIC resistant. If a dedicated device such as an
ASIC is developed, the performance gap of the hardware
will increase the risk of a 51% attack.

The study by Bock et al. shows how to make a program
run only on a specific device [23]. The technique of running
a program only on a specific device contributes to achieving
ASIC resistance in PoW. In this section, we propose the idea
of device-binding applicable to PoW.

5.1 Making it Possible to Run Only on a Specific Device

We apply device-binding technology to mPoW to make the
PoW run only on a specific device and incomputable on
uncommon hardware such as ASIC. We assume that the
PoW software has not been spoofed or tampered with and
can be trusted in this paper.

5.1.1 Setup

Using new hardware to compute PoW for the first time, the
software registers the hardware. Figure 4 shows the setup
process. First, it requests the model number of the CPU and
checks whether it is an approved CPU. If the hardware uses
an approved CPU, the software generates an identifier label
based on the model number to identify the hardware and
sends it to the hardware. The hardware generates a device-
specific secret key kHWm (hardware main key; HWm), gen-
erates a symmetric key kHWs based on the received label
and kHWm, and shares it with the software. The registration
of the device is completed when the software and hardware
share the symmetric key.

5.1.2 Device-Binding with Hashcash

The mPoW applies the ideas of a previous study [23] to
Hashcash. Figure 5 shows the process of Hashcash applying
device-binding. The software passes label and the input
value of the hashcash to the hardware. The hardware gener-
ates kHWs with the received label and kHWm. The hardware
encrypts the received value x, using the advanced encryption
standard (AES) algorithm with kHWs and sends the cipher-
text σ to the software. The software performs the same
calculation to find σ′ and validates that it is the same value
as σ passed from the hardware. If σ = σ′, then it is con-
firmed that the calculation is performed on a specific device.

Fig. 4 Processing device-binding during the setup.

Fig. 5 Processing device-binding during PoW.

Fig. 6 Algorithm for generating σ to maintain the secrecy of the sym-
metric key kHWs during validation.

Therefore, it indicates that device-binding is working.

5.2 Keeping the Symmetric Key as a Secret

The mPoW with device-binding accepts σ as a Hashcash
solution if the value is less than the target. If σ is found
to satisfy the condition, it needs to be validated by other
network participants, and kHWs must be passed. Therefore,
an ephemeral key ke is used to keep the symmetric key as a
secret. Figure 6 shows how to generate σ with ke.

We encrypt the individuals with the highest fitness in
each generation of the GA using AES with kHWs and obtain
ke. Subsequently, the transaction data and hash value of the
previous block are encrypted using AES with ke, and the
ciphertext σ is generated. Although it is necessary to pass
σ and ke to the validators, it is now possible to maintain the
symmetric key kHWs a secret.
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6. Conclusion

In this study, we proposed the new PoW applying a GA that
allows participants to freely set the optimization problem.
Thus, we showed that the computational power required to
maintain the blockchain can be provided to the network par-
ticipants, and it is possible to effectively utilize the wasted
power consumption. In addition, by applying the device-
binding technology to mPoW, we made it ASIC resistant
and overcame the vulnerability of Hashcash to a 51% at-
tack. In order to make mPoW more practical, we think it
is necessary to implement this scheme and also evaluate its
performance.
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