
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023
315

PAPER Special Section on Cryptography and Information Security

A Computationally Efficient Card-Based Majority Voting Protocol
with Fewer Cards in the Private Model

Yoshiki ABE† ,††a), Nonmember, Takeshi NAKAI†††∗, Yohei WATANABE† ,††, Members,
Mitsugu IWAMOTO†, Senior Member, and Kazuo OHTA† ,††, Fellow

SUMMARY Card-based cryptography realizes secure multiparty com-
putation using physical cards. In 2018, Watanabe et al. proposed a card-
based three-inputmajority voting protocol using three cards. In a card-based
cryptographic protocol with n-bit inputs, it is known that a protocol using
shuffles requires at least 2n cards. In contrast, as Watanabe et al.’s protocol,
a protocol using private permutations can be constructed with fewer cards
than the lower bounds above. Moreover, an n-input protocol using private
permutations would not even require n cards in principle since a private
permutation depending on an input can represent the input without using
additional cards. However, there are only a few protocols with fewer than n
cards. Recently, Abe et al. extendedWatanabe et al.’s protocol and proposed
an n-input majority voting protocol with n cards and n+ bn/2c + 1 private
permutations. This paper proposes an n-input majority voting protocol with
dn/2e + 1 cards and 2n− 1 private permutations, which is also obtained by
extending Watanabe et al.’s protocol. Compared with Abe et al.’s protocol,
although the number of private permutations increases by about n/2, the
number of cards is reduced by about n/2. In addition, unlike Abe et al.’s
protocol, our protocol includes Watanabe et al.’s protocol as a special case
where n = 3.
key words: multiparty computation, n-input majority voting, card-based
protocol

1. Introduction

1.1 Background

Secure multiparty computation [1] aims to compute a func-
tion of players’ inputs keeping the inputs hidden from each
other. Card-based cryptography [2], [3] is an implementa-
tion of secure multiparty computation using physical tools
like playing cards. In this paper, we use two types of cards
represented by ♣ and ♥ , which have an identical back.
Card-based cryptographic protocols are classified into two
types by the operations used in the protocols. One is the
protocols using operations called shuffles [2], [4]. All oper-
ations in shuffle-based protocols are performed in a public
place. The other is the protocols using operations called pri-
vate permutations. In private-permutation-based protocols,

Manuscript received March 15, 2022.
Manuscript revised August 26, 2022.
Manuscript publicized October 20, 2022.
†The authors are with The University of Electro-

Communications, Chofu-shi, 182-8585 Japan.
††The authors are with National Institute of Advanced Industrial

Science and Technology (AIST), Tokyo, 135-0064 Japan.
†††The author is with Toyohashi University of Technology,

Toyohashi-shi, 441-8580 Japan.
∗This work was done while the author was with The University

of Electro-Communications.
a) E-mail: yoshiki@uec.ac.jp
DOI: 10.1587/transfun.2022CIP0021

each player can perform operations at a private space, where
other players cannot see the operations performed [5], [6].

In shuffle-based protocols, two cards are used for each
one-bit input because of the convenience of several opera-
tions, e.g., negation. For example, a binary input is encoded
as 0 7→ ♣ ♥ and 1 7→ ♥ ♣ ∗∗. In this encoding, we can
easily get the negated bit by swapping the two cards, which
can be performed without knowing the bit value. Under the
encoding using two cards, at least 2n cards are required for
computing an n-input Boolean function to represent inputs.

In contrast, in private-permutation-based protocols, an
input of each player can be represented by not only placing
down their cards but also operating face-down cards on the
place depending on the input. For example, a player repre-
sents a binary input by swapping two cards if the input is one
and doing nothing if it is zero. Thus, private-permutation-
based protocols can be executed with fewer than 2n cards.
Note that the security model for private-permutation-based
protocols is restricted to the semi-honest model [8]–[11]
because players can not detect malicious behaviors in a pri-
vate space∗∗∗. However, despite the advantage of the num-
ber of cards, there are only a few n-input protocols with
fewer than n cards, such as protocols for the millionaires’
problem [12], [13] and a general protocol for any Boolean
function [9] utilizing a branching program and Barrington’s
theorem [14]. Majority voting protocols are actively studied
in card-based cryptography, e.g. [8], [9], [11], [15]. With
the exception of Shinagawa’s protocol [9], existing n-input
majority voting protocols need n or more cards. Further,
the exception is inefficient in terms of the number of private
permutations [9]. Concretely, the exception, the general pro-
tocol [9], can execute with only five cards regardless of the
number of inputs; however, the number of private permuta-
tions required for the protocol is exponential in d, where d
is the circuit depth of a function to be computed.

1.2 Our Contributions

In this paper, we propose an n-input majority voting pro-
tocol (denoted by MAJn) with dn/2e + 1 cards and 2n − 1
private permutations for n ≥ 3. Our protocol is constructed
∗∗There is an unconventional encoding of one bit with a rota-

tionally asymmetric card such as 0 7→ ♣ and 1 7→ ♣ [7].
∗∗∗There are studies to prevent and detect malicious behaviors

using additional tools or introducing a player who monitors the
operations (See, e.g., [16]–[18]).

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

316
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Table 1 Comparison among n-input majority voting protocols. #Cards, #P.P., and #Comm. means
the number of cards, private permutations, and communication, respectively. d is the depth of the circuit
for n-input majority voting.

Protocol #Cards #P.P. #Comm.
Proposed protocol (MAJn) dn/2e + 1 2n − 1 2n − 2

Ono and Manabe [10, Protocol 4] 2n + 4 O(2n) O(2n)
Ono and Manabe [10, Protocol 5] 2n+1 O(2n) 2

Nakai et al. [11] n + 1 n n − 1
Abe et al. (MAJA

n) [15] n n + bn/2c + 1 n + bn/2c
Shinagawa [9] 5 O(4d) O(4d)

Watanabe et al. (MAJW
3) [8] 3 5 4

by extending Watanabe et al.’s three-input majority voting
protocol (denoted by MAJW

3) [8].
Table 1 shows the comparison among the proposed

protocol and existing protocols on efficiency measures of
private-permutation-based protocol; the number of cards,
private permutations, and communications. Note that the
bottom row of Table 1 is a three-input majority voting pro-
tocol. Compared with Ono and Manabe’s protocols [10,
Protocols 4, 5], the number of cards and the number of pri-
vate permutations are significantly reduced. Since both of
Ono and Manabe’s protocols in Table 1 can compute any
logical function f with n inputs, our protocol specialized for
majority voting is more efficient than those protocols. Note
that their protocol [10, Protocol 4] computes f based on
the Shannon’s expansion and their protocol [10, Protocol 5]
computes f based on the truth table of f . Compared with
Nakai et al.’s protocol [11] (resp., Abe et al.’s protocol [15],
denoted by MAJA

n), although the number of private permuta-
tions and the number of communications are increased about
two times (resp. 4/3 times), the number of cards is reduced
by about half. Abe et al.’s protocol MAJA

n is constructed by
extending MAJW

3 similar to our protocol MAJn. However,
MAJA

n is not a generalized protocol of MAJW
3 in the sense

that MAJA
3 is not equivalent to MAJW

3 and actually does not
workwell (See Sect. 3.2.2 for details). On the other hand, our
protocol MAJn includes MAJW

3 as a special case for n = 3.

1.3 Organization

The remaining part of this paper is organized as follows.
In Sect. 2, we introduce the notation of cards, the definition
of the majority voting, and cyclic shifts used in this paper.
We show existing protocols, Watanabe et al.’s three-input
majority voting protocol MAJW

3 [8] and Abe et al.’s n-input
majority voting protocol MAJA

n [15], in Sect. 3. Section 4 is
devoted to describe our new n-inputmajority voting protocol.
We conclude this paper in Sect. 5.

2. Preliminaries

In this paper, we consider protocols in the semi-honest
model, i.e., players follow a protocol procedure that may
include input operations multiple times.

2.1 Notation

We use two types of cards, denoted by ♣ and ♥ . The
backs of these cards are denoted by ? . We assume the same
type of cards are indistinguishable and the backs of all cards
are also indistinguishable. In addition, a bit is encoded as
0 7→ ♣ , 1 7→ ♥ . For simplicity, ♣ and ♥ are used instead of
♣ and ♥ , respectively, in the following text.

2.2 Majority Voting

For n binary inputs x1, x2, . . . , xn ∈ {0,1}, n-input majority
voting, denoted by majn is defined as follows.

majn(x1, x2, . . . , xn) :=

{
0 if

∑n
i=1 xi ≤ bn/2c

1 if
∑n

i=1 xi > bn/2c
(1)

If the number of inputs of one is equal to n/2 (i.e., the voting
result is a tie), majn outputs zero. We can consider another
majority voting, denoted by majhalf

n and defined as follows.

majhalf
n (x1, x2, . . . , xn) :=

{
0 if

∑n
i=1 xi < bn/2c

1 if
∑n

i=1 xi ≥ bn/2c
(2)

Only when the voting result is a tie, majhalf
n outputs a value

different from majn. Since we can compute majhalf
n by flip-

ping the bits of inputs and output in a protocol for computing
majn, we construct a protocol for computing Eq. (1) in this
paper.

2.3 Cyclic Shift

For explanation, we use numeric cards instead of ♣ and ♥
to show the order of a card sequence only in this subsection.

For a sequence of n cards 1 2 3 4 · · · n , a left cyclic
shift is defined as a permutation that the leftmost card of
the sequence is moved to the rightmost position. For in-
stance, a left cyclic shift over a sequence of five cards can be
represented as follows.

1 2 3 4 5 7→ 2 3 4 5 1

In addition, a left cyclic shift can be applied to a part of the
sequence of cards. For example, the following shows the
before and after of a left cyclic shift over the left four cards

ABE et al.: A COMPUTATIONALLY EFFICIENT CARD-BASED MAJORITY VOTING PROTOCOL WITH FEWER CARDS IN THE PRIVATE MODEL
317

of a sequence of five cards.

1 2 3 4 5 7→ 2 3 4 1 5

Analogously, a right cyclic shift is defined as a permuta-
tion that the rightmost card of the sequence of cards is moved
to the leftmost position. A right cyclic shift over five cards
and a right cyclic shift over the left four cards of a sequence
of five cards are represented as follows, respectively.

1 2 3 4 5 7→ 5 1 2 3 4

1 2 3 4 5 7→ 4 1 2 3 5

3. Previous Works

Before constructing our proposed protocol, we show two
existing protocols which become the base of our protocol.
One is Watanabe et al.’s three-input majority voting protocol
(MAJW

3) [8]. The other is Abe et al.’s n-input majority voting
protocol (MAJA

n) [15].

3.1 MAJW
3 : Three-Input Majority Voting Protocol [8]

Suppose that there are three players P1,P2,P3 and Pi (i =
1,2,3) has an binary input xi ∈ {0,1}. Watanabe et al.’s
three-input majority voting protocol (MAJW

3) [8] is shown
in Protocol 1. Note that the operations of putting cards,
swapping cards, and doing nothing in steps 1) – 5) of MAJW

3
are performed in the operator’s private space.

MAJW
3 is constructed based on the following another

representation of maj3,

maj3(x1, x2, x3) =

{
and2(x1, x2) if x1 + x2 , 1,
x3 if x1 + x2 = 1,

(3)

where and2 is the two-input logical AND function. Namely,
in MAJW

3 , after executing and2 protocol (corresponding to
steps 1) and 2), the operations are performed which swap the
cards representing and2(x1, x2) and x3 only when x1+ x2 = 1
(corresponding to steps 3)–5)).

Hereafter, we consider MAJW
3 consists of the following

three phases, which become the base idea to extend MAJW
3

in Sects. 3.2 and 4.

Placement phase: P1,P2 place all of three cards face-down
and perform private permutations to generate a card
sequence depending on their inputs. (cf. Steps 1) and 2)
of MAJW

3 .)

Permutation phase: Each player Pi (i = 1,2,3) performs
private permutations depending on the player’s input.
(cf. Steps 3)–5) of MAJW

3 .) Specifically, this phase
consists of the following two sub-phases.

Permutation phase 1: P3 swaps the center and right-
most cards of the card sequence if x3 = 0; other-
wise, P3 does nothing. (cf. Step 3) of MAJW

3 .)

Protocol 1MAJW
3 : Three-inputMajority Voting Protocol [8]

Inputs: P1, P2, P3 input x1, x2, x3 ∈ {0, 1}, respectively.
Setup: P1 has two cards, ♣ and ♥. P2 has a card, ♣. P3 has nothing.

1) If x1 = 0, P1 sends P2 face-down cards ♣♥ in this order; otherwise,
P1 sends P2 face-down cards ♥♣ in this order.

2) If x2 = 0, P2 places a face-down ♣ at the left of the card pair P2
received; otherwise, P2 places a face-down ♣ at the right of the card
pair. Then, P2 sends all face-down cards to P3.

3) If x3 = 0, P3 swaps the center and rightmost cards of the cards P3
received; otherwise, P3 does nothing. Then, P3 sends all cards to P2.

4) If x2 = 0, P2 swaps the center and leftmost cards of the cards P2
received; otherwise, P2 does nothing. Then, P2 sends all cards to P1.

5) If x1 = 0, P1 swaps the center and leftmost cards of the cards P1
received; otherwise, P1 does nothing. Then, P1 opens the leftmost
card, and discards the others without opening.

Output: If the card P1 opens at step 5) is ♣, the output is 0; otherwise (if
it is ♥), the output is 1.

Permutation phase 2: Each playerPi (i = 1,2) swaps
the center and leftmost cards of the card sequence
if xi = 0; otherwise, Pi does nothing. (cf.
Steps 4) and 5) of MAJW

3 .)

Output phase: The protocol outputs the leftmost card of
the card sequence. (cf. Output of MAJW

3 .)

3.2 n-Input Majority Voting Protocol [15]

We show Abe et al.’s n-input majority voting protocol
(MAJA

n) [15] for odd n (= 2m + 1) in Protocol 2. As in
MAJW

3 , the operations of a left cyclic shift and doing noth-
ing in steps 1)–3) of MAJA

n are performed in the operator’s
private space. Note that steps 1), 2), and 3) of MAJA

n corre-
spond to the placement phase, the permutation phases 1, and
the permutation phase 2, shown in Sect. 3.1, respectively.

3.2.1 How to Extend MAJW
3 to MAJA

5

We show how to construct MAJA
n because our construction

described in Sect. 4 is based on the same constructionmethod
for MAJA

n. In the method, MAJA
n is constructed as follows:

(a) fix operations corresponding to the permutation phase
of MAJW

3 ; and (b) based on (a), deduce concrete operations
corresponding to the placement phase of MAJW

3 . Since there
is no essential difference, we show the case where n = 5
instead of the general n.

Suppose that each player Pi (i = 1,2, . . . ,5) has a binary
input xi ∈ {0,1}. At first, we fix MAJA

n as consisting of the
following three phases, similar to MAJW

3 .

Placement phase: P1,P2,P3 place all of five cards face-
down and perform private permutations to generate a
card sequence depending on their inputs. We note that
concrete operations in this phase are determined later.

Permutation phase: Each player Pi (i = 1,2, . . . ,5) per-
forms private permutations depending on the player’s

318
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Protocol 2 MAJA
2m+1: (2m + 1)-input Majority Voting Pro-

tocol [15]
Inputs: P1, P2, . . . , P2m+1 input x1, x2, . . . , x2m+1 ∈ {0, 1}, respec-
tively.

Setup: Publicly put 2m+1 face-down cards ♣

m−1︷ ︸︸ ︷
♥ · · · ♥ ♥

m︷ ︸︸ ︷
♣ · · · ♣ in this order.

Then, P1 receives these 2m + 1 cards.

1) From i = 1 to i = m + 1, if xi = 0, Pi does nothing; otherwise, Pi

does a left cyclic shift over the m cards from the left of the received
cards. Then, Pi sends the cards to Pi+1.

2) From i = m + 2 to i = 2m + 1, if xi = 0, Pi does a left cyclic shift
over the 2m cards from the right of the received cards; otherwise, Pi

does nothing. Then, Pi sends the cards to P(i mod (2m+1))+1.

3) From i = 1 to i = m + 1, if xi = 0, Pi does a left cyclic shift over
the m+ 1 cards from the left of the received cards; otherwise, Pi does
nothing. Then, if i , m + 1, Pi sends the cards to Pi+1. If i = m + 1,
Pm+1 opens the leftmost card of the 2m + 1 cards, and discards the
others without opening.

Output: If the card Pm+1 opens at step 3) is ♣, the output is 0; otherwise
(if it is ♥), the output is 1.

input. Specifically, this phase consists of the following
two sub-phases.

Permutation phase 1: Each player Pi (i = 4,5) per-
forms a left cyclic shift over the four cards on the
right of the card sequence if xi = 0; otherwise, Pi

does nothing.
Permutation phase 2: Each player Pi (i = 1,2,3) per-

forms a left cyclic shift over the three cards on the
left of the card sequence if xi = 0; otherwise, Pi

does nothing.

Output phase: The protocol outputs the leftmost card of
the card sequence.

Note that the operations in the above three phases of MAJA
5

are extended from those in MAJW
3 as follows. The number

of cards placed in the placement phase, whose suits are
specified later, is extended from three to five based on the
number of inputs. Moreover, the swapping of center and
rightmost (resp., leftmost) cards performed by P3 (resp.,
P2,P1) in step 3) (resp., steps 4) and 5)) ofMAJW

3 is extended
to the left cyclic shift over the four cards on the right (resp.,
the three cards on the left) of the card sequence performed by
P4,P5 (resp., P1,P2,P3) in step 2) (resp., step 3)) of MAJA

5 .
Next, we consider the position of the (finally) output

card at the end of the placement phase for each possible
input to determine the operations in the placement phase.
Concretely, we analyze which card is output in the card
sequence at the end of each phase by retracing the position
back from the output phase to after the placement phase.
Then, from the analyzed position of the output card and
the output value for corresponding inputs, the requirements,
i.e., some cards’ suits and positions, for the card sequence
created in the placement phase is determined. Finally, MAJA

5
is constructed by deducing the operations in the placement

Table 2 Card sequences after the
permutation phase 1 in MAJA

5 .
3∑

i=1
xi Card Sequence

0 B

1 B

2 B

3 B

Table 3 Card sequences after the
placement phase in MAJA

5 , where
X := x4 + x5.

3∑
i=1

xi Card Sequence

0 B

1
if X =2
B

if X =1
B

if X =0
B

2
if X =2
B

if X =1
B

if X =0
B

3 B

Table 4 Requirements to com-
pute maj5 correctly.

3∑
i=1

xi Card Sequence

0 ♣

1 ♥ ♣ ♣

2 ♥ ♥ ♣

3 ♥

Table 5 Card sequences resulting
of the placement phase in MAJA

5 .
3∑

i=1
xi Card Sequence

0 ♣ ♥ ♥ ♣ ♣

1 ♥ ♣ ♥ ♣ ♣

2 ♣ ♥ ♥ ♣ ♣

3 ♥ ♣ ♥ ♣ ♣

phase that satisfy the requirements.
Based on the above three phases, the specific placement

phase ofMAJA
5 is determined as follows. Here, we use B and

to describe card sequences of MAJA
5 , where B indicates

the output card of MAJA
5 , and indicates non-output cards

inMAJA
5 . First, since the leftmost card is output at the output

phase, the card sequence of five cards at the output phase is
represented by B for any x1, x2, . . . , x5 ∈ {0,1}.
Analyzing the output card’s position during the permutation
phases 2 and 1, the card sequence changes as shown in
Tables 2 and 3, respectively. Note that B with text below
indicates the position of the output card for each case of
X B x4 + x5 in Table 3. Then, we can specify the suits of
the cards at the position of B from the values of

∑3
i=1 xi and

X to compute maj5 correctly. Table 4 shows the specified
suits.

Finally, we consider the operations in the placement
phase, which can create the card sequence satisfying the
requirements shown in Table 4. The requirements for the
right three cards of the sequences in Table 4 can be satisfied
by firstly putting ♥♣♣ in this order and by not moving them
during the placement phase. In addition, the requirement
for the left two cards of the card sequences can be satisfied
by putting ♣♥ in this order and by swapping these two cards
(or doing a left cyclic shift over these cards)

∑3
i=1 xi times.

Therefore, the operations of the placement phase of MAJA
5

are determined as operations such that, for pre-put face-
down cards ♣♥♥♣♣, each player Pi (i = 1,2,3) swaps the
left two cards of the card sequence if xi = 1; otherwise, Pi

does nothing. The specific card sequences created in the
placement phase are shown in Table 5.

3.2.2 Not-Working Case: n = 3

MAJA
3 cannot compute maj3 and is different from MAJW

3 .

ABE et al.: A COMPUTATIONALLY EFFICIENT CARD-BASED MAJORITY VOTING PROTOCOL WITH FEWER CARDS IN THE PRIVATE MODEL
319

Especially, step 1) in MAJA
3 does not work well because

the cards to be manipulated become the leftmost one of the
three cards. (See step 1) in Protocol 2 with m = 1.) As a
result, the card sequence put in the setup is not changed in
step 1) and the card sequence after step 1) does not satisfy the
requirements to computemaj3 correctly. In this sense, MAJA

n

is not a generalized protocol of MAJW
3 , although MAJA

n is
constructed by extending the number of cards and swapping
operations in MAJW

3 .

4. Extension to n-Input Majority Voting Protocol

In this section, we describe another construction of an n-
input majority voting protocol, denoted by MAJn.

4.1 Construction Idea

We construct MAJn similarly to MAJA
n. Namely, we first fix

MAJn as consisting of three phases: placement, permutation,
and output. The operations in the permutation and output
phases are also fixed. Then, we analyze the position of
the output card at the end of the placement phase for each
input. Finally, we determine the operations in the placement
phase. The difference between the constructions of MAJA

n

and MAJn is how to fix the operations in the permutation
phase. The permutation phase of MAJA

n is fixed extending
the operation of MAJW

3 . On the other hand, the permutation
phase ofMAJn is fixed based on the following representation
of majn:

majn(x1, x2, . . . , xn)

=

{
maj

n−1(x1, x2, . . . , xn−1) if
∑n−1

i=1 xi , bn/2c,
xn if

∑n−1
i=1 xi = bn/2c .

(4)

Note that Eq. (4) is a general expression of Eq. (3) since
and2(x1, x2) = maj2(x1, x2) holds for the cases where x1 +
x2 , 1 holds.

MAJW
3 is constructed based on an and2 protocol. After

computing and2(x1, x2), the operations are performed that
output x3 only when x1 + x2 = 1. In contrast, we construct
MAJn based on the operations in the permutation phase
for outputting xn only when

∑n−1
i=1 xi = bn/2c. Concretely,

we first fix such operations to output xn as the permutation
phase. Then, we specify operations in the placement phase to
outputmaj

n−1(x1, x2, . . . , xn−1), taking care of the subsequent
operations in the permutation phase.

4.2 MAJ5: Five-Input Majority Voting Protocol

Let us construct MAJ5 as a simple but essential example.

4.2.1 Three Phases of MAJ5

We first fix the procedure of MAJ5 as consisting of the fol-
lowing three phases.

Placement phase: P1,P2,P3,P4 place all of four cards
face-down and perform private permutations to gener-
ate a card sequence depending on their inputs. Concrete
operations are determined later.

Permutation phase: Each player Pi (i = 1,2, . . . ,5) per-
forms private permutations depending on the player’s
input. Specifically, this phase consists of the following
two sub-phases.

Permutation phase 1: P5 performs a left cyclic shift
over the two cards on the right (or swaps right two
cards) of the card sequence if xi = 0; otherwise,
P5 does nothing.

Permutation phase 2: Each player Pi (i = 1,2,3,4)
performs a left cyclic shift over the three cards on
the left of the card sequence if xi = 0; otherwise,
Pi does nothing.

Output phase: The protocol outputs the leftmost card of
the card sequence.

Note that the above procedure is fixed in order to output x5
only when

∑4
i=1 xi = 2 (= b5/2c), as Eq. (4). Concretely, the

number of cards and the operations in the permutation phases
are determined based on the following considerations.

Suppose that we use k cards. After we determine the
operations in the permutation phases 1 and 2, we specify
the value of k. To output x5 only when

∑4
i=1 xi = 2, we

suppose the operations in the permutation phases 1 and 2 as
follows: in the permutation phase 1, the card representing x5
is positioned at the second from the right (i.e., the (k − 1)-th
from the left) of the card sequence when

∑4
i=1 xi = 2, and in

the permutation phase 2, the (k − 1)-th card is moved to the
leftmost position only when

∑4
i=1 xi = 2.

Specifically, in the permutation phase 1, the right two
cards of the card sequence are swapped if x5 = 0; otherwise,
nothing is done. (cf. Step 3) in MAJW

3 .) In the permutation
phase 2, each player Pi (i = 1,2,3,4) performs a left cyclic
shift over the left k − 1 cards of the sequence if xi = 0;
otherwise, nothing is done. (cf. Steps 4) and 5) in MAJW

3 .
Swapping the two cards is extended to a left cyclic shift
over the k − 1 cards.) Through the permutation phase 2,
the (k − 1)-th card is shifted left

∑4
i=1 xi times. Therefore,

if
∑4

i=1 xi = k − 2 holds, the (k − 1)-th card moves to the
leftmost position. Since we want to move the (k − 1)-th card
to the leftmost position only when

∑4
i=1 xi = 2, we should

use four cards so that 2 =
∑4

i=1 xi = k − 2, i.e., k = 4 holds.

4.2.2 Specification of MAJ5

Next, we deduce the operations in the placement phase based
on the procedure fixed in Sect. 4.2.1. Similarly to what we
see in Sect. 3.2.1, we analyze the position of the output card.
At the output phase, the sequence of four cards is represented
by B for any x1, x2, . . . , x5 ∈ {0,1}. Then, the card
sequence changes during the permutation phases 2 and 1 as
shown in Tables 6 and 7, respectively. From the values of

320
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Table 6 Card sequences after
the permutation phase 1 in MAJ5.

4∑
i=1

xi Card Sequence

0 B

1 B

2 B

3 B

4 B

Table 7 Card sequences after the
placement phase in MAJ5.

4∑
i=1

xi Card Sequence

0 B

1 B

2
if x5 = 1

B
if x5 = 0

B

3 B

4 B

Table 8 Requirements to com-
pute maj5 correctly.

4∑
i=1

xi Card Sequence

0 ♣

1 ♣

2 ♥ ♣

3 ♥

4 ♥

Table 9 Card sequences resulting
of the placement phase in MAJ5.

4∑
i=1

xi Card Sequence

0 ♥ ♣ ♣ ♣

1 ♣ ♣ ♣ ♥

2 ♣ ♣ ♥ ♣

3 ♣ ♥ ♣ ♣

4 ♥ ♣ ♣ ♣

Protocol 3 MAJ5: Five-input Majority Voting Protocol
Inputs: P1, P2, . . . , P5 input x1, x2, . . . , x5 ∈ {0, 1}, respectively.
Setup: Publicly put four face-down cards ♥♣♣♣ in this order. Then, P1
receives these 2m + 1 cards.

1) From i = 1 to i = 4, if xi = 0, then Pi does a right cyclic shift over
the received cards; otherwise, Pi does nothing. Then, Pi sends the
cards to Pi+1.

2) If x5 = 0, P5 does a left cyclic shift over the two cards from the right
of the received cards; otherwise, P5 does nothing. Then, P5 sends the
cards to P1.

3) From i = 1 to i = 4, if xi = 0, Pi does a left cyclic shift over the four
cards from the left of the received cards; otherwise, Pi does nothing.
Then, if i , 4, Pi sends the cards to Pi+1. If i = 4, P4 opens the
leftmost card of the four cards, and discards the others without opening.

Output: If the card P4 opens at step 3) is ♣, the output is 0; otherwise (if
it is ♥), the output is 1.

∑4
i=1 xi and x5 in Table 7, we can specify the suits of the

cards at the position of B , which indicate the requirement to
compute maj5 correctly, and are summarized as Table 8.

Finally, we determine the operations in the placement
phase satisfying the requirement. Observing the bottom
three rows of Table 8, we can see that the position of ♥ shifts
one place to the right for every one decrease in the weight∑4

i=1 xi . Thus, we come up with the following operations
as the placement phase. First, suppose that four cards ♥♣♣♣
are put in this order. Then, each player Pi (i = 1,2,3,4)
does a right cyclic shift over the card sequence of the four
cards if xi = 0; otherwise, Pi does nothing. The card se-
quences generated by these operations for each input are
shown in Table 9. Since these sequences satisfy the require-
ments shown in Table 8, we determine the operations in the
placement phase as the above operations over a pre-put card
sequence ♥♣♣♣. We show the constructed protocol MAJ5 in

Protocol 3.

4.3 MAJ2m+1: (2m + 1)-Input Majority Voting Protocol

Generalizing the construction of MAJ5, we construct an n-
input majority voting protocol for odd n = 2m + 1 (m ≥ 1),
denoted by MAJ2m+1. First, we fix MAJ2m+1 as consisting
of the following three phases.

Placement phase: P1,P2, . . . ,P2m place all of m + 2 cards
face-down and perform private permutations to gener-
ate a card sequence depending on their inputs.

Permutation phase: Each player Pi (i = 1,2, . . . ,2m +
1) performs private permutations depending on the
player’s input. Specifically, this phase consists of the
following two sub-phases.

Permutation phase 1: P2m+1 performs a left cyclic
shift over the two cards on the right (or swaps the
right two cards) of the card sequence if x2m+1 = 0;
otherwise, P2m+1 does nothing.

Permutation phase 2: Each player Pi (i = 1,2, . . . ,
2m) performs a left cyclic shift over the m + 1
cards on the left of the card sequence if xi = 0;
otherwise, Pi does nothing.

Output phase: The protocol outputs the leftmost card of
the card sequence.

The number of cards and the operations in the permutation
phase are fixed in order to output xn only when

∑n−1
i=1 xi =

bn/2c, similar to Sect. 4.2.1.
Suppose that we use k cards. In the permutation

phase 1, the right two cards of the card sequence are swapped
if xn = 0; otherwise, nothing is done. Then, the card rep-
resenting xn is positioned at the (k − 1)-th from the left of
the card sequence when

∑n−1
i=1 xi = bn/2c. In the permu-

tation phase 2, each player Pi (i = 1,2, . . . ,2m) performs a
left cyclic shift over the left k − 1 cards of the sequence if
xi = 0; otherwise, nothing is done. Through the permu-
tation phase 2, the (k − 1)-th card from the left is shifted
left

∑n−1
i=1 xi times. Thus, if

∑n−1
i=1 xi = k − 2 holds, the

(k − 1)-th card moves to the leftmost position. Since we
want to move the (k −1)-th card to the leftmost position only
when

∑n−1
i=1 xi = bn/2c, we should use m + 2 cards so that

m = bn/2c =
∑n−1

i=1 xi = k − 2, i.e., k = m + 2 holds.
Then, we determine the operations in the placement

phase. Table 10 shows the positions of the output card
retraced from the output phase to after the placement phase.
From the value of

∑2m
i=1 xi and x2m+1, the requirements to

compute maj2m+1 correctly are specified, shown in Table 11.
Concerning the operations in the placement phase, creating
a card sequence satisfying the requirement in Table 11 is
possible using equivalent operations as inMAJ5. As a result,
we obtain Table 12 and Protocol 4 shows the constructed
protocol MAJ2m+1 from above discussion. Note that the
numbers in the header rows of the tables after Table 10

ABE et al.: A COMPUTATIONALLY EFFICIENT CARD-BASED MAJORITY VOTING PROTOCOL WITH FEWER CARDS IN THE PRIVATE MODEL
321

Table 10 Card sequences after the placement phase in MAJ2m+1.
2m∑
i=1

xi
Card Sequence

1 2 · · · m−1 m m+1 m+2

0 · · · B

1 · · · B
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

m − 1 B · · ·

m · · ·
if x2m+1 = 1

B
if x2m+1 = 0

B

m + 1 · · · B

m + 2 · · · B
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

2m B · · ·

Table 11 Requirements to compute maj2m+1 correctly.
2m∑
i=1

xi
Card Sequence

1 2 · · · m−1 m m+1 m+2

0 · · · ♣

1 · · · ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

m − 1 ♣ · · ·

m · · · ♥ ♣

m + 1 · · · ♥

m + 2 · · · ♥

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

2m ♥ · · ·

Table 12 Card sequences resulting of the placement phase in MAJ2m+1.
2m∑
i=1

xi
Card Sequence

1 2 · · · m−1 m m+1 m+2

0 ♣ ♣ · · · ♥ ♣ ♣ ♣

1 ♣ ♣ · · · ♣ ♣ ♣ ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

m − 1 ♣ ♣ · · · ♣ ♣ ♣ ♥

m ♣ ♣ · · · ♣ ♣ ♥ ♣

m + 1 ♣ ♣ · · · ♣ ♥ ♣ ♣

m + 2 ♣ ♣ · · · ♥ ♣ ♣ ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

2m ♥ ♣ · · · ♣ ♣ ♣ ♣

indicate the cards’ positions in the card sequence.

4.4 MAJ2m: 2m-Input Majority Voting Protocol

We can construct an n-inputmajority voting protocol for even
n = 2m (m ≥ 2), denoted by MAJ2m, in the same way as
MAJ2m+1. The requirements in the construction of MAJ2m,
corresponding to Table 11, differ only slightly from those of
MAJ2m+1. However, The rest of the construction process is

Protocol 4 MAJ2m+1: (2m + 1)-input Majority Voting Pro-
tocol
Inputs: P1, P2, . . . , P2m+1 input x1, x2, . . . , x2m+1 ∈ {0, 1}, respec-
tively.

Setup: Publicly put m + 2 face-down cards ♥

m+1︷ ︸︸ ︷
♣ · · · ♣ in this order. Then,

P1 receives these m + 2 cards.

1) From i = 1 to i = 2m, if xi = 0, then Pi does a right cyclic shift over
the received cards; otherwise, Pi does nothing. Then, Pi sends the
cards to Pi+1.

2) If x2m+1 = 0, P2m+1 does a left cyclic shift over the two cards from
the right of the received cards; otherwise, P2m+1 does nothing. Then,
P2m+1 sends the cards to P1.

3) From i = 1 to i = 2m, if xi = 0, Pi does a left cyclic shift over the
m + 1 cards from the left of the received cards; otherwise, Pi does
nothing. Then, if i , 2m, Pi sends the cards to Pi+1. If i = 2m, P2m
opens the leftmost card of the m + 2 cards, and discards the others
without opening.

Output: If the card P2m opens at step 3) is ♣, the output is 0; otherwise (if
it is ♥), the output is 1.

the same. Therefore, the detail of the construction ofMAJ2m
are provided in Appendix.

4.5 MAJn: n-Input Majority Voting Protocol

For positive integers n and m, the following holds.

dn/2e =

{
m + 1 if n = 2m + 1
m if n = 2m

(5)

Therefore, MAJ2m+1 and MAJ2m can be unified as Proto-
col 5.

Let us check the efficiency measures of MAJn. The
number of cards is dn/2e +1. The number of private permu-
tations is 2n − 1 (n − 1,1, and n − 1 for steps 1), 2), and 3),
respectively). The number of communications is 2n−2 since
the card sequence is send in the order of P1 → P2 → . . .→
Pn → P1 → · · · → Pn−1.

4.6 Correctness and Privacy of MAJn

The correctness ofMAJn is obvious since the card sequences
created in the placement phase shown in Tables 12 and A· 3
satisfy the requirements shown in Tables 11 and A· 2, re-
spectively. In addition, we can see that MAJn does not
reveal any information about input except what leaks from
the output because of the following two reasons. First, the
card sequence is always face-down after the setup until the
output phase. Since the sequence is created not depending
on any input and the backs of all cards are indistinguishable,
no information leaks during executing MAJn. Second, the
non-output cards are discarded without opening. Therefore,
no player can know the information except the output.

5. Conclusion

We showed an n-input majority voting protocol (denoted by

322
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Protocol 5 MAJn: n-input Majority Voting Protocol
Inputs: P1, P2, . . . , Pn input x1, x2, . . . , xn ∈ {0, 1}, respectively.

Setup: Publicly put dn/2e + 1 face-down cards ♥

dn/2e︷ ︸︸ ︷
♣ · · · ♣ in this order.

Then, P1 receives these dn/2e + 1 cards.

1) From i = 1 to i = n − 1, if xi = 0, then Pi does a right cyclic shift
over the received cards; otherwise, Pi does nothing. Then, Pi sends
the cards to Pi+1.

2) If xn = 0, Pn does a left cyclic shift over the two cards from the right
of the received cards; otherwise, Pn does nothing. Then, Pn sends
the cards to P1.

3) From i = 1 to i = n − 1, if xi = 0, Pi does a left cyclic shift over the
dn/2e cards from the left of the received cards; otherwise, Pi does
nothing. Then, if i , n − 1, Pi sends the cards to Pi+1. If i = n − 1,
Pn−1 opens the leftmost card of the dn/2e + 1 cards, and discards the
others without opening.

Output: If the card Pn−1 opens at step 3) is ♣, the output is 0; otherwise
(if it is ♥), the output is 1.

MAJn), which uses only dn/2e + 1 cards and 2n − 1 pri-
vate permutations. Our protocol MAJn requires the smallest
number of cards among the n-input majority voting protocols
using linear number of private permutations. Similar to Abe
et al.’s work [15] (denotedMAJA

n), our protocolMAJn is con-
structed by extending Watanabe et al.’s work [8] (denoted by
MAJW

3). However, MAJn includes MAJW
3 as a special case,

different from MAJA
n.

MAJn is constructed as follows: (a) fix a part of its
procedure based on MAJW

3 ; and (b) deduce the rest of the
procedure based on (a). This constructionmethod is identical
to Abe et al.’s work. Unlike Abe et al.’s work, we fixed the
procedures based on the following equation, which can be
derived naturally from MAJW

3 :

majn(x1, x2, . . . , xn)

=

{
maj

n−1(x1, x2, . . . , xn−1) if
∑n−1

i=1 xi , bn/2c,
xn if

∑n−1
i=1 xi = bn/2c .

As a result, we succeed to reduce the number of cards by
half compared with MAJA

n due to the benefit of achieving the
generalization. To the best of our knowledge, MAJn is the
first efficient protocol to realize the n-input majority voting
with less than n cards.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Num-
bers JP22J10137, JP22H03590, JP21H03395, JP20J21248,
JP18H05289, and JP18K11293 and by MEXT Leading Ini-
tiative for Excellent Young Researchers.

References

[1] A.C. Yao, “Protocols for secure computations (extended abstract),”
23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, Nov. 3–5, 1982, pp.160–164, IEEE Com-
puter Society, 1982.

[2] B. den Boer, “More efficient match-making and satisfiability: The
Five Card Trick,” Advances in Cryptology – EUROCRYPT ’89,
Workshop on the Theory and Application of of Cryptographic
Techniques, Houthalen, Belgium, April 10–13, 1989, Proceedings,
J. Quisquater and J. Vandewalle, eds., Lecture Notes in Computer
Science, vol.434, pp.208–217, Springer, 1989.

[3] C. Crépeau and J. Kilian, “Discreet solitary games,” Advances in
Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, Aug. 22–26, 1993,
Proceedings, D.R. Stinson, ed., Lecture Notes in Computer Science,
vol.773, pp.319–330, Springer, 1993.

[4] T. Mizuki and H. Sone, “Six-card secure AND and four-card se-
cureXOR,” Frontiers inAlgorithmics, Third InternationalWorkshop,
FAW 2009, Hefei, China, June 20–23, 2009. Proceedings, X. Deng,
J.E. Hopcroft, and J. Xue, eds., Lecture Notes in Computer Science,
vol.5598, pp.358–369, Springer, 2009.

[5] A. Marcedone, Z. Wen, and E. Shi, “Secure dating with four or fewer
cards,” IACR Cryptol. ePrint Arch., vol.2015, p.1031, 2015.

[6] T. Nakai, Y. Tokushige, Y. Misawa, M. Iwamoto, and K. Ohta, “Ef-
ficient card-based cryptographic protocols for millionaires’ problem
utilizing private permutations,” Cryptology and Network Security
– 15th International Conference, CANS 2016, Milan, Italy, Nov.
14–16, 2016, Proceedings, S. Foresti and G. Persiano, eds., Lecture
Notes in Computer Science, vol.10052, pp.500–517, 2016.

[7] T. Mizuki and H. Shizuya, “Practical card-based cryptography,” Fun
with Algorithms - 7th International Conference, FUN 2014, Lipari
Island, Sicily, Italy, July 1–3, 2014. Proceedings, A. Ferro, F. Luccio,
and P.Widmayer, eds., LectureNotes in Computer Science, vol.8496,
pp.313–324, Springer, 2014.

[8] Y. Watanabe, Y. Kuroki, S. Suzuki, Y. Koga, M. Iwamoto, and
K. Ohta, “Card-based majority voting protocols with three inputs
using three cards,” International Symposium on Information Theory
and Its Applications, ISITA 2018, Singapore, Oct. 28–31, 2018,
pp.218–222, IEEE, 2018.

[9] K. Shinagawa, “Deterministic cryptographic protocols with active
security using a deck of cards, envelops and chains,” 2018 Sympo-
sium on Cryptography and Information Security, pp.3B1–3, 2018.

[10] H. Ono and Y.Manabe, “Card-based cryptographic logical computa-
tions using private operations,” New Generat. Comput., vol.39, no.1,
pp.19–40, 2021.

[11] T. Nakai, S. Shirouchi, Y. Tokushige, M. Iwamoto, and K. Ohta,
“Secure computation for threshold functions with physical cards:
Power of private permutations,” NewGenerat. Comput., vol.40, no.1,
pp.95–113, 2022.

[12] H. Ono and Y. Manabe, “Efficient card-based cryptographic proto-
cols for the millionaires’ problem using private input operations,”
2018 13th Asia Joint Conference on Information Security (AsiaJ-
CIS), pp.23–28, 2018.

[13] T. Nakai, Y. Misawa, Y. Tokushige, M. Iwamoto, and K. Ohta, “How
to solvemillionaires’ problemwith two kinds of cards,” NewGenerat.
Comput., vol.39, no.1, pp.73–96, 2021.

[14] D.A.M. Barrington, “Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1,” J. Comput.
Syst. Sci., vol.38, no.1, pp.150–164, 1989.

[15] Y. Abe, T. Nakai, Y. Kuroki, S. Suzuki, Y. Koga, Y. Watanabe,
M. Iwamoto, and K. Ohta, “Efficient card-based majority voting
protocols,” New Generat. Comput., vol.40, no.1, pp.173–198, 2022.

[16] Y. Manabe and H. Ono, “Card-based cryptographic protocols with
malicious players using private operations,” New Generat Comput.,
vol.40, no.1, pp.67–93, 2022.

[17] A. Koch and S. Walzer, “Foundations for actively secure card-based
cryptography,” 10th International Conference on Fun with Algo-
rithms, FUN 2021, May 30–June 1, 2021, Favignana Island, Sicily,
Italy, M. Farach-Colton G. Prencipe, and R. Uehara, ed., LIPIcs,
vol.157, pp.17:1–17:23, Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2021.

[18] Y. Abe, M. Iwamoto, and K. Ohta, “How to detect malicious be-

http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
https://eprint.iacr.org/2015/1031
https://eprint.iacr.org/2015/1031
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.1007/s00354-020-00113-z
http://dx.doi.org/10.1007/s00354-020-00113-z
http://dx.doi.org/10.1007/s00354-020-00113-z
http://dx.doi.org/10.1007/s00354-022-00153-7
http://dx.doi.org/10.1007/s00354-022-00153-7
http://dx.doi.org/10.1007/s00354-022-00153-7
http://dx.doi.org/10.1007/s00354-022-00153-7
http://dx.doi.org/10.1109/asiajcis.2018.00013
http://dx.doi.org/10.1109/asiajcis.2018.00013
http://dx.doi.org/10.1109/asiajcis.2018.00013
http://dx.doi.org/10.1109/asiajcis.2018.00013
http://dx.doi.org/10.1007/s00354-020-00118-8
http://dx.doi.org/10.1007/s00354-020-00118-8
http://dx.doi.org/10.1007/s00354-020-00118-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1007/s00354-022-00161-7
http://dx.doi.org/10.1007/s00354-022-00161-7
http://dx.doi.org/10.1007/s00354-022-00161-7
http://dx.doi.org/10.1007/s00354-021-00148-w
http://dx.doi.org/10.1007/s00354-021-00148-w
http://dx.doi.org/10.1007/s00354-021-00148-w
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
http://dx.doi.org/10.4230/LIPIcs.FUN.2021.17
https://ieeexplore.ieee.org/document/9366184

ABE et al.: A COMPUTATIONALLY EFFICIENT CARD-BASED MAJORITY VOTING PROTOCOL WITH FEWER CARDS IN THE PRIVATE MODEL
323

haviors in a card-based majority voting protocol with three inputs,”
International Symposium on Information Theory and Its Applica-
tions, ISITA2020, Kapolei, HI, USA,Oct. 24–27, 2020, pp.377–381,
IEEE, 2020.

Appendix: MAJ2m: 2m-Input Majority Voting Proto-
col

First, we consider that MAJ2m consists of the following three
phases.

Placement phase: P1,P2, . . . ,P2m−1 place all of m+1 cards
face-down and perform private permutations to gener-
ate a card sequence depending on their inputs.

Permutation phase: Each player Pi (i = 1,2, . . . ,2m) per-
forms private permutations depending on the player’s
input. Specifically, this phase consists of the following
two sub-phases.

Permutation phase 1: P2m performs a left cyclic
shift over the two cards on the right (or swaps the
right two cards) of the card sequence if x2m = 0;
otherwise, P2m does nothing.

Permutation phase 2: Each player Pi (i = 1,2, . . . ,
2m − 1) performs a left cyclic shift over the m
cards on the left of the card sequence if xi = 0;
otherwise, Pi does nothing.

Output phase: The protocol outputs the leftmost card of
the card sequence.

Then, we determine the operations in the placement
phase. Table A· 1 shows the positions of the output card
retraced from the output phase to after the placement phase.
Note that there exists the different part from the case of
MAJ2m+1 when

∑2m−1
i=1 xi = 0. Namely, the position of the

output card changes depending on the value of x2m. There-
fore, the requirements to compute MAJ2m correctly, shown
in Table A· 2, also differ from those of MAJ2m+1. However,

Table A· 1 Card sequences after the placement phase in MAJ2m .
2m−1∑
i=1

xi
Card Sequence

1 2 · · · m−2 m−1 m m+1

0 · · ·
if x2m = 1

B
if x2m = 0

B

1 · · · B
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

m − 1 B · · ·

m · · ·
if x2m = 1

B
if x2m = 0

B

m + 1 · · · B

m + 2 · · · B
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

2m − 1 B · · ·

we can generate the card sequences shown in Table A· 3 that
satisfy the requirements by the equivalent operations in the
placement phase of MAJ2m+1. The constructed protocol is
shown in Protocol A.

Table A· 2 Requirements to compute maj2m correctly.
2m−1∑
i=1

xi
Card Sequence

1 2 · · · m−2 m−1 m m+1

0 · · · ♣ ♣

1 · · · ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

m − 1 ♣ · · ·

m · · · ♥ ♣

m + 1 · · · ♥

m + 2 · · · ♥

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

2m − 1 ♥ · · ·

Table A· 3 Card sequences resulting of the placement phase in MAJ2m .
2m−1∑
i=1

xi
Card Sequence

1 2 · · · m−2 m−1 m m+1

0 ♣ ♣ · · · ♣ ♥ ♣ ♣

1 ♣ ♣ · · · ♥ ♣ ♣ ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

m − 1 ♣ ♣ · · · ♣ ♣ ♣ ♥

m ♣ ♣ · · · ♣ ♣ ♥ ♣

m + 1 ♣ ♣ · · · ♣ ♥ ♣ ♣

m + 2 ♣ ♣ · · · ♥ ♣ ♣ ♣

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

2m − 1 ♥ ♣ · · · ♣ ♣ ♣ ♣

Protocol A MAJ2m: (2m)-input Majority Voting Protocol
Inputs: P1, P2, . . . , P2m input x1, x2, . . . , x2m ∈ {0, 1}, respectively.

Setup: Publicly put m + 1 face-down cards ♥

m︷ ︸︸ ︷
♣ · · · ♣ in this order. Then,

P1 receives these m + 1 cards.

1) From i = 1 to i = 2m − 1, if xi = 0, then Pi does a right cyclic shift
over the received cards; otherwise, Pi does nothing. Then, Pi sends
the cards to Pi+1.

2) If x2m = 0, P2m does a left cyclic shift over the two cards from the
right of the received cards; otherwise, P2m does nothing. Then, P2m
sends the cards to P1.

3) From i = 1 to i = 2m − 1, if xi = 0, Pi does a left cyclic shift over
the m cards from the left of the received cards; otherwise, Pi does
nothing. Then, if i , 2m−1, Pi sends the cards to Pi+1. If i = 2m−1,
P2m−1 opens the leftmost card of the m + 1 cards, and discards the
others without opening.

Output: If the card P2m−1 opens at step 3) is ♣, the output is 0; otherwise
(if it is ♥), the output is 1.

https://ieeexplore.ieee.org/document/9366184
https://ieeexplore.ieee.org/document/9366184
https://ieeexplore.ieee.org/document/9366184
https://ieeexplore.ieee.org/document/9366184
https://ieeexplore.ieee.org/document/9366184

324
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Yoshiki Abe received the B.E. and
M.E. degrees from the University of Electro-
Communications in 2019 and 2021, respectively.
He is currently a Ph.D. student and a JSPS
research fellow in the University of Electro-
Communications and also serves as Research
Assistant at AIST.

Takeshi Nakai received the B.E., M.E., and
Ph.D. degrees from the University of Electro-
Communications in 2015, 2017, and 2021, re-
spectively. He is currently Assistant Professor
at Toyohashi University of Technology. His re-
search interests include cryptography and infor-
mation security. He is a member of IEICE, IPSJ,
and IACR.

Yohei Watanabe received the B.E., M.E.,
and Ph.D. degrees in information science from
Yokohama National University in 2011, 2013,
and 2016, respectively. He is currently As-
sistant Professor at the University of Electro-
Communications, and also serves as Invited Ad-
viser at NICT and Collaborative Researcher at
AIST. His research interests include cryptogra-
phy and information security. He is a member
of IEICE, IPSJ, IEEE, and IACR.

Mitsugu Iwamoto received the B.E., M.E.,
and Ph.D. degrees from the University of To-
kyo, Tokyo, Japan, in 1999, 2001, and 2004, re-
spectively. In 2004, he joined the University of
Electro-Communications, where he is currently
a Professor of Department of Informatics. His
research interests include information theory, in-
formation security, and cryptography. He is a
member of IEICE, IEEE, and IACR.

Kazuo Ohta received the B.S., M.S., and
Dr.S. degree from Waseda University, Tokyo,
Japan, in 1977, 1979, and 1990 respectively. He
is an emeritus professor. He had been a Professor
at The University of Electro-Communications
between 2001 and 2020. He had been a re-
searcher at NTT laboratories between 1979 and
2001. He is presently engaged in research on
information security. He is a fellow of IEICE,
and a member of IACR.

