
170
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

PAPER Special Section on Cryptography and Information Security

APVAS: Reducing the Memory Requirement of AS_PATH
Validation by Introducing Aggregate Signatures into BGPsec∗

Ouyang JUNJIE†, Nonmember, Naoto YANAI†a), Member, Tatsuya TAKEMURA†, Nonmember,
Masayuki OKADA††, Shingo OKAMURA†††, Members, and Jason Paul CRUZ†, Nonmember

SUMMARY The BGPsec protocol, which is an extension of the border
gateway protocol (BGP) for Internet routing known as BGPsec, uses digital
signatures to guarantee the validity of routing information. However, the
use of digital signatures in routing information on BGPsec causes a lack of
memory in BGP routers, creating a gaping security hole in today’s Inter-
net. This problem hinders the practical realization and implementation of
BGPsec. In this paper, we present APVAS (AS path validation based on ag-
gregate signatures), a new protocol that reduces the memory consumption
of routers running BGPsec when validating paths in routing information.
APVAS relies on a novel aggregate signature scheme that compresses in-
dividually generated signatures into a single signature. Furthermore, we
implement a prototype of APVAS on BIRD Internet Routing Daemon and
demonstrate its efficiency on actual BGP connections. Our results show
that the routing tables of the routers running BGPsec with APVAS have
20% lower memory consumption than those running the conventional BG-
Psec. We also confirm the effectiveness of APVAS in the real world by
using 800,000 routes, which are equivalent to the full route information on
a global scale.
key words: BGPsec, path validation, aggregate signatures, internet routing,
memory consumption

1. Introduction

1.1 Backgrounds

The Border Gateway Protocol (BGP) [2] enables networks,
such as an Internet service provider (ISP), to exchange rout-
ing information at the level of autonomous system (AS) by
assigning a unique number to each AS. BGP is also the
primary routing protocol used in the backbone of the Inter-
net. However, BGP does not verify the validity of routing
information being exchanged, and thus an AS always regis-
ters routing information received from other ASes as valid
evenwhen an adversarymanipulates the routing information.
This fundamental flaw in BGP has caused many incidents
that resulted in heavy and severe damages, e.g., YouTube

Manuscript received March 15, 2022.
Manuscript revised August 19, 2022.
Manuscript publicized January 11, 2023.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, 565-0871 Japan.
††The author is with University of Nagasaki, Sasebo-shi, 856-

8580 Japan.
†††The author is with National Institute of Technology, Nara

College, Yamatokoriyama-shi, 639-1080 Japan.
∗This paper is a full version of our previous work published in

arXiv [1].
a) E-mail: yanai@ist.osaka-u.ac.jp
DOI: 10.1587/transfun.2022CIP0024

hijacking∗∗ and Ethereum hijacking∗∗∗. According to some
measurement results [3], such a hijack happens about four
times a day on average. Therefore, guaranteeing the validity
of routing information in BGP is an urgent and significant
issue.

To tackle the issue mentioned above, technologies that
guarantee the security of BGP in a cryptographic fashion
have attracted attention. Loosely speaking, these technolo-
gies aim to verify the validity of routing information via
generation and verification of digital signatures in the rout-
ing information. Specifically, signatures can be used in two
ways, namely, route origin validation that only allows adver-
tisements for an IP prefix by the legitimate AS as a prefix
owner and path validation that guarantees all members of
an AS path which is a connection of ASes from a source
to a destination. Route origin validation is almost practi-
cal by virtue of the practical realizations of RPKI [4] and
ROA [4], [5] as related protocols. In contrast, path valida-
tion has no practical realization even though it is instantiated
by BGPsec [6] because its use of digital signatures signifi-
cantly increases the memory consumption of BGP routers.
For instance, according to a recent estimation [7], BGPsec is
required to have memory storage of several tens of gigabytes
because routers running BGPsec need to store all signatures
according to the current specification of BGPsec [6]. The is-
sue related to memory consumption is known as thememory
consumption problem. Moreover, BGPsec lacks experimen-
tal evaluations, and thus a precise evaluation of the memory
consumption problem remains incomplete.

BGP hijacking has also given rise to the hijacking of
cryptocurrencies [8], [9], such as Bitcoin, as a new aspect
of cybercrime. A recent finding has shown that the use of
BGPsec can only prevent BGP hijacking [10]. Therefore,
an essential issue in BGP security can be solved by making
BGPsec practical, i.e., by reducing memory consumption of
routers and solving the memory consumption problem.

1.2 Contribution

In this paper, we present a new path validation protocol
named APVAS (AS path validation based on aggregate sig-
natures), which utilizes aggregate signatures [11] to combine
∗∗YouTube Hijacking: https://www.ripe.net/publications/news/

industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
∗∗∗Ethereum Hijacking: https://www.internetsociety.org/blog/

2018/04/amazons-route-53-bgp-hijack/

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/


JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
171

individual signatures into a single short signature and solve
the memory consumption problem. Moreover, we imple-
ment a prototype of APVAS on a router daemon software.
Our prototype is a first attempt to measure the memory con-
sumption of routers using state-of-the-art cryptography in
actual devices. Our experimental results show that APVAS
can reduce thememory consumption of routers by 20% com-
pared to the conventional BGPsec. Furthermore, we confirm
via experiments whether APVAS can be used in the real
world by using 800,000 routes, which are equivalent to the
full route information on a global scale.

This paper presents two technical contributions. The
first contribution is the proposal of a novel aggregate sig-
nature scheme named bimodal aggregate signatures. Ag-
gregate signatures are expected to apply to BGPsec in cryp-
tographic theory, but aggregate signatures in early litera-
ture [11], [12] are unsuitable for the current specifications
of BGPsec. More precisely, when the original aggregate
signatures are trivially deployed in BGPsec, either the capa-
bility for signature aggregation or the security will be lost.
In contrast, APVAS can decrease the memory requirement
of path validation as well as keep the security of BGPsec
by the use of bimodal aggregate signatures (see Sect. 4 for
details).

The second contribution is the implementation of a pro-
totype of APVAS by extending BIRD Internet Routing Dae-
mon (BIRD)†, which is a software that virtualizes a BGP
router. We succeeded in measuring the performance of AP-
VAS in an actual environment by leveraging BIRD.Although
our experiments were conducted on linear network topology,
as far as we know, this is the first time that aggregate sig-
natures are evaluated in an actual environment. Moreover,
by extending our prototype, we can potentially evaluate pro-
tocols in future works (see Sect. 6 for details). The source
codes of our APVAS prototype are available on GitHub††.

2. Related Work

This section describes related works on BGP security and
aggregate signatures.

2.1 BGP Security

The closest works to APVAS are the aggregate path au-
thentication [13], APAT [14], and APVAS+ [15]. These
works introduced aggregate signatures [11] in BGPsec (and
S-BGP [16]) to aggregate individually generated signatures
into a single short signature. More precisely, the aggregate
path authentication is a trivial use of aggregate signatures,
and APAT does not provide signature chains, which is the
primary motivation for proposing bimodal aggregate signa-
tures (see Sect. III-C for details). In contrast, we propose the
bimodal aggregate signatures by improving the algorithms of
aggregate signatures [11], and thus our work is significantly

†BIRD: https://bird.network.cz/
††https://github.com/fseclab-osaka/apvas

different from the works described above. APVAS can also
be introduced into versatile extensions of BGP [17], [18] and
experimental platforms [19], [20].

In recent years, APVAS+ [15] was proposed as an im-
proved construction of APVAS. APVAS+ successfully pro-
vides the withdrawn process of routes, which is outside the
scope of APVAS. Readers interested in our work are advised
to read APVAS+, which provides state-of-the-art results on
aggregate signatures. To the best of our knowledge, there is
no commercial implementation of the conventional BGPsec
itself [21] although BGPsec fully overcomes security con-
cerns according to recent works [10], [22], [23]. Meanwhile,
partial deployment ofBGPsec is rathermeaningless [24], and
BGP oscillation will also be introduced [25].

In the past years, BGP security research [26]–[28]
aimed to serve a quick response with “decent” security by
utilizing filtering instead of digital signatures. For exam-
ple, the use of filtering can prevent 85% of hijacking [27],
whereas paths can be repaired from a hijacking within a
minute [28]. These results show how threats are mitigated in
the real world. However, a filtering-based approach makes
the BGP security difficult to distinguish hijacking for a de-
fense to DDoS or that by an adversary from a third party’s
standpoint.

2.2 Aggregate Signatures

Aggregate signatures were originally proposed in [11] as a
cryptographic scheme to compress individually generated
signatures into a single short signature. Current schemes
are classified into two types, i.e., general aggregate sig-
natures [11], [29]–[35] and sequential aggregate signa-
tures [12], [36]–[39]. Informally, while sequential aggre-
gate signatures support signature chains whereby each signer
signs the signatures generated by the previous signer, gen-
eral aggregate signatures do not support such chains because
each signer generates signatures anytime. According to the
early literature [40], sequential aggregate signatures are suit-
able for BGPsec because BGPsec requires each AS to sign
both the route information and the signatures generated by
previous ASes. However, sequential aggregate signatures do
not support aggregation of individual signatures, and hence
the data size of signatures increases linearly in proportion
to the number of paths [41]. Therefore, an extension of the
general aggregate signatures may be desirable for BGPsec.

The bimodal aggregate signatures presented in this pa-
per are a new kind of aggregate signatures that combine sig-
nature chains by using the sequential aggregate signatures as
used similarly in general aggregate signatures. The bimodal
aggregate signatures are seen as an extension of history-free
sequential aggregate signatures [39] whereby the signatures
are aggregated by the aggregation algorithm in [11]. The
security of bimodal aggregate signatures can be proven for-
mally.

Meanwhile, there is the collateral signature prob-
lem [14], [42] in which verification of signatures fails when
a fault signature is aggregated, as a common problem of

https://bird.network.cz/
https://github.com/fseclab-osaka/apvas


172
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

aggregate signatures. Countermeasures to the collateral sig-
nature problem have been proposed in the existing meth-
ods [14], [42], [43] and we note that bimodal aggregate
signatures can be extended in the same manner.

3. Border Gateway Protocol Security Extension (BG-
Psec)

This section provides backgrounds on BGP hijacking, path
validation, and the main problem of BGPsec.

3.1 Motivating Example: BGP Hijacking

As a motivating example of BGPsec, we explain route hi-
jacking on BGP below. First, we describe the protocol
specification of BGP when finding a route to a destina-
tion on the entire Internet per AS unit. Each AS is as-
signed a unique AS number, and BGP uses these AS num-
bers to distinguish ASes and exchanges routing information
via TCP. After a TCP connection is established, ASes ex-
change the routing information with each other as an update
message, which contains Network Layer Reachability
Information (NLRI), the IP prefix of a destination, and
the AS_PATH which is the route to a destination. Figure 1
shows an example of a route advertisement on BGP. BGP
routers decide the best path to each IP prefix under the re-
ceived route information and the operators’ static policy if
there are multiple routes for the IP prefix. In doing so, ASes
append their respective AS number to AS_PATH and adver-
tise the IP prefix and the AS_PATH to the neighbors as the
best path. As a result, chains of AS numbers to reach each IP
prefix as AS_PATH are configured. Following the best path
selection algorithm, BGP chooses the route with the short-
est length of AS_PATH as the best path, e.g., AS4 in Fig. 1
registers the AS_PATH of AS3 AS2 AS1 as the best path to
AS1 with 192.0.2.0/24 because the length of the AS_PATH
of AS3 AS2 AS1 is shorter than that of the AS_PATH of AS5
AS3 AS2 AS1.

However, the AS_PATH included in the update message
can be intentionally rewritten by an AS to launch a route
hijacking. As shown in Fig. 2, AS5 advertises AS4 a shorter
route to AS1, i.e., AS5 AS1. Despite the nonexistence of the
route information, AS4 registers this information in its rout-
ing table according to the best path selection algorithm. BG-
Psec [6] prevents route hijacking by validating the AS_PATH
with the use of digital signatures on the routing informa-
tion. Hereafter, we focus on the path validation provided by
BGPsec.

3.2 Path Validation

Figure 3 shows an example of a route advertisement on
BGPsec. BGPsec is required to have memory storage of
several tens of gigabytes because routers running BGPsec
need to store all signatures according to the current spec-
ification of BGPsec [6]. In BGPsec [6], BGPsec_PATH
attributes are defined instead of the AS_PATH attributes of

Fig. 1 Route advertisement on BGP.

Fig. 2 Example of route hijacking.

Fig. 3 Route advertisement on BGPsec.

BGP. BGPsec_PATH attributes contain Secure_PATH and
Signature_Blocks. Secure_PATH lists the AS numbers
of all ASes that the routing information passed through,
and it is identical to AS_PATH of the conventional BGP. In
contrast, Signature_Block stores digital signatures gener-
ated by each AS specified in Secure_PATH. The signature
length varies according to the signature algorithm speci-
fied by Algorithm Suite Identifier. The number of
Signature Blocks varies depending on the type of signature
scheme, i.e., Algorithm Suite Identifier. Therefore,
the higher the number of Signature Blocks, the more signa-
ture schemes can be supported.

Each AS sends and receives an update message contain-
ing these parameters. We describe the important parameters
below:
Target AS Number: AS number of the destination of rout-
ing information.
Signature Segment: Digital signatures, where the number
of the signatures is identical to the number of ASes that
the routing information passed through excluding the route
origin.
Secure_Path Segments: AS numbers of ASes that the rout-



JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
173

Table 1 Existing evaluation [7] of memory requirement for BGP and
BGPsec.

BGP BGPsec

Year
Number of

Paths
Memory

Requirement
Number of

Paths
Memory

Requirement
2020 6332177 0.13GB 6332177 2.79GB
2021 4433446 0.09GB 10130562 4.47GB
2022 2547235 0.05GB 14201374 6.62GB
2023 1149812 0.02GB 18111088 7.99GB
2024 355617 0.01GB 21794419 9.61GB
2025 0 0GB 25472541 11.23GB

Thememory requirement of BGPsec is evaluated bymultiplying the number
of paths in each year with the data size of an update message with ECDSA-
256, i.e., 420 bytes. In addition to the update message, the data size of
routing tables is further included in the evaluation. Interested readers are
advised to read [7] for more details about this evaluation. Meanwhile, the
memory requirement of BGP is evaluated only by the data size of routing
tables because the update message of BGP does not include signatures.

ing information passed through, where at least the AS num-
ber of the route origin is required.
Algorithm Suite Identifier: An identifier for specifying the
signature algorithm used for signature generation.
NLRI: Values of network addresses and their subnet mask
managed by the route origin.

3.3 Problem Setting

Since an update message on BGPsec contains digital signa-
tures, the update message balloons and a big part of which
comes from the digital signatures. National Institute of Stan-
dards and Technology (NIST) [7] has shown the estimation
results for memory consumption of routers on BGPsec as
shown in Table 1. According to NIST, a BGP update mes-
sage has an average size of 78 bytes, while a BGPsec update
message is 388 bytes to 1188 bytes in size, depending on the
signature algorithms. In Table 1, the columns of Memory
Requirement show total values for routing tables registering
destinations and that BGPsec_PATH attributes. Route infor-
mation on BGPsec for the worldwide level, i.e., full route,
requires a router to own more than 10 gigabytes of memory.
Discussions and deployment of BGPsec began in 2016, and
the deployment is estimated to finish in 2025. However, the
complete deployment is nowhere in sight due to the memory
consumption problem.

Solving the problem described above is non-trivial.
The use of the general aggregate signatures [11], [29]–
[31], [33], [34] to compress individual signatures into a sin-
gle short signature seems to be a potential approach to solve
the memory consumption problem. However, the general
aggregate signatures do not provide a function that allows
each AS to sign signatures generated by the previous ASes.
We call such a function signature chain for the sake of conve-
nience. A signature chain strictly guarantees the connection
between an origin AS and the current AS for each AS_PATH.
Intuitively, signature chains are necessary for the security of
BGPsec, but the general aggregate signatures cannot provide
them. Thus, the security guarantee by BGPsec might be lost
if general aggregate signatures are deployed trivially. A sig-

nature chain can be constructed by gathering the signatures
from all ASes, indicating that the number of signatures is
linear for the number of ASes for each AS_PATH. Therefore,
in the scenario described above, general aggregate signatures
are useless. It also indicates that either the security guarantee
or the efficiency, i.e., reducing memory consumption, will
be lost.

4. Bimodal Aggregate Signatures

This section discusses the bimodal aggregate signature
scheme used as a new building block in APVAS. We first
describe the central concept of the bimodal aggregate sig-
nature scheme. We then show formal definitions and the
construction of the scheme. Finally, we show the correct-
ness of the scheme and security analysis via formal proof.

4.1 Main Concept

In the bimodal aggregate signatures, when n users generate n
individual signatures, the signature aggregation is executed
in two ways, i.e., an interactive style of general aggregate
signatures [11], [29]–[34] and a signature-chain style of se-
quential aggregate signatures [12], [36]–[40].

Compared to the general aggregate signatures [11],
[29]–[34], bimodal aggregate signatures can strictly provide
the security of BGPsec under signature chains as well as
the efficiency of aggregating individual signatures even on
Secure_PATHs. Specifically, the security of BGPsec de-
pends on signature chains, and only the sequential aggregate
signatures [12], [36]–[40] provide such chains via signature
aggregation.

On the other hand, to improve efficiency, i.e., re-
ducing memory consumption, signatures even on different
Secure_PATHs should be aggregated after route advertise-
ment has converged. The reason for NOT aggregating sig-
natures between different Secure_PATHs until route conver-
gence is that the process would be complicated if a shorter
length of Secure_PATH is found after aggregating the sig-
natures of some Secure_PATH. More concretely, to up-
date the shorter length of Secure_PATH, we need to re-
move the previous Secure_PATH and then store the shorter
Secure_PATH in a routing table. In doing so, extracting
an original signature for the previous Secure_PATH from
the aggregated signature is hard [44], and thus the previ-
ous Secure_PATH cannot be removed after aggregation.
Consequently, aggregating signatures is desirable only af-
ter Secure_PATH is no longer removed. Note that even
after route convergence, there may be an incident that causes
routes to bewithdrawn. In this case, as described in Sect. 2.1,
it can be addressed by introducing the APVAS extension
[15]. Although the above function is outside the scope of the
BGPsec specification [6] in the sense that Secure_PATHs
whose signatures are aggregated cannot be advertised any-
more, thememory consumption can be significantly reduced.
Such capability is inspired only by signature aggregation of
the general aggregate signatures. In other words, both the



174
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

security and the efficiency can be achieved if the two ways
for signature aggregation described above are executed si-
multaneously.

Based on the above observation, bimodal aggregate sig-
natures are designed to provide both the signature chain of
sequential aggregate signatures and the signature aggrega-
tion of the general aggregate signatures. The main idea is
to sign the verification equations instead of the signatures
themselves. Generally speaking, the verification represents
the validity of signatures and can be used independently of
the signature aggregation. Hence, bimodal aggregate signa-
tures can solve the memory consumption problem without
sacrificing security.

4.2 Assumption

The proposed scheme is based on pairings defined as follows.
Let G and GT be groups with a prime order p. Then, a
bilinear map e : G × G → GT is a map with the following
conditions: for any U,V ∈ G and a, b ∈ Z∗p , e(aU, bV) =
e(U,V)ab holds; for any generator P ∈ G, e(P,P) 6= 1GT
holds, where 1GT is an identity element in GT ; and, for any
U,V ∈ G, e(U,V) can be computed efficiently. We assume
that solving the discrete logarithm problems in G and GT
is computationally hard. We call the parameter (p,G,GT , e)
achieving the conditions above as pairing parameter.

The security of the proposed scheme is proven under
the computational Diffie-Hellman (CDH) assumption in G
defined below.

Definition 1 (ε-CDH Assumption in G): We define a CDH
problem with a security parameter 1κ as follows: for a pair-
ing parameter (p,G,GT , e) and a given tuple (P,aP, bP) with
uniformly random (a, b) ← Z2

p as input, compute abP. We
say that a ε-CDH assumption in G holds if there is no prob-
abilistic polynomial-time algorithm that can solve the CDH
problem with a probability greater than ε .

4.3 Formal Definitions of Bimodal Aggregate Signatures

We define the syntax of a bimodal aggregate signature
scheme and its correctness below.

4.3.1 Syntax

The algorithms of a bimodal aggregate signature scheme are
defined as follows. Here, letM be a message space and PK
be a public key space.

Setup: Given a security parameter 1κ , output a public
parameter para.

UserKeyGen: Given para, output a secret key sk and
a public key pk.

SeqAggSign: Given para, a secret key ski , a public key
pki , amessagemi ∈ M to be signed, a set L = {(pk j,mj)}j∈S
of pairs of public keys andmessages for a set S of the previous
signers, and an aggregate signatureσ, return a new aggregate
signatureσ′ on a new set L ′ = L∪{(pki,mi)} or⊥ to indicate

an error.
AggSign: Given para, sets L1 = {(pk j,mj)}j∈S1 and

L2 = {(pk j,mj)}j∈S2 , and aggregate signatures σ1 and σ2,
return a new aggregate signatureσ′ on a new set L ′ = L1∪L2
or ⊥ to indicate an error.

Verify: Given para, a set L = {(pk j,mj)}j∈S of pairs
of public keys and messages, and an aggregate signature σ,
output True or False.

The correctness of the bimodal aggregate signature
scheme is then defined as follows.

Definition 2 (Correctness): For all para ← Setup(1κ), all
(sk, pk) ← UserKeyGen(para), all mi ∈ M, and all L ⊆
PK ×M, the following condition holds:

True = Verify
©­­­«

para, L ′,

SeqAggSign ©­«
para,

UserKeyGen
(
para

)
,

mi, L, σ

ª®¬
ª®®®¬ ,

where L ′ = L ∪ {(pki,mi)}. We say that a bimodal ag-
gregate signature scheme is correct if the condition de-
scribed above holds. In the above equation, L ′ and
SeqAggSign (para,UserKeyGen (para) ,mi, L, σ) can be
related with L∗ = L1 ∪ L2 for any L1, L2 ⊆ PK ×M and the
following equation, respectively:

AggSign

©­­­­­­­­­«

para,

SeqAggSign ©­«
para,

UserKeyGen
(
para

)
,

mi, L1, σ

ª®¬ ,
SeqAggSign ©­«

para,
UserKeyGen

(
para

)
,

mi, L2, σ

ª®¬

ª®®®®®®®®®¬
.

4.3.2 Security Definitions

We define the unforgeability of signatures for preventing a
signature forgery via received signatures as the security of
a bimodal aggregate signature scheme. The unforgeability
of a bimodal aggregate signature scheme is proven via the
following game between a challenger C and an adversaryA.
An advantage of A is defined as a probability whereby C
outputs accept in the game. The game follows the certified
keymodel [45] of sequential aggregate signature scheme [46]
but is slightly different in the sense that the aggregation
function can be utilized byA in local. Hereafter, we denote
by x(i) a value of the i-th query for all x.

Initial Phase: The challenger C generates para ←
Setup(1κ) and (sk∗, pk∗) ← UserKeyGen(para) as a chal-
lenge. C then runs A with (para, pk∗) as input.

Certify Query: A sends a pair of (sk(h), pk(h)) to C,
and then C registers (sk(h), pk(h)) if they are a valid pair.

Sign Query: A sends a signing query (para,m(h), L(h),
σ) to C, and then C returns a signature σ.

Output After qc iterations of the Certify Query, and
qs iterations of the Sign Query, A outputs (L∗, σ∗), where
L∗ = {(pk∗i ,m

∗
i )}

N
i=1 with N ∈ N and the following conditions

hold: theVerify algorithm outputs True; there is exactly one



JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
175

pk∗i∗ such that pk∗i∗ = pk∗ holds; for any i, pk∗i in L appears
in {pk(h)

i }
qc
h=1 holds for theCertify Query except for pk∗; for

the pk∗i∗ , a tuple of (m∗i∗, L
∗
i∗−1) where L∗

i∗−1 = {(pk∗j ,m
∗
j )}j∈S

has never been queried to the Sign Query; and all pk∗i in
L∗ are distinct. If all the conditions hold, then C outputs
accept. Otherwise, C outputs re ject.

Definition 3: We say that a bimodal aggregate signature
scheme is (qc,qs,qh,N, ε)-unforgeable if there is no prob-
abilistic polynomial-time adversary A who forges with
(qc,qs,qh,N, ε). Here, we say that A forges the scheme
with (qc,qs,qh,N, ε) if a challenger C outputs accept with
a probability greater than ε in the security game described
above. Here, A can generate at most qc key certification
queries, at most qs signing queries, and at most qh random
oracle queries, and N is the number of signers inA’s output.

4.4 Algorithms

Hereafter, each signer is represented by a unique index i in
the algorithms for convenience. We denote by S a set of
signers for any signature and by Si a set of signers who join
a chain of signatures from 1 to i for any i. We also denote by
‖ a concatenation of any string and by ‖j∈Si concatenations
of strings for any signer j ∈ Si .

We show the construction in Algorithms 1–5. The
fourth line ofAlgorithm 3 and the third line ofAlgorithm 5
are identical to a signature chain, i.e., σ indicates a signature.
More precisely, σ indicates a signature, and e(σ,P) inAlgo-
rithm 3 and e(cj,Xi) inAlgorithm 5 are identical to compu-
tations which are the main core for verification of signatures.
Intuitively, by inputting signatures and their verifications to
a hash function, the same signature chains are constructed.
Even after σs themselves are aggregated and lost, the cor-
responding e(cj,Xi)’s can be computed. Therefore, both a
signature chain of sequential aggregate signatures and an in-
teractive aggregation of general aggregate signatures can be
provided simultaneously.

Meanwhile, Algorithm 4 aggregates only two signa-
tures, but any number of signatures can be aggregated by
iterating the algorithm.

4.5 Correctness of the Scheme

In this section, we briefly show that our scheme in Sect. 4
is correct in the meaning of Definition 2. In particular, we
show that theVerify algorithm outputs True for any signature
output by Sign.

Theorem 1: The proposed scheme is correct.

Proof. First, for any (sk, pk), the following equation
holds on the Verify algorithm by the conditions of pairings:

e(σ,P) = e

(∑
i∈S

xi · H(ci),P

)
=

∏
i∈S

e (xi · H(ci),P))

Algorithm 1 Setup
Ensure: Public parameter para
1: Generate pairing parameter (p,G,GT , e)
2: P ← G
3: Choose a hash function H : {0, 1}∗ → G
4: para = (p,G,GT , e, P, H)

Algorithm 2 UserKeyGen
Require: Public parameter para
Ensure: Secret key sk, public key pk
1: x ← Zp
2: X = xP
3: sk = x, pk = X

Algorithm 3 SeqAggSign
Require: public parameter para, secret key ski , public key pki , plaintext

mi ∈ {0, 1}∗, list L = {(pk j ,m j )} j∈S of public keys and plaintexts,
signature σ

Ensure: Signature σ, list L′ = {(pk j ,m j )} j∈S ∪ {(pki ,mi )} of public
keys and plaintexts

1: if L = ∅ then
2: set σ = 0
3: end if
4: c = H

(
e(σ, P) ‖ pki ‖ mi ‖ j∈Si

(pk j ‖ m j )
)

5: σ = σ + x · H(c)

Algorithm 4 AggSign
Require: public parameter para, list L1 = {(pk j ,m j )} j∈S of public

keys and plaintexts, list L2 = {(pk j ,m j )} j∈S′ of public keys and
plaintexts, signature σ1, signature σ2

Ensure: signature σ, list L′ = L1 ∪ L2
1: σ = σ1 + σ2

Algorithm 5 Verify
Require: public parameter para, list L = {(pk j ,m j )} j∈S of public keys

and plaintexts, signature σ
Ensure: True or False
1: For any i ∈ S, parse pki as Xi

2: if all (pki ,mi ) ∈ S are distinct then
3: ∀i, ci = H

( (∏
j∈Si

e(c j , Xi )
)
‖ j∈Si

(pk j ‖ m j )
)

4: if e(σ, P) = ∏
i∈S e(H(ci ), Xi ) then

5: return True
6: end if
7: end if
8: return False

=
∏
i∈S

e (H(ci), xi · P)) ,

where ci = H
( (∏

j∈Si e(cj,Xi)
)
‖j∈Si (pk j ‖ mj)

)
for any i.

Therefore, the algorithm returns True and thus the proposed
scheme is correct. �

4.6 Security Analysis of the Scheme

We analyze the security of the proposed scheme via a for-
mal proof. The security of the proposed scheme can be
proven under the CDH assumption in G in the random ora-



176
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

cle model [47]. We give the details of the proof below.

Theorem 2: Suppose that a hash function H is mod-
eled as a random oracle. The proposed scheme is then
(qc,qs,qh,N, ε)-unforgeable under the ε-CDH assumption
in G, where

ε ′ ≥ ε ·

(
1

e(qs + 1)

)
with e as the base of the natural logarithm.

Proof. In this proof, a reduction algorithm B that
solves the CDH problem is shown by an existence of an
adversary A which forges the proposed scheme. Here, let
A be an adversary who breaks the proposed scheme with
(qc,qs,qh,N, ε). B is given a challenge (P,aP, bP) in G and
interacts with A as follows.
B sets (p,G,GT , e,P) as para and aP as pk∗. Next,

B sets PK[−,−], σ[−,−,−,−,−], H[−,−,−] as a PK-list
for key certification queries, σ-list for signing queries, and
a H-list for random oracle queries, respectively. Here, B
utilizes a random coin B ∈ {0,1} to set 1 with a probability
ε to set 1, and we finally determine ε to complete the proof:

H Query (c(h)): If the given query c has been registered
in the list, B retrieves Bi from the list. Otherwise, B sets
Bi = 1with a probability δ, which is decided at the end of this
proof, or Bi = 0 with 1 − δ. Next, B generates αi ← Z∗p and
then sets H1(c(h)) = αiP for Bi = 1 or H1(c(h)) = αiP + bP
for Bi = 0. B registers (c(h), αi,Bi) in the H-list and returns
the H1(c(h)).

Certify Query
(
sk(h), pk(h)): B checks if X (h) =

x(h) · P for the given (sk(h), pk(h)) holds. If so, B regis-
ters

(
sk(h), pk(h)) in the PK-list. Otherwise, B discards the

given query.
Sign Query

(
m(h)
i , L(h), σ′

)
: B computes c(h)

i for the
given query via the random oracle and then checks if Bi = 1
for c(h)

i on the H-list. If so, B aborts the process. Otherwise,
i.e., Bi = 0 for c(h)

i , B retrieves αi corresponding to c(h)
i from

the H-list and then computes σ = αi · aP +σ′ as a signature.
Since the signature σ is accepted on the verification algo-
rithm, the distribution in the simulation described above is
indistinguishable from the standpoint ofA. B then returns a
signature σ and registers (m(h)

i , L(h), c(h)
i σ′, σ) in the σ-list.

Output: After the simulation described above, A out-
puts a forgery (L∗, σ∗) where there exists exactly a single
pk∗i∗ , which is identical to pk∗, from the definition of the
forgery. B retrieves the values corresponding to ci∗ for pk∗

from the H-list and checks if Bi∗ = 1 holds. If not, B
aborts the process. Otherwise, the signature can be written
as follows because the verification holds:

σ = a(αi∗P + bP) +
∑

i∈[1,n]\{i∗ }
(xiαiP) ,

where xi is a secret key registered in the PK-list for any i.
B can then extract a solution to the problem by the following
computation:

abP = σ − αi∗aP −
∑

i∈[1,n]\i∗
(αi xiP) .

To complete the proof, we analyze the success proba-
bility ε ′ of B. In this proof, there are two cases where B
aborts the process; the first case abortS is in the Sign Query
where Bi = 1 in the H1-list; and the second case abortout
is in the Output where Bi∗=0 holds. The success probability
can be then estimated as follows:

ε ′ = ε · Pr[
qs∧
j=1
¬abortS] · Pr[¬abortout ]

≥ ε · (εqs ) · (1 − ε)
≥ ε · εqs (1 − ε).

The variable ε is finally determined in order to optimize the
probability described above. Here, let f (ε) be a function
εqs (1− ε). Then, f (ε) is maximized at εopt := qs

qs+1 accord-
ing to the derived function. That is, the following inequation
can be obtained for the function f (ε):

f (εopt ) =
(

qs
qs + 1

)a (
1 −

qs
qs + 1

)
=

(
1 +

1
qs

)−qs (
1

qs + 1

)
≥ e−1

(
1

qs + 1

)
,

where e is the base of the natural logarithm. The success
probability ε ′ is then bounded as follows:

ε ′ ≥ ε ·

(
1

e(qs + 1)

)
.

The probability is polynomially bounded. �

5. Design of APVAS

In this section, we present AS path validation based on ag-
gregate signatures (APVAS) as a newpath validation protocol
for BGPsec. As described in Sect. 1, APVAS is based on bi-
modal aggregate signatures. We first describe how bimodal
aggregate signatures are deployed for path validation as a
protocol specification. Then, we describe the prototype im-
plementation on the BIRD Internet routing daemon (BIRD),
a BGP software.

5.1 Protocol Specification

Figure 4 shows an example of a route advertisement on AP-
VAS. Each intermediate AS takes information from the re-
ceived update message and then verifies the routing infor-
mation with Algorithm 5. Then, for the received routing
information and aggregate signatures, an AS generates a
new aggregate signature with Algorithm 3 and sends it to
the neighbor ASes.
Signature Segment Format defined in the BGPsec

protocol contains Subject Key Identifier (SKI) with
size of 20 bytes, Signature Length with size of 2 bytes,
andSignaturewith a variable length as described in Sect. 3.
In contrast, to contain only a single signature in APVAS, SKI



JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
177

Fig. 4 Route advertisement on APVAS: The figure shows the use of each
algorithm as the specification of APVAS.

Table 2 Signature_Block format on APVAS.
Signature_Block Length (2 octets)
Algorithm Suite Identifier (1 octet)

Signature Length (2 octets)
Signature (variable)

Subject Key Identifiers (SKIs) (variable)

is defined as SKI Segment with size of 20 bytes. The new
Signature_Block Format of APVAS is shown in Table 2.

The proposed scheme, i.e., Algorithms 1–5, is utilized
as the signature in APVAS as described above. We note that
a plaintext m corresponds to a received update message. For
data storing shown in Table 3, the remaining string except for
Signature Segment Format is utilized as m. Likewise,
for verification of update messages, the intermediate values
of computation, i.e., outputs of bilinear maps, are utilized
instead of a hashed value for the previous signers to gener-
ate signatures because the update messages do not include
the hashed values. Consequently, the size of update mes-
sages is reduced. Moreover, after the convergence of paths,
each intermediateAS can aggregate the individual signatures
for each destination into a single short signature with Algo-
rithm 4. The data size to be stored can then be reduced. This
single short signature is stored in the router and deletes indi-
vidual signatures while BGPsec_PATHs of all NLRIs remain
stored in the router. Therefore, when APVAS advertises a
route to peers after route convergence due to future topology
changes, route refresh defined in RFC2918, graceful restart
defined in RFC4724, etc., the BGPsec_PATHs of the NLRIs
can be advertised to each peer without particular problem.
Each signature for each NLRI can be reconstructed by using
APVAS+ [15] with only one signature stored in the router,
the public key of the ASes in each BGPsec_PATH, and the
plaintext received from update messages and stored in the
router. However, reconstructing signatures requires compu-
tational cost. We consider the computational cost of APVAS
in Sect. 7.3. Although Algorithm 4 aggregates only two
signatures, any number of signatures can be aggregated by
iterating it.

We also describe the operation of parameters for de-
ploying APVAS in the real world since APVAS needs to use
pairing parameters and a type of hash function as global pa-

Table 3 Sequence of octets to be hashed on APVAS.
e

Target AS Number
Signature Length (2 octets)

Signature (variable)
SKI :N-1

Secure_PATH Segment :N
. . .

SKI :1
Secure_PATH Segment :2
Secure_PATH Segment :1
Algorithm Suite Identifier

AFI
SAFI
NLRI

rameters to be agreed upon in advance. These parameters
should be agreed upon globally in RFC or the IANA registry,
and this kind of agreement about pairing parameters is in the
progress on IETF†. Also, each AS generates a pair of secret
and public keys individually. While the AS stores the secret
key in a local environment as confidential information, the
public key is registered in RPKI While the AS stores the se-
cret key in a local environment as confidential information,
the public key is registered in RPKI. The above methods for
distributing the parameters to each organization are common
with the conventional BGPsec, and thus they are considered
to be practical.

5.2 Prototype Implementation

We implement a prototype of APVAS in the C language.
More specifically, APVAS is implemented by extending the
BGPsec-enabled BIRD [48], which is an implementation of
BGPsec on BIRD, with a pairing library TEPLA††. We call
this implementation prototype1 to distinguish it from another
prototype used in other experiments. BIRD is a daemon
software that utilizes a computer as a BGP router, and new
functions written in the C language can be introduced to it. A
router configuration and a network topology are specified by
editing a configuration file. We have released our prototype
implementation on GitHub†††.

Source codes related to BGP are in directories under
proto/bgp/, and the codes to be improved are as follows.
First, we improve encoding and decoding of updatemessages
by modifying the encode_bgpsec_attr() function and
the decode_bgpsec_attr() function in attrs.c, respec-
tively. We also improve signature generation and verification
by replacing the bgpsec_sign_data_with_key() func-
tion and the bgpsec_verify_signature_with_key()
function in validate.c, respectively, with an implemen-
tation of the bimodal aggregate signatures with TEPLA. The
parameters utilized in pairing computation are shown in Ta-
ble 4.
†https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-

curves/
††TEPLA: http://www.cipher.risk.tsukuba.ac.jp/tepla/index.html
†††https://github.com/fseclab-osaka/apvas

https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/
http://www.cipher.risk.tsukuba.ac.jp/tepla/index.html
https://github.com/fseclab-osaka/apvas


178
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Table 4 Version of libraries and their utilized parameters.

TEPLA ver. 2.0
Pairing ECBN254a

Finite Field bn254_fpa

6. Experiments

This section shows experimental evaluations of APVAS. To
this end, we created prototype1, an implementation of AP-
VAS.We then conduct experiments on a virtual networkwith
a simple topology to evaluate the memory consumption of
routers running APVAS and compare it with the results of
BGPsec. Furthermore, we conduct experiments on the full
route to confirm whether APVAS can be used in the real
world. The primary purpose of our experiments is to under-
stand the performance, i.e., in terms ofmemory consumption
of routers, of APVAS on actual devices on a real-world scale.
We also evaluate the computational cost as another metric of
the performance of APVAS.

6.1 Experimental Settings

We describe the experimental settings below.

(1) Evaluation of Memory Consumption for AS_PATH
Length

While BIRD can handle many kinds of network topologies,
a linear network is the simplest network topology for under-
standing the relationship between the number of paths and
the average AS_PATH length. In such a topology, AS routers
are connected linearly. Moreover, the number of paths ad-
vertised to the network is the total number of paths statically
advertised by each AS, and the average AS_PATH length is
an average of distances between ASes which advertise the
paths. In the experiments described below, we focus on a
linear network to evaluate APVAS.

Twenty virtual routers are configured under the ma-
chine environment shown in Table 5, and private AS num-
bers from 65001 to 65021 are assigned to these routers,
respectively. Each router is assigned with a static IP
from 192.168.10.10, 192.168.10.20, 192.168.10.30, . . . ,
192.168.10.200, 192.168.10.210, and these routers connect
to configure the network. For instance, AS65001 adver-
tises routing information and then the other ASes receive
it. More specifically, a router with an AS hop count of 1
from AS65001 is AS65002, a router with 2 hop is AS65003,
and similarly, a router with 20 hop is AS65021. The above
manner enables us to experiment with up to 20 routers from
a router of the route origin. Since the upper bound of the
number of NLRIs that BGPsec-enabled BIRD based proto-
type and its extended prototype of APVAS stably advertise
is approximately 250 routes, i.e., prefixes. However, it of-
ten becomes unstable around 250 routes, so we adopt truly
stable 200 routes as the number of NLRIs advertised from
route origin, i.e., AS65001 in our experiments. We evaluate

Table 5 Environment for experiments.

OS Ubuntu16.04 LTS
CPU (two) Intel Xeon Gold 6140
Memory 96GB

Docker ver. 2.2.0.3
BIRD ver. 1.6.0

BIRD BGPsec ver. 0.9

the memory consumption of AS65002 to AS65021 based on
the environment described above by getting the total mem-
ory consumption by using the show memory command of
BIRD. We then measure the computational time from when
AS65001 starts to advertise 200 routes until AS65021 re-
ceives all the routes and the operation of the router’s CPU
converges.

(2) Evaluation of Memory Consumption with Full Routes

We want to confirm if APVAS can be used in the real world.
To do so, we need to conduct additional experiments with
800,000 routes, which are equivalent to the full route in-
formation on a global scale according to the RIPE RIS†
database. In such a situation, the memory consumption of a
BGP router running APVAS is evaluated.

The prototype1 presented in the previous section is
based on the BGPsec-enabled BIRD. We note that the
BGPsec-enabled BIRD does not work stably when about 250
ormore routes are advertised due to the bug, where a daemon
of routers goes down when more than 250 routes are adver-
tised. Although we tried to fix the bug, it could not be fixed.
We thus cannot use prototype1 in experiments on the full
routes. Therefore, we implemented prototype2, a new ver-
sion prototype that can be used in the experiments on the full
routes. The prototype2 ofAPVAS is implemented by extend-
ingBIRD ††, whichworks stably evenwhen the full routes are
advertised. Specifically, we edited packets.c and bgp.h
under proto/bgp. The mechanisms for the APVAS spec-
ification are embedded in the bgp_encode_prefixes()
function and the bgp_do_rx_update() function.

The experimental setting is the same as in the previous
experiments, but the number of routers is 8 and the scales of
routes to be advertised are 100,000, 200,000, . . . , 800,000.
For the performance evaluation of APVAS on a real-world
scale, these experiments evaluate the amount of memory
consumed by the entire virtual router running APVAS. Thus,
the evaluation uses the docker stats command tomeasure
the memory consumption of each docker container.

Note that the process of obtaining a pair of secret and
pubic keys is outside the scope of the experiments. In
the real-world setting, the resource public key infrastruc-
ture (RPKI) [4] although we do not take into account it.
According to Chung et al. [49], RPKI is a hierarchical Pub-
lic Key Infrastructure that binds Internet number resources
(INRs) such as autonomous system numbers (ASNs) and IP

†https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris
††https://bird.network.cz/

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://bird.network.cz/


JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
179

Fig. 5 The memory requirement for path validation of APVAS, BGP, and
BGPsec.

addresses to public keys via certificates. Certificate holders
can utilize the corresponding secret keys to make attestations
about these INRs, most importantly, route origin authoriza-
tion (ROA) objects. In general, secret keys on RPKI are
also utilized for generating signatures for BGPsec. RPKI
is “ready for the big screen” according to Chung et al. [49]
and there is also an extension for certifying de facto own-
ership [50]. APVAS can still deploy RPKI because key
management is unchanged and common in the conventional
BGPsec. Likewise, routing information for advertisement is
randomly generated in advance.

6.2 Results of Memory Consumption for AS_PATH Length

The memory consumption of the routers running APVAS,
including the results under the same setting for BGP routers
and the conventional BGPsec routers, is shown in Fig. 5,
where each AS receives 200 routes. This figure shows
only the memory requirement related to routing tables and
BGPsec_PATH attributes, although BIRD includes the rout-
ing tables, BGPsec_PATH attributes, Route Origin Autho-
rization (ROA) table, and the protocol information. The
results show that APVAS successfully reduced the memory
requirement compared to the conventional BGPsec because
the memory requirements of other information in the current
specification [6], e.g., ROA tables and the protocol itself, are
stable in our experiments.

The results show that the memory consumption of
routers running APVAS for all instances is smaller than that
of routers running the conventional BGPsec. The mem-
ory consumption of routers running APVAS becomes more
prominent at the average AS_PATH length one because of the
data size of the bimodal aggregate signatures. While the
conventional BGPsec utilizes ECDSA with a bit length of
384 bits per signature, the bimodal aggregate signatures have
512 bits.

As the evaluation of the computational cost, the route
advertisement in BGP and BGPsec converged in a few sec-
onds, while the route advertisement in APVAS took about
five minutes until the convergence. The computational
cost includes the route advertisement and signature gen-
eration/verification on BGPsec and APVAS, and thus the

Table 6 Evaluation on the computational cost of APVAS.
Length Start [sec] Convergence [sec] Time [sec]

1 0.2 39 38.8
2 0.2 54.2 54
3 0.8 69.6 68.8
4 1 83.8 82.8
5 1.6 97.8 96.2
6 2 111.4 109.4
7 2.8 124.6 121.8
8 3.4 138.6 135.2
9 4 150.4 146.4
10 5 163.6 158.6
11 5.8 177 171.2
12 6.8 189.8 183
13 7.8 202.8 195
14 8.8 216 207.2
15 9.8 229 219.2
16 11.2 243 231.8
17 12.4 257.2 244.8
18 14 271.4 257.4
19 15.4 284.6 269.2
20 17 299.4 282.4

The “Length” column shows the length of AS_PATH where each router is
running APVAS. The “Start [sec]” column shows the elapsed time when a
router advertises full routes starts to advertise the first route. The “Con-
vergence [sec]” column shows the elapsed time where each router receives
the last route and validates it. Finally, the “Time [sec]” column shows the
elapsed time in total, i.e., from the “Start [sec]” column to the “Convergence
[sec]” column.

bimodal aggregate signatures for APVAS have higher com-
putational cost than the ECDSA for BGPsec. Table 6 shows
the detailed computational cost of APVAS.

6.3 Results of Memory Consumption with Full Routes

We show the experimental results of the memory consump-
tion of the entire routers running APVAS and BGP when
the full routes are advertised. Figure 6 shows the measure-
ment results when 100,000, 200,000,. . . , 800,000 routes are
advertised, respectively. The results imply that the mem-
ory consumption of routers is stable regardless of the route
length, even when the large-scale routes are advertised. For
advertisement of 800,000 routes, i.e., full route, the router
running APVAS consumes about 8.6GB at AS_PATH length
four. Moreover, by considering a conventional high-end
router, APVAS is operable up to 200,000 routes.

Finally, the experimental results of the computational
cost for APVAS are shown in Table 7. According to the table,
APVAS takes about nine hours on a router with AS_PATH
length 7 to advertise and verify the full route information.

7. Discussion

In this section, we discuss the experimental results in the pre-
vious section and the dependency ofAPVAS for theAS_PATH
length. We then evaluate the computational cost of signa-
tures for each router.



180
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Fig. 6 Thememory consumption of the routers runningBGP andAPVAS
when each number of routes was advertised: The horizontal axis shows the
length of AS_PATH of each router, i.e., the number of AS hops from route
origin, i.e., AS65001, and the vertical axis shows the memory consumption
of each router. The scale of the graph is overlarge for BGP, and thus all
patterns overlap as close to zero as possible. The last router expressed as
“Verification only” with AS_PATH length of 7 only verifies the signature
related to the received route and need not generate a new signature to
guarantee the validity of its routing information because of the non-existence
of backward peer. Therefore the last router does not need the temporary
memory required to generate the signature and needs only the memory
related to the signature verification.

Table 7 The computational cost of APVAS.
rt1 rt2 rt3 rt4 rt5 rt6 rt7 rt8

100K 0:24 0:25 0:34 0:45 0:48 0:56 1:05 1:05
200K 1:09 1:14 1:15 1:52 1:52 1:58 2:27 2:27
300K 2:17 2:19 2:22 2:51 2:55 3:01 3:34 3:34
400K 2:44 2:45 2:54 3:37 3:44 3:59 4:39 4:39
500K 3:20 3:23 3:29 4:22 4:33 4:56 5:44 5:45
600K 3:46 3:48 4:01 5:07 5:21 5:51 6:50 6:51
700K 4:28 4:31 4:43 5:50 6:11 6:47 7:56 7:57
800K 4:52 4:56 5:17 6:33 7:03 7:43 9:02 9:03

Each column indicates the number of routers running APVAS. For instance,
a router of rt1 advertises paths and other routers following rt1 receives
and verifies them. The data in the table indicates the elapsed time from
an advertisement of the first route by rt1, and the unit means the value
of [hour: minute]. Likewise, the rt1 column shows the elapsed time for
advertising each number of routes, and other columns, i.e., rt2 to rt8, show
the elapsed time until each router receives and verifies them.

7.1 Consideration Based on Experimental Results

According to the empirical study of Wang et al. [51], the
average length of AS_PATH on the Internet is about 3.9, and
the longest path is about 20. When the average length of
AS_PATH is four, the memory requirement of BGPsec_PATH
attributes by APVAS became 20% compared to the conven-
tional BGPsec. The bulk ofmemory consumption for routers
is related to the memory requirement of BGPsec_PATH at-
tributes [7], and thus the results above confirm that APVAS
can reduce the memory requirement by 20%. By taking the
longest AS_PATH, i.e., 20, into account, in proportion to the
length of AS_PATH, the difference in the memory consump-
tion between routers running APVAS and those running the
conventional BGPsec becomes large. The reason is that
the memory requirement of APVAS is stable by virtue of
the aggregate signatures via Algorithm 4 even if different

BGPsec_PATH attributes appear. As shown in Table 1, the
memory consumption of routers runningBGPsec is expected
to increase in the future, and then APVAS will have a more
attractive advantage as a practical solution than the conven-
tional BGPsec by the stability of APVAS.

We now discuss the memory consumption, including
the cache of routers. The memory consumption of the en-
tire routers, i.e., the result of docker stats, is 3.47MB
for BGPsec and 4.07MB for APVAS in the setting of 200
route advertisements and AS_PATH length 4. The reason is
that parings for bimodal aggregate signatures consumemuch
memory as the initial setting compared to ECDSA of BG-
Psec. Paring does not affect the memory consumption of
the routing table. However, the memory consumption for
each router in this experiment is measured with the docker
stats command, and then the pairing computation has a
significant effect when the number of route advertisements
is small. However, as shown in Fig. 5, APVAS has a 20%
lower memory requirement for the path validation than BG-
Psec, indicating that APVAS outperforms BGPsec as the
number of advertised routes increases, i.e., the full routes.

We now discuss the feasibility of APVAS from the
memory consumption. For advertising 800,000 routes in
Sect. 6, a router running APVAS consumes about 8GB of
memory. Meanwhile, APVAS can further reduce the mem-
ory consumption of routers potentially if our prototype im-
plementation is optimized. In particular, as shown in Fig. 6,
the last router in the linear network, i.e., at AS_PATH 7, has
a connection in one direction only, so it only receives routes
advertised from the forward and has no backward peer to
send the routes it has received. That means the router with
AS_PATH length of 7 only verifies the signature related to
the received route and need not generate a new signature to
guarantee the validity of its routing information because of
the non-existence of backward peer. Therefore the last router
does not need the temporary memory required to generate
the signature and needs only the memory related to the sig-
nature verification on the Docker container. The memory
consumption of the router was about 4.4GB, which is half
of the total memory consumption. It means that about 4GB
was consumed as a temporal memory for the signature veri-
fication. Consequently, the memory consumption of routers
running APVAS can become 50% lower than the current
implementation.

7.2 Dependency betweenMemory Consumption of Router
and AS_PATH Length

We discuss dependencies betweenmemory consumption and
the length of AS_PATH for APVAS. The size of the BGP up-
datemessage is 4,096 bytes, andmultiple routes are transmit-
ted within this range. In APVAS, the number of signatures is
independent of the length AS_PATH by aggregating the sig-
natures, but the number of SKIs sent in the update message
depends on the length of AS_PATH. Therefore, the number of
routes transmitted in a single update message varies in each
AS. Thus, the memory consumption for each router depends



JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
181

Fig. 7 The computational cost for BGPsec and APVAS.

a little on the AS_PATH length due to a temporary memory
related to the update message.

7.3 Computational Cost of Signature Schemes

Weevaluate the computational cost for the bimodal aggregate
signatures in APVAS compared to ECDSA used in the con-
ventional BGPsec. In particular, we measured the running
time of the decode_bgpsec_attr() function that verifies
signatures in the BGPsec-enabled Bird Routing Daemon and
that of the prototype1 in the same experiment setting as the
first experiment in Sect. 6.2. On evaluation of the running
time of the decode_bgpsec_attr() function itself, only
the signature verification are measured. In other words, the
running time of other processes, e.g., the route advertise-
ment, can be ignored. We measure the running time five
times and compute the average. Figure 7 shows results in the
computational cost for verification of ECDSA inBGPsec and
Algorithm 5 in APVAS. The computational cost of APVAS
is about 3,670 times the computational time of ECDSA in
BGPsec. The sizeable computational cost is due to the high
computational cost of pairings used by bimodal aggregate
signatures.

We then discuss the feasibility of APVAS. The above
expensive cost is an important issue that needs to be ad-
dressed, and we plan to reduce the computational cost in
the future. However, considering a realistic scenario, it is
expected that APVAS is feasible in the real world because of
the following two reasons.

First, regarding the route advertisement inAPVAS takes
five minutes as described in Sect. 6.2, it is limited to when
the length of AS_PATH is 20, which is the maximum length.
Indeed, the number of such lengths of AS_PATH is quite
few [51]. As described in Sect. 7.1, the average length of
AS_PATH is about 3.9, and then the time for the convergence
in APVAS is 83.8 seconds, according to Table 6. Compared
to a few seconds in BGPsec, the computational time of AP-
VAS is at most 30 times BGPSec. Moreover, 99% of ASes
can be reached when the length of AS_PATH is seven in the
real world [52]. In that case, the time for the convergence is
124.6 seconds, according to Table 6, which is about 40 times
BGPsec. Namely, APVAS can perform route advertisements
and their convergence with a computational cost of 30 to 40

Table 8 Comparison of evaluation terms with existing works.

Protocol
Memory

Consumption
Prototype

Implementation
Signature

Aggregation
BGPsec [6] X X
ABA [13] X
APAT [14] X
APVAS X X X

Each column represents that the paper of the protocol discusses the corre-
sponding term.

times BGPsec.
Second, as for the convergence with full routes tak-

ing nine hours as described in Sect. 6.3, we believe this
is unlikely to happen. The advertisement of full routes is
mainly considered when new AS providers appear. In prac-
tice, however, they often receive routes from an Internet Ex-
change Point (IXP), which operates and manages a physical
infrastructure supporting public and private Internet inter-
connection in their region. When we checked the routing
information of JPIX (https://www.jpix.ad.jp/en/) as an IXP
of our region at 09:21 on 17 August 2022, there were about
3,500 routes. APVAS can process their route advertisements
in 145 seconds. Since even the conventional BGP may take
up to thirty minutes for convergence [53] due to forward-
ing loops [54], the performance of APVAS is comparable in
a realistic situation. Likewise, RIPE†, which has the most
significant number of routes, has about 100,000 routes at
09:15 on 17 August 2022. They can be processed in about
one hour. Considering we may need that thirty minutes for
the convergence of the conventional BGP as described above,
we believe that APVAS is reasonably practical because it can
process a region’s paths in one hour with security guarantees.

7.4 Comparison with Other BGPsec-Based Protocols

We discuss evaluation terms of APVAS in a qualitative way
in comparison with the existing protocols [13], [14] based on
aggregate signatures [11]. The results are shown in Table 8.
APVAS is the first work that evaluates thememory consump-
tion based on the first prototype implementation. To the best
of our knowledge, a prototype implementation of software
routers has been presented for only the conventional BG-
Psec. However, the conventional BGPsec does not provide
the signature aggregation because it is based on ECDSA.
Thus, APVAS is the only aggregate signature-based work
that evaluates the memory consumption via a prototype.

8. Conclusion

In this paper, we proposed APVAS, a path validation method
that deploys novel bimodal aggregate signatures to reduce the
memory consumption of routers running BGPsec. We im-
plemented a prototype of APVAS via BIRD and measured
the memory consumption of actual routers. Our experi-
mental results confirm that APVAS can reduce the memory
requirement of path validation by 20% compared to conven-
tional BGPsec. We also confirm the effectiveness of APVAS
†https://www.ripe.net/

https://www.jpix.ad.jp/en/
https://www.ripe.net/


182
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

in the real world by using 800,000 routes, which are equiva-
lent to the full route information on a global scale.

Furthermore, we discovered a new problem where the
throughput of routers is downgraded by the computational
cost of bimodal aggregate signatures, which is heavier than
that of ECDSA. Thus, further studies on reducing the mem-
ory consumption and the computational cost, which takes
misconfiguration such that a large amount of routing infor-
mation is advertised into account, will need to be undertaken.

9. Code Availability

Our implementation of APVAS is publicly available via
GitHub (https://github.com/fseclab-osaka/apvas) for repro-
ducibility and as reference for future works.

Acknowledgments

This research was in part conducted under a contract of “Re-
search and development on new generation cryptography for
secure wireless communication services” among “Research
and Development for Expansion of Radio Wave Resources
(JPJ000254)”, which was supported by the Ministry of In-
ternal Affairs and Communications, Japan, and “Innovation
Platform for Society 5.0” from Japan Ministry of Education,
Culture, Sports, Science, and Technology (Code: S004541)
and by JSPS KAKENHI Grant Number 22H03591. We
would also like to appreciate the anonymous reviewers for
their valuable comments.

References

[1] O. Junjie, N. Yanai, T. Takemura, M. Okada, S. Okamura, and J.P.
Cruz, “APVAS: Reducing memory size of AS_PATH validation by
using aggregate signatures,” CoRR, vol.abs/2008.13346, 2020.

[2] Y. Rekhter, S. Hares, and T. Li, “A border gateway Protocol 4 (BGP-
4),” RFC 4271, 2006.

[3] P. Vervier, O. Thonnard, and M. Dacier, “Mind your blocks: On the
stealthiness of malicious BGP hijacks,” Proc. NDSS 2015, pp.1–15,
Internet Society, 2015.

[4] M. Lepinski and S.Kent, “An infrastructure to support secure Internet
routing,” Request for Comments, RFC 6480, 2012.

[5] G. Huston and G.G. Michaelson, “Validation of route origination
using the resource certificate public key infrastructure (PKI) and
route origin authorizations (ROAs),” RFC 6483, 2012.

[6] M. Lepinski and K. Sriram, “BGPsec protocol specification,” RFC
8205, 2017.

[7] K. Sriram, “RIB size estimation for BGPSEC,” 2011. https://
www.nist.gov/document-7096

[8] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Rout-
ing attacks on cryptocurrencies,” Proc. IEEES&P2017, pp.375–392,
2017.

[9] P. Ekparinya, V. Gramoli, and G. Jourjon, “The attack of the clones
against proof-of-authority,” Proc. NDSS 2020, pp.1–14, Internet So-
ciety, 2020.

[10] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal, “Sico: Surgical
interception attacks by manipulating bgp communities,” Proc. CCS
2019, pp.431–448, ACM, 2019.

[11] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and veri-
fiably encrypted signatures from bilinearmaps,” Proc. EUROCRYPT
2003, LNCS, vol.2656, pp.416–432, Springer, 2003.

[12] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, “Sequen-
tial aggregate signatures from trapdoor permutations,” Proc. EURO-
CRYPT 2004, LNCS, vol.3027, pp.74–90, Springer, 2004.

[13] M. Zhao, S.W. Smith, and D.M. Nicol, “Aggregated path authentica-
tion for efficient BGP security,” Proc. CCS 2005, pp.128–138, ACM,
2005.

[14] K. Tanaka, N. Yanai, M. Okada, T. Nishide, and E. Okamoto, “APAT:
An application of aggregate signatures to BGPSEC,” Fast Abstract
in DSN 2016, 2016.

[15] T. Takemura, N. Yanai, N. Umeda, M. Okada, S. Okamura, and J.P.
Cruz, “APVAS+: A practical extension of BGPsec with lowmemory
requirement,” Proc. ICC 2021, pp.1–8, IEEE, 2021.

[16] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol
(S-BGP),” IEEE J. Sel. Areas Commun., vol.18, no.4, pp.582–592,
2000.

[17] R.R. Sambasivan, D. Tran-Lam, A. Akella, and P. Steenkiste, “Boot-
strapping evolvability for inter-domain routing with d-bgp,” Proc.
SIGCOMM 2017, pp.474–487, ACM, 2017.

[18] S. Pouryousef, L. Gao, and A. Venkataramani, “Towards logically
centralized interdomain routing,” Proc. NSDI 2020, pp.739–757,
USENIX Association, 2020.

[19] N. Umeda, N. Yanai, T. Takemura, M. Okada, J.P. Cruz, and S. Oka-
mura, “SQUAB:A virtualized infrastructure for experiments on BGP
and its extensions,” Proc. AINA 2021, LNNS, vol.225, pp.600–613,
Springer, 2021.

[20] M.Brandt andH. Shulman, “OptimizedBGP simulator for evaluation
of internet hijacks,” Proc. IEEE INFOCOMWKSHPS 2021, pp.1–2,
IEEE, 2021.

[21] K. Sriram and D.C. Montgomery, “Resilient interdomain traffic ex-
change: BGP security and DDos mitigation,” NIST Report, 2019.

[22] J.M. Smith, K. Birkeland, T. McDaniel, and M. Schuchard, “With-
drawing the BGP re-routing curtain: Understanding the security
impact of bgp poisoning through real-world measurements,” Proc.
NDSS 2020, pp.1–18, Internet Society, 2020.

[23] R. Morillo, J. Furuness, C. Morris, J. Breslin, A. Herzberg, and
B. Wang, “ROV++: Improved deployable defense against BGP hi-
jacking,” Proc. NDSS 2021, Internet Society, 2021.

[24] R. Lychev, S. Goldberg, and M. Schapira, “BGP security in partial
deployment: Is the juice worth the squeeze?,” SIGCOMMComputer
Communication Review, vol.43, no.4, p.171–182, 2013.

[25] Y. Yang, X. Shi, Q. Ma, Y. Li, X. Yin, and Z.Wang, “Path stability in
partially deployed secure bgp routing,” Computer Networks, vol.206,
p.108762, 2022.

[26] S. Goldberg, “Why is it taking so long to secure internet routing?,”
Queue, vol.12, no.8, p.20–33, 2014.

[27] R. Lychev, M. Schapira, and S. Goldberg, “Rethinking security for
internet routing,” Commun. ACM, vol.59, no.10, pp.48–57, 2016.

[28] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “ARTEMIS: Neutralizing BGP hijacking
within a minute,” IEEE/ACM Trans. Netw., vol.26, no.6, pp.2471–
2486, 2018.

[29] C. Gentry and Z. Ramzan, “Identity-based aggregate signatures,”
Proc. PKC 2006, LNCS, vol.3958, pp.257–273, Springer, 2006.

[30] S. Hohenberger, A. Sahai, and B. Waters, “Full domain hash from
(leveled) multilinear maps and identity-based aggregate signatures,”
Proc. CRYPTO 2013, LNCS, vol.8042, pp.494–512, Springer, 2013.

[31] S. Hohenberger, V. Koppula, and B. Waters, “Universal signature
aggregators,” Proc. EUROCRYPT 2015, LNCS, vol.9057, pp.3–34,
Springer, 2015.

[32] B. Liang, H. Li, and J. Chang, “The generic transformation from
standard signatures to identity-based aggregate signatures,” Proc.
ISC 2015, LNCS, vol.9290, pp.21–41, Springer, 2015.

[33] J.H. Ahn, M. Green, and S. Hohenberger, “Synchronized aggregate
signatures: New definitions, constructions and applications,” Proc.
CCS 2010, pp.473–484, ACM, 2010.

[34] S. Hohenberger and B. Waters, “Synchronized aggregate signa-
tures from the RSA assumption,” Proc. EUROCRYPT 2018, LNCS,

https://github.com/fseclab-osaka/apvas
https://doi.org/10.48550/arXiv.2008.13346
https://doi.org/10.48550/arXiv.2008.13346
https://doi.org/10.48550/arXiv.2008.13346
http://dx.doi.org/10.17487/rfc4271
http://dx.doi.org/10.17487/rfc4271
http://dx.doi.org/10.14722/ndss.2015.23035
http://dx.doi.org/10.14722/ndss.2015.23035
http://dx.doi.org/10.14722/ndss.2015.23035
http://dx.doi.org/10.17487/rfc6480
http://dx.doi.org/10.17487/rfc6480
http://dx.doi.org/10.17487/rfc6483
http://dx.doi.org/10.17487/rfc6483
http://dx.doi.org/10.17487/rfc6483
http://dx.doi.org/10.17487/rfc8205
http://dx.doi.org/10.17487/rfc8205
https://www.nist.gov/document-7096
https://www.nist.gov/document-7096
http://dx.doi.org/10.1109/sp.2017.29
http://dx.doi.org/10.1109/sp.2017.29
http://dx.doi.org/10.1109/sp.2017.29
http://dx.doi.org/10.14722/ndss.2020.24082
http://dx.doi.org/10.14722/ndss.2020.24082
http://dx.doi.org/10.14722/ndss.2020.24082
http://dx.doi.org/10.1145/3319535.3363197
http://dx.doi.org/10.1145/3319535.3363197
http://dx.doi.org/10.1145/3319535.3363197
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1145/1102120.1102139
http://dx.doi.org/10.1145/1102120.1102139
http://dx.doi.org/10.1145/1102120.1102139
http://dx.doi.org/10.1109/icc42927.2021.9500278
http://dx.doi.org/10.1109/icc42927.2021.9500278
http://dx.doi.org/10.1109/icc42927.2021.9500278
http://dx.doi.org/10.1109/49.839934
http://dx.doi.org/10.1109/49.839934
http://dx.doi.org/10.1109/49.839934
http://dx.doi.org/10.1145/3098822.3098857
http://dx.doi.org/10.1145/3098822.3098857
http://dx.doi.org/10.1145/3098822.3098857
http://dx.doi.org/10.1007/978-3-030-75100-5_52
http://dx.doi.org/10.1007/978-3-030-75100-5_52
http://dx.doi.org/10.1007/978-3-030-75100-5_52
http://dx.doi.org/10.1007/978-3-030-75100-5_52
http://dx.doi.org/10.1109/infocomwkshps51825.2021.9484563
http://dx.doi.org/10.1109/infocomwkshps51825.2021.9484563
http://dx.doi.org/10.1109/infocomwkshps51825.2021.9484563
http://dx.doi.org/10.6028/nist.sp.800-189-draft2
http://dx.doi.org/10.6028/nist.sp.800-189-draft2
http://dx.doi.org/10.14722/ndss.2020.24240
http://dx.doi.org/10.14722/ndss.2020.24240
http://dx.doi.org/10.14722/ndss.2020.24240
http://dx.doi.org/10.14722/ndss.2020.24240
http://dx.doi.org/10.14722/ndss.2021.24438
http://dx.doi.org/10.14722/ndss.2021.24438
http://dx.doi.org/10.14722/ndss.2021.24438
http://dx.doi.org/10.1145/2534169.2486010
http://dx.doi.org/10.1145/2534169.2486010
http://dx.doi.org/10.1145/2534169.2486010
http://dx.doi.org/10.1016/j.comnet.2022.108762
http://dx.doi.org/10.1016/j.comnet.2022.108762
http://dx.doi.org/10.1016/j.comnet.2022.108762
http://dx.doi.org/10.1145/2668152.2668966
http://dx.doi.org/10.1145/2668152.2668966
http://dx.doi.org/10.1145/2896817
http://dx.doi.org/10.1145/2896817
http://dx.doi.org/10.1109/tnet.2018.2869798
http://dx.doi.org/10.1109/tnet.2018.2869798
http://dx.doi.org/10.1109/tnet.2018.2869798
http://dx.doi.org/10.1109/tnet.2018.2869798
http://dx.doi.org/10.1007/11745853_17
http://dx.doi.org/10.1007/11745853_17
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-662-46803-6_1
http://dx.doi.org/10.1007/978-3-662-46803-6_1
http://dx.doi.org/10.1007/978-3-662-46803-6_1
http://dx.doi.org/10.1007/978-3-319-23318-5_2
http://dx.doi.org/10.1007/978-3-319-23318-5_2
http://dx.doi.org/10.1007/978-3-319-23318-5_2
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1007/978-3-319-78375-8_7
http://dx.doi.org/10.1007/978-3-319-78375-8_7


JUNJIE et al.: APVAS: REDUCING THE MEMORY REQUIREMENT OF AS_PATH VALIDATION BY INTRODUCING AGGREGATE SIGNATURES INTO BGPSEC
183

vol.10821, pp.197–229, Springer, 2018.
[35] K. Takemure, Y. Sakai, B. Santoso, G. Hanaoka, and

K. Ohta, “Achieving pairing-free aggregate signatures using pre-
communication between signers,” IEICE Trans Fundamentals,
vol.E104-A, no.9, pp.1188–1205, Sept. 2021.

[36] Y. Yao, Z. Li, and H. Guo, “A unified framework of identity-based
sequential aggregate signatures from 2-level hibe schemes,” Infor-
mation Sciences, vol.516, pp.505–514, 2020.

[37] C. Gentry, A. O’Neill, and L. Reyzin, “A unified framework for
trapdoor-permutation-based sequential aggregate signatures,” Proc.
PKC 2018, LNCS, vol.10770, pp.34–57, Springer, 2018.

[38] A. Boldyreva, C. Gentry, A. O’Neill, and D. Yum, “Ordered mul-
tisignatures and identity-based sequential aggregate signatures, with
applications to secure routing (extended abstract),” 2010.

[39] M. Fischlin, A. Lehmann, and D. Schröder, “History-free sequential
aggregate signatures,” Proc. SCN 2012, LNCS, vol.7485, pp.113–
130, Springer, 2012.

[40] K. Brogle, S. Goldberg, and L. Reyzin, “Sequential aggregate signa-
tures with lazy verification from trapdoor permutations - (extended
abstract),” Proc. ASIACRYPT 2012, LNCS, vol.7658, pp.644–662,
Springer, 2012.

[41] N. Yanai, M. Mambo, K. Tanaka, T. Nishide, and E. Okamoto,
“Another look at aggregate signatures: Their capability and security
on network graphs,” Proc. INTRUST 2015, LNCS, vol.9565, pp.32–
48, Springer, 2015.

[42] G. Hartung, B. Kaidel, A. Koch, J. Koch, and A. Rupp, “Fault-
tolerant aggregate signatures,” Proc. PKC 2016, LNCS, vol.9614,
pp.331–356, Springer, 2016.

[43] R. Ishii, K. Yamashita, Y. Sakai, T. Matsuda, T. Teruya, G. Hanaoka,
K. Matsuura, and T. Matsumoto, “Aggregate signature with trace-
ability of devices dynamically generating invalid signatures,” Proc.
of ACNSW, LNCS, vol.12809, pp.378–396, Springer, 2021.

[44] J.S. Coron and D. Naccache, “Boneh et al.’s k-element aggregate ex-
traction assumption is equivalent to the diffie-hellman assumption,”
Proc. ASIACRYPT 2003, LNCS, vol.2894, pp.392–397, Springer,
2003.

[45] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the Gap-Diffie-Hellman-group signature scheme,”
Proc. PKC 2003, LNCS, vol.2567, pp.31–46, Springer, 2003.

[46] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Se-
quential aggregate signatures and multisignatures without random
oracle,” Proc. EUROCRYPT 2006, LNCS, vol.4004, pp.465–485,
Springer, 2006.

[47] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” Proc. CCS 1993, pp.62–
73, ACM, 1993.

[48] “Bird bgpsec,” http://www.securerouting.net/tools/bird/
[49] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes,

D. Levin, B.M. Maggs, A. Mislove, R.V. Rijswijk-Deij, J. Rula, and
N. Sullivan, “RPKI is coming of age: A longitudinal study of RPKI
deployment and invalid route origins,” Proc. IMC 2019, pp.406–419,
ACM, 2019.

[50] T. Hlavacek, I. Cunha, Y. Gilad, A. Herzberg, E. Katz-Bassett,
M. Schapira, and H. Shulman, “DISCO: Sidestepping RPKI’s de-
ployment barriers,” Proc. NDSS 2020, Internet Society, 2020.

[51] C. Wang, Z. Li, X. Huang, and P. Zhang, “Inferring the average
as path length of the internet,” Proc. IC-NIDC, pp.391–395, IEEE,
2016.

[52] M. Okada, Y. Katsuno, A. Kanaoka, and E. Okamoto, “32-bit as
number based IP traceback,” Proc. IMIS 2011, pp.628–633, IEEE,
2011.

[53] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” Proc. SIGCOMM 2000, pp.175–187, ACM,
2000.

[54] R.B. da Silva and E. Souza Mota, “A survey on approaches to reduce
BGP interdomain routing convergence delay on the internet,” IEEE
Commun. Surveys Tuts., vol.19, no.4, pp.2949–2984, 2017.

Ouyang Junjie received B.Eng. degree
in Engineering Science from Osaka University,
Japan, in 2017, and M.S.Eng. from Osaka Uni-
versity, Japan, in 2019. His research interests
include information security.

Naoto Yanai received the B.Eng. degree
from The National Institution of Academic De-
grees and University Evaluation, Japan, in 2009,
the M.S. Eng. from the Graduate School of Sys-
tems and Information Engineering, the Univer-
sity of Tsukuba, Japan, in 2011, and the Dr.E.
degree from the Graduate School of Systems
and Information Engineering, the University of
Tsukuba, Japan, in 2014. He had been an assis-
tant professor at Osaka University, Japan, from
2014 to 2021 and is an associate professor at

Osaka University. His research area is information security.

Tatsuya Takemura received the B.Eng. de-
gree in Engineering Science from Osaka Uni-
versity, Japan, in 2019. He has recently joined
the M.S. course in the Graduate School of Infor-
mation Science and Technology in Osaka Uni-
versity, Japan. His research interests include
machine learning and network security.

Masayuki Okada is a full professor at
The University of Nagasaki. He experienced
a BGP operation of an academic network since
2000. He joined JPNIC in 2004 and is responsi-
ble for the development and operation of the IP
resource management system related to routing
and JPIRR research, as well as the use of IRR.He
received his Ph.D. degree in 2012 in Computer
Science from University of Tsukuba.

Shingo Okamura received his B.E., M.E.,
and Ph.D. degrees in information science and
technology from Osaka University in 2000,
2002, and 2005, respectively. Since 2005, he
has worked for Osaka University. In 2008, he
joined National Institute of Technology, Nara
College. Currently, he is an associate profes-
sor at the college. His research interests include
cryptographic protocols and cyber security. He
is a member of IEICE, IPSJ, IEEJ, ACM, IEEE,
and IACR.

http://dx.doi.org/10.1007/978-3-319-78375-8_7
http://dx.doi.org/10.1007/978-3-319-78375-8_7
http://dx.doi.org/10.1587/transfun.2020dmp0023
http://dx.doi.org/10.1587/transfun.2020dmp0023
http://dx.doi.org/10.1587/transfun.2020dmp0023
http://dx.doi.org/10.1587/transfun.2020dmp0023
http://dx.doi.org/10.1016/j.ins.2019.12.076
http://dx.doi.org/10.1016/j.ins.2019.12.076
http://dx.doi.org/10.1016/j.ins.2019.12.076
http://dx.doi.org/10.1007/978-3-319-76581-5_2
http://dx.doi.org/10.1007/978-3-319-76581-5_2
http://dx.doi.org/10.1007/978-3-319-76581-5_2
http://dx.doi.org/10.1007/978-3-642-32928-9_7
http://dx.doi.org/10.1007/978-3-642-32928-9_7
http://dx.doi.org/10.1007/978-3-642-32928-9_7
http://dx.doi.org/10.1007/978-3-642-34961-4_39
http://dx.doi.org/10.1007/978-3-642-34961-4_39
http://dx.doi.org/10.1007/978-3-642-34961-4_39
http://dx.doi.org/10.1007/978-3-642-34961-4_39
http://dx.doi.org/10.1007/978-3-319-31550-8_3
http://dx.doi.org/10.1007/978-3-319-31550-8_3
http://dx.doi.org/10.1007/978-3-319-31550-8_3
http://dx.doi.org/10.1007/978-3-319-31550-8_3
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-540-40061-5_25
http://dx.doi.org/10.1007/978-3-540-40061-5_25
http://dx.doi.org/10.1007/978-3-540-40061-5_25
http://dx.doi.org/10.1007/978-3-540-40061-5_25
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1145/168588.168596
http://www.securerouting.net/tools/bird/
http://dx.doi.org/10.1145/3355369.3355596
http://dx.doi.org/10.1145/3355369.3355596
http://dx.doi.org/10.1145/3355369.3355596
http://dx.doi.org/10.1145/3355369.3355596
http://dx.doi.org/10.1145/3355369.3355596
http://dx.doi.org/10.14722/ndss.2020.24355
http://dx.doi.org/10.14722/ndss.2020.24355
http://dx.doi.org/10.14722/ndss.2020.24355
http://dx.doi.org/10.1109/icnidc.2016.7974603
http://dx.doi.org/10.1109/icnidc.2016.7974603
http://dx.doi.org/10.1109/icnidc.2016.7974603
http://dx.doi.org/10.1109/imis.2011.95
http://dx.doi.org/10.1109/imis.2011.95
http://dx.doi.org/10.1109/imis.2011.95
https://dl.acm.org/doi/10.1145/347059.347428
https://dl.acm.org/doi/10.1145/347059.347428
https://dl.acm.org/doi/10.1145/347059.347428
http://dx.doi.org/10.1109/comst.2017.2722380
http://dx.doi.org/10.1109/comst.2017.2722380
http://dx.doi.org/10.1109/comst.2017.2722380


184
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Jason Paul Cruz received his B.S. degree
in Electronics and Communications Engineering
andM.S. degree in Electronics Engineering from
the Ateneo de Manila University, Quezon City,
Philippines, in 2009 and 2011, respectively, and
his Ph.D. degree in Engineering from the Gradu-
ate School of Information Science, Nara Institute
of Science and Technology, Nara, Japan in 2017.
He is currently a Specially Appointed Assistant
Professor at OsakaUniversity, Osaka, Japan. His
current research interests include role-based ac-

cess control, blockchain technology, hash functions and algorithms, privacy-
preserving cryptography, and Android programming.


