
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023
1191

LETTER Special Section on Discrete Mathematics and Its Applications

A Fast Algorithm for Finding a Maximal Common Subsequence of
Multiple Strings

Miyuji HIROTA†a), Nonmember and Yoshifumi SAKAI†b), Member

SUMMARY For any m strings of total length n, we propose an
O(mn log n)-time, O(n)-space algorithm that finds a maximal common
subsequence of all the strings, in the sense that inserting any character in
it no longer yields a common subsequence of them. Such a common sub-
sequence could be treated as indicating a nontrivial common structure we
could find in the strings since it is NP-hard to find any longest common
subsequence of the strings.
key words: algorithms, longest common subsequence, multiple strings

1. Introduction

Comparing strings and searching for the common structure
they share is an essential task to unravel and exploit the reg-
ularity behind them. For example, in molecular biology,
comparing strings that encode homologous proteins in var-
ious model organisms may be useful in understanding what
constitutes the function of the protein. As for the structure
that a string has, this article will consider a subsequence,
which is obtained from the string by deleting any number of
characters not necessarily contiguous. Thus, what we intend
to find as the common structure of multiple strings is a cer-
tain nontrivial subsequence common to all of them that can
be found in polynomial time.

The longest common subsequence (LCS) is one of the
most studied nontrivial common subsequences as the most
likely to make sense. However, finding an LCS of multiple
strings was shown to be NP-hard [4], and the well-known al-
gorithm based on dynamic programming [7] finds an LCS of
multiple strings in time exponential in the number of strings.
The maximal common subsequence (MCS), which is a gen-
eralization of LCS, is defined as a common subsequence
that is no longer a common subsequence if any more char-
acters are inserted. For two strings, a cubic-time algorithm
to find the shortest MCS [3], a linearithmic-time algorithm
to find an arbitrary MCS [5], and a polynomial-time delay
algorithm to enumerate all MCSs [2] have been proposed.
Although MCS does not have the same strict requirements
for length as LCS, it is nontrivial in the sense that there is
no other common subsequence that contains itself as a sub-
sequence, and hence, for multiple strings, MCS would be a

Manuscript received September 12, 2022.
Manuscript revised December 20, 2022.
Manuscript publicized March 6, 2023.
†The authors are with the Graduate School of Agricultural Sci-

ence, Tohoku University, Sendai-shi, 980-0845 Japan.
a) E-mail: miyuji.hirota.p8@dc.tohoku.ac.jp
b) E-mail: yoshifumi.sakai.c7@tohoku.ac.jp (Corresponding

author)
DOI: 10.1587/transfun.2022DML0002

good alternative candidate to LCS.
In this article, we consider the problem of finding an

arbitrary MCS of m strings of total length n that contains
a given “pattern” string as a subsequence and propose an
algorithm that solves this problem in O(mn log n) time and
O(n) space. The advantages of considering the problem of
finding the conditional MCS for the pattern string include
the following features.

• One can search for anMCSwith no condition by setting
the empty string as the pattern string.

• As in the case of the constrained LCS problem [6], if
one knows a crucial pattern that should be included as
a subsequence, it is possible to search for the desired
MCS by setting this as the pattern string.

• The condition does not increase the time complexity
of the proposed algorithm, unlike in the case of the
constrained LCS problem [1].

• As a standard heuristic in practical use, one can attempt
to refine the resulting MCS by applying an iterative
method of repeatedly updating itself by deleting some
characters chosen arbitrarily or randomly and setting it
as the pattern string.

The algorithm we propose is a generalization of the existing
algorithm for two strings [5], but with a certain modification.
This modification makes the algorithm O(m) times faster
than the unmodified algorithm.

2. Preliminaries

For any sequences S and S′, let S◦S′ denote the concatenation
of S followed by S′. For any sequence S, let |S | denote the
number of elements in S, and for any index i with 1 ≤ i ≤ |S |,
let S[i] denote the ith element of S, so that S = S[1] ◦ S[2] ◦
· · · ◦ S[|S |]. A subsequence of S is a sequence obtained from
S by deleting any number of elements at any position not
necessarily contiguous, which is hence S[i1] ◦ S[i2] ◦ · · · ◦
S[i`] for some length ` with 0 ≤ ` ≤ |S | and any ` indices
i1, i2, . . . , i` with 1 ≤ i1 < i2 < · · · < i` ≤ |S |. We say that
sequence S contains sequence S′, if S′ is a subsequence of
S. For any indices i and i′ with 1 ≤ i ≤ i′ ≤ |S |, let S[i : i′]
denote the contiguous subsequence S[i] ◦ S[i+1] ◦ · · · ◦ S[i′]
of S. For convenience, we treat S[i : i−1]with 1 ≤ i ≤ |S |+1
as the empty sequence. For any index i with 0 ≤ i ≤ |S | + 1,
S[1 : i] (resp. S[i : |S |]) is called a prefix (resp. suffix) of S
and is denoted by S〈i] (resp. S[i〉).

A string is a sequence whose elements are characters in

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

1192
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

an alphabet setΣ. A string Z is called a common subsequence
of a set X of strings, if all strings in X contain Z . We say
that X shares Z , if Z is a common subsequence of X. A
longest common subsequence (an LCS) of X is one of the
longest strings thatX shares. In contrast, amaximal common
subsequence (an MCS) of X is defined as a string that X
shares in which inserting any character no longer yields a
string that X shares. Note that any LCS is an MCS, but an
MCS is not necessarily an LCS.
Example 1: If X = {CATCGCAT,CGGAGTCC,ATTCGAAT},
then ATC is an MCS of X, but CAT is not an MCS since
inserting G in it yields CGAT, whch is shared by X.

Let X = {X1,X2, . . . ,Xm} be an arbitrary set of m
strings of total length n, and let Y be an arbitrary string that
X shares. We consider the problem of finding an arbitrary
MCS of X that contains Y .

In what follows, for simplicity, we assume that Σ con-
sists of consecutive positive integers starting from 1 and X
shares all characters in Σ. For any index s with 1 ≤ s ≤ m,
any index l with 0 ≤ l ≤ |Xs |, and any character c in Σ, let
next(s, l, c) denote the least index i with l < i ≤ |Xs | such
that Xs[i] = c, if any, or |Xs | + 1, otherwise. Similarly, for
any index r with 1 ≤ r ≤ |Xs | + 1, let prev(s,r, c) denote
the greatest index i with 1 ≤ i < r such that Xs[i] = c,
if any, or 0, otherwise. Any of next(s, l, c) and prev(s,r, c)
is determined in O(log n) time by binary search on the ar-
ray consisting of all indices i with 1 ≤ i ≤ |Xs | such that
Xs[i] = c in ascending order. Since the number of characters
in Σ is at most n/m due to the assumption, all such arrays are
prepared in O(n) time as preprocessing.

For any string Z that X shares and any index s with
1 ≤ s ≤ m, let ls,Z (resp. rs,Z) denote the index i such that
Xs 〈i] (resp. Xs[i〉) is the shortest prefix (resp. suffix) of Xs

that contains Z . For any string Z thatX shares and any index
k with 0 ≤ k ≤ |Z |, let X(Z ,k) denote the set of the strings
Xs[ls,Z 〈k] + 1 : rs,Z[k+1〉 − 1], obtained from Xs by deleting
both the shortest prefix that contains Z 〈k] and the shortest
suffix that contains Z[k+1〉, for all indices s with 1 ≤ s ≤ m.
Example 2: Consider the same X as Example 1 and let
X1 = CATCGCAT, X2 = CGGAGTCC, and X3 = ATTCGAAT,
where A,T,G, and C represent characters 1,2,3, and 4 in Σ,
respectively. If Z = CAT, then for any index s with 1 ≤ s ≤ 3,
ls,Z 〈0] = 0, rs,Z[4〉 = |Xs | + 1 (= 9), and for any index k with
1 ≤ k ≤ |Z | (= 3), ls,Z 〈k] (resp. rs,Z[k 〉) is indicated by the
position of the kth character in Xs that is overlined (resp.
underlined) in the figure below.

X1 = C A T C G C A T

X2 = C G G A G T C C

X3 = A T T C G A A T

Hence, X(Z ,0) = {CATCG, ε,ATT}, X(Z ,1) = {ATCGC,GG,GA},
X(Z ,2) = {TCGCA,G,A}, and X(Z ,3) = {CGCAT,CC, ε}, where
ε denotes the empty string.

The following lemmas are straightforward generaliza-
tions of what appeared in [5] for two strings. The first lemma

redefines the MCS of X in a convenient form while the sec-
ond states a useful property about X(Z ,k).

Lemma 1: A string Z that X shares is an MCS of X if
and only if X(Z ,k) shares no character for any index k with
0 ≤ k ≤ |Z |.

Proof. Let k be an arbitrary index with 0 ≤ k ≤ |Z | and let
c be an arbitrary character. If X(Z ,k) shares c, then X shares
Z 〈k] ◦ c ◦ Z[k +1〉, implying that Z is not an MCS ofX. On
the other hand, if X shares Z 〈k] ◦ c ◦ Z[k + 1〉, then X(Z ,k)
shares c. �

Lemma 2: For any string Z that X shares and any index
k with 1 ≤ k ≤ |Z |, if X(Z ,k) shares no character, then
there exists at least an index t with 1 ≤ t ≤ m such that
lt ,Z 〈k] = rt ,Z[k 〉 .

Proof. If no such index t exists, then X(Z ,k) shares Z[k], a
contradiction. �

3. Algorithm

As mentioned in Sect. 1, the proposed algorithm is a gen-
eralization of the existing algorithm [5] for two strings, but
with a certain modification, and this modification makes the
proposed algorithm O(m) times faster than the unmodified
algorithm.

To begin with, we introduce the unmodified algorithm.
This algorithm adopts the following framework to find an
MCS of X that contains Y .

Definition 1: Define the update procedure as performing
the following:

1. Initialize variable Z to Y and variable k to |Y |,
2. repeatedly search for a character c that X(Z ,k) shares to

update (Z, k) to (Z 〈k] ◦ c ◦ Z[k + 1〉, k + 1), if any, or
update (Z, k) to (Z, k − 1), otherwise, until k = −1, and

3. output the resulting Z .

The update from (Z, k) to (Z 〈k]◦c◦ Z[k+1〉, k+1) is called
a forward update (with insertion of c). The update from
(Z, k) to (Z, k − 1) is called a backward update.

Lemma 3: The update procedure outputs anMCS ofX that
contains Y .

Proof. For any (Z, k) in step 2 of the update proce-
dure, let C(Z ,k) denote the condition that X(Z ,k′) shares
no character for any index k ′ with k < k ′ ≤ |Z |. Ob-
viously C(Y , |Y |) holds for (Y, |Y |), the initial (Z, k). Con-
sider any forward update from (Z, k) with insertion of c
and let Zc = Z 〈k] ◦ c ◦ Z[k + 1〉. For any index k ′ with
k < k ′ ≤ |Z | (i.e., k + 1 < k ′ + 1 ≤ |Zc |) and any index
s with 1 ≤ s ≤ m, ls,Zc 〈k′+1] = ls,Z 〈k]◦c◦Z[k+1:k′] ≥ ls,Z 〈k′]
and rs,Zc [k′+2〉 = rs,Z[k′+1〉 . Therefore, if C(Z ,k) holds, then
C(Zc ,k+1) also holds. On the other hand, for any backward
update of (Z, k), X(Z ,k) shares no character. Hence, if C(Z ,k)
holds, then C(Z ,k−1) also holds. Consequently by induction,

LETTER
1193

C(Z ,−1) holds for the resulting Z output by step 3 of the pro-
cedure. Thus, the lemma follows from Lemma 1. �

To show how the unmodified algorithm searches for
a character that X(Z ,k) shares, the following definition and
lemma need to be introduced.

Definition 2: Let Z ′ ≺k Z mean that the update procedure
performs a chain of updates starting with a forward update
from (Z ′, k) and endingwith a backward update to (Z, k) such
that k ′′ > k for any (Z ′′, k ′′) appearing in the chain other
than (Z ′, k) and (Z, k). If there exist more than one strings
Z1, Z2, . . . , Z` such that Z ′ = Z1 ≺k Z2 ≺k · · · ≺k Z` = Z ,
then Z ′ is called a k-precursor of Z .

Lemma 4: For any k-precursor Z ′ of Z , X(Z ,k) consists of
prefixes of distinct strings in X(Z′,k). Furthermore, if the
update procedure performs a forward update with insertion
of c from (Z ′, k), then X(Z ,k) does not share c.

Proof. Since Z 〈k] has no change before and after any
execution of step 2 of the update procedure, ls,Z 〈k] = ls,Z′ 〈k]
holds for any index s with 1 ≤ s ≤ m. On the other hand,
since Z ′[k + 1〉 is a suffix of Z[k + 1〉, rs,Z[k+1〉 ≤ rs,Z′[k+1〉 .
Thus, X(Z ,k) consists of prefixes of distinct strings inX(Z′,k).
To prove the second half of the lemma, let Z ′ ≺k Z ′′. Note
that Z ′′ is either Z or a k-precursor of Z . From definition of
Z ′ ≺k Z ′′, Z ′′[k + 1] = c and X(Z′′,k+1) shares no character.
This implies that X(Z′′,k) does not share c. Furthermore, if
Z ′′ is a k-precursor of Z , then X(Z ,k) does not share c due to
the first half of the lemma. �

The unmodified algorithm searches for a character that
X(Z ,k) shares by repeatedly choosing an element Xt [i] of
some string Xt [lt ,Z 〈k]+1 : rt ,Z[k+1〉 −1] inX(Z ,k) and testing
whether the chosen element is a character that X(Z ,k) shares.
This process is performed until an element that passes the test
is found or it is confirmed that some string in X(Z ,k) has no
such element. Note that each test is done in O(m log n) time
by checking if inequalities next(s, ls,Z 〈k],Xt [i]) < rs,Z[k+1〉
hold for all indices s with 1 ≤ s ≤ m. The element Xt [i] to
be tested is always chosen so that any element of almost the
same length prefix of any string in X(Z ,k) has already been
tested whether X(Z′,k) shares it, where Z ′ is either Z itself or
some k-precursor of Z . This is because Lemma 4 guarantees
thatX(Z ,k) never shares any of such elements, including even
the element found as shared by X(Z′,k) for any k-precursor
Z ′ of Z . Therefore, for any (Z, k) appearing in the execution
of the update procedure such that X(Z ,k) shares no character,
the number of tested elements is at most m times the length
of the shortest string inX(Z ,k). The reason why the algorithm
does not test only elements of the shortest string in X(Z ,k)
is that it is unclear which string the elements belong to in
X(Z′,k) for the k-precursors Z ′ of Z . Once it is confirmed
that X(Z ,k) shares no character, no element of any string
Xt [lt ,Z 〈k] + 1 : rt ,Z[k+1〉 − 1] with lt ,Z 〈k] = rt ,Z[k 〉 in X(Z ,k)
will be chosen to be tested thereafter. Lemma 2 guarantees
that there exists such a string, which is not shorter than the
shortest string in X(Z ,k). Thus, the total number of elements

chosen to be tested throughout the execution of the algorithm
is at most mn, and hence the algorithm runs in O(m2n log n)
time.

By utilizing the following lemma, instead of Lemma 2,
the proposed algorithm improves the execution time of the
unmodified algorithm to O(mn log n).

Lemma 5: For any string Z thatX shares, any index k with
1 ≤ k ≤ |Z |, and any index t with 1 ≤ t ≤ m, if character
Z[k] does not appear in Xt [lt ,Z 〈k] + 1 : rt ,Z[k+1〉 − 1], then
lt ,Z 〈k] = rt ,Z[k 〉 .

Proof. The lemma follows from definition of lt ,Z 〈k] and
rt ,Z[k 〉 . �

The proposed algorithm differs from the unmodified
algorithm as follows.

1. The first character to be testedwhetherX(Z ,k) shares it is
Z[k]. (Consequently, the maximum possible number of
copies of Z[k] are inserted between Z 〈k] and Z[k + 1〉,
but they do not always appear as consecutive repeats in
the resulting MCS.)

2. If X(Z ,k) does not share Z[k] and no index is specified
as t(Z ,k), then an arbitrary index t such that Z[k] does
not appear in Xt [lt ,Z 〈k] + 1 : rt ,Z[k+1〉 − 1] is specified
as t(Z ,k), which is also inherited as t(Z′,k)s for all Z ′s
having Z as their k-precursor.

3. If some index t is specified as t(Z ,k), then the element
to be tested whether X(Z ,k) shares it is Xt [i] chosen
from Xt [i(Z ,k) : rt ,Z[k+1〉 − 1] in ascending order of i.
Here, if Z has no k-precursor, then i(Z ,k) = lt ,Z 〈k] +
1; otherwise, i(Z ,k) is the index such that the update
procedure performs a forward update from (Z ′, k) with
insertion Xt [i(Z ,k) − 1], where Z ′ ≺k Z .

We implement the proposed algorithm as Algorithm
findMCS(X,Y) presented in Fig. 1. This algorithm consists
of three phases, the initialization phase (lines 1 through 6),
the iterative phase (lines 7 through 23), and the output phase
(line 24), each corresponding to a distinct step of the update
procedure listed in Definition 1 in the same order. As vari-
ables, stack Z 〈], string Z [〉 , and indices rs with 1 ≤ s ≤ m
are used to maintain Z and k. At the end of each iter-
ation in the iterative phase, Z 〈] consists of k + 1 tuples
τ0, τ1, . . . , τk in order from bottom to top. For any index k ′

with 0 ≤ k ′ ≤ k, τk′ = (c, t, i, (l1, l2, . . . , lm)), where c repre-
sents Z[k ′], if k ′ ≥ 1, and ls represents ls,Z 〈k′] for any index
s with 1 ≤ s ≤ m. In contrast, Z [〉 represents Z[k +1〉 and rs
represents rs,Z[k+1〉 . This asymmetry is due to the fact that
the update procedure updates (Z, k) to either (Zc, k + 1) or
(Z, k −1), where Zc = Z 〈k] ◦ c◦ Z[k +1〉 for some character
c that X(Z ,k) shares. While updating ls,Z 〈k] to ls,Zc 〈k+1] (=
next(s, ls,Z 〈k], c)), rs,Z[k+1〉 to rs,Zc [k+2〉 (= rs,Z[k+1〉), and
rs,Z[k+1〉 to rs,Z[k 〉 (= prev(s,rs,Z[k+1〉, Z[k])) are easy, up-
dating ls,Z 〈k] to ls,Z 〈k−1] is difficult, so keeping ls in Z 〈] is
adopted. Elements t and i in tuple τk represent t(Z ,k) and
i(Z ,k), respectively. We use t = 0 to indicate that no index is
specified as t(Z ,k).

1194
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

1: Let Z 〈] and Z[〉 be the empty stack and string, respectively;
2: ls ← 0 and rs ← |Xs | + 1 for s = 1, 2, . . . ,m;
3: push (0, 1, 0, (l1, l2, . . . , lm)) to Z 〈];
4: for each character c in Y from Y[1] to Y[|Y |],
5: ls ← next(s, ls , c) for s = 1, 2, . . . ,m;
6: push (c, 0, 0, (l1, l2, . . . , lm)) to Z 〈];
7: while Z 〈] is nonempty,
8: pop (c, t , i, (l1, l2, . . . , lm)) from Z 〈];
9: if t = 0, then
10: while ∀s, next(s, ls , c) < rs ,
11: push (c, 0, 0, (l1, l2, . . . , lm)) to Z 〈];
12: ls ← next(s, ls , c) for s = 1, 2, . . . ,m;
13: let t be any index such that next(t , lt , c) ≥ rt ;
14: i ← lt + 1;
15: while i < rt and ∃s, next(s, ls , Xt [i]) ≥ rs ,
16: i ← i + 1;
17: if i < rt , then
18: push (c, t , i + 1, (l1, l2, . . . , lm)) to Z 〈];
19: ls ← next(s, ls , Xt [i]) for s = 1, 2, . . . ,m;
20: push (Xt [i], 0, 0, (l1, l2, . . . , lm)) to Z 〈];
21: otherwise, if Z 〈] is nonempty, then
22: Z[〉 ← c ◦ Z[〉 ;
23: rs ← prev(s, rs , c) for s = 1, 2, . . . ,m;
24: output Z[〉 .

Fig. 1 Algorithm findMCS({X1, X2, . . . , Xm },Y).

By using variables Z 〈], Z [〉 , and r1,r2, . . . ,rm as de-
scribed above, Algorithm findMCS simulates the update pro-
cedure as follows. The initialization phase initializes (Z, k)
to (Y, |Y |) in lines 1 through 6. The iterative phase repeats
execution of lines 8 through 23 until k = −1. In each it-
eration, lines 8 through 14 check whether some index is
specified as t(Z ,k), and if not, insert the maximum possible
number of copies of Z[k] between Z 〈k] and Z[k + 1〉, in-
crease k by the number of the inserted copies of Z[k], and
specify an arbitrary index t such that Z[k] does not appear
in Xt [lt ,Z 〈k]+1 : rt ,Z[k+1〉 −1] as t(Z ,k). Lines 15 through 16
search in ascending order of i for the first element Xt(Z ,k)

[i]
shared by X(Z ,k) in Xt(Z ,k)

[i(Z ,k) : rt(Z ,k) ,Z[k+1〉 − 1]. Finally,
lines 18 through 20 performs a forward update from (Z, k) to
(Z 〈k] ◦ Xt(Z ,k)

[i] ◦ Z[k +1〉, k +1), if any, or lines 22 through
23 performs a backward update from (Z, k) to (Z, k − 1),
otherwise. The output phase outputs the resulting Z in line
24.

The only concern about the correctness of Algorithm
findMCS is that if t , 0 and i ≥ lt ,Z 〈k] in line 8, then testing
whether X(Z ,k) shares any element in Xt [lt ,Z 〈k] + 1 : i − 1] is
skipped. Since this skip is essential to make the algorithm’s
execution time O(mn log n), we show below that X(Z ,k)
shares no such element. Any tuple popped from Z 〈] by line
8 with t , 0 and i ≥ lt ,Z 〈k] is the one that was pushed by line
18 to perform a forward update from (Z ′, k) with insertion
of Xt [i(Z ,k) − 1], where Z ′ ≺k Z . This implies that i = i(Z ,k)
andX(Z′,k) shares no element in Xt [i(Z′,k) : i(Z ,k)−2]. Hence,

fromLemma4,X(Z ,k) shares no element in Xt [i(Z′,k) : i(Z ,k)−
1]. By repeatedly applying the same argument to Z ′ and so
on, we also have a chain Z1 ≺k Z2 ≺k · · · ≺k Z` = Z ′

such that i(Z1 ,k) = lt ,Z 〈k] + 1 and for any index `′ with 2 ≤
`′ ≤ `, X(Z ,k) shares no element in Xt [i(Z`′−1 ,k) : i(Z`′ ,k) − 1].
Therefore, X(Z ,k) shares no element in Xt [lt ,Z 〈k] + 1 : i − 1],
and thus we obtain the following theorem.

Theorem 1: Algorithm findMCS(X,Y) outputs an MCS
that contains Y .

The execution time and required space of Algorithm
findMCS(X,Y) are estimated as follows. The initialization
phase (lines 1 through 6) and the output phase (line 24) are
respectively executed in O(n log n) time and O(n/m) time
because the length of any string that is shared byX isO(n/m).
It is easy to verify that the iterative phase (lines 7 through 23)
is executed in time linear in the product ofO(m log n) and the
number of times line 15 of the algorithm is executed. The
number of times line 15 is executed is equal to the sum of the
number of elements in Xt(Z ,k)

[lt(Z ,k) ,Z 〈k]+1 : rt(Z ,k) ,Z[k+1〉−1]
over all backward updates from (Z, k) to (Z, k − 1), which
are executed by lines 22 through 23. Let t be an arbitrary
index with 1 ≤ t ≤ m. Consider any backward update
from (Z, k) to (Z, k − 1) with t(Z ,k) = t that is performed
before another backward update from (Z ′, k ′) to (Z ′, k ′)with
t(Z′,k′) = t is performed. Since Z[k〉 is a suffix of Z ′[k ′+ 1〉,
rt ,Z′[k′+1〉 ≤ rt ,Z[k 〉 . On the other hand, since Z[k] does not
appear in Xt [lt ,Z 〈k] + 1 : rt ,Z[k+1〉 − 1], lt ,Z 〈k] = rt ,Z[k 〉 due
to Lemma 5. Therefore, rt ,Z′[k′+1〉 ≤ lt ,Z 〈k], implying that
Xt [lt ,Z 〈k]+1 : rt ,Z[k+1〉−1] and Xt [lt ,Z′ 〈k′]+1 : rt ,Z′[k′+1〉−1]
never overlap. Hence, line 15 is executed at most n times,
and thus the algorithm runs in O(mn log n) time. Since Z 〈]

storesO(n/m) tuples, each consisting of a character andm+2
indices, the algorithm uses O(n) space.

Theorem 2: Algorithm findMCS(X,Y) runs in O(mn log n)
time and O(n) space.

References

[1] F.Y.L. Chin, A. De Santis, A. Ferrara, N.L. Ho, S.K. Kim, “A simple
algorithm for the constrained sequence problems,” Inf. Process. Lett.,
vol.90, pp.175–179, 2004.

[2] A. Conte, R. Grossi, G. Punzi, T. Uno, “Enumeration of maximal
common subsequence between two strings,” Algorithmica, vol.84,
no.3, pp.757–783, 2022.

[3] C.B. Fraser, R.W. Irving, M. Middendorf, “Maximal common sub-
sequences and minimal common supersubsequences,” Inf. Comput.,
vol.124, no.2, pp.145–153, 1996.

[4] D. Maier, “The complexity of some problems on subsequences and
supersequences,” J. ACM, vol.25, no.2, pp.322–336, 1978.

[5] Y. Sakai, “Maximal common subsequence algorithms,” Theor. Com-
put. Sci., vol.793, pp.132–139, 2019.

[6] Y.-T. Tsai, “The constrained longest common subsequence problem,”
Inf. Process. Lett., vol.88, no.4, pp.173–176, 2003.

[7] R.A. Wagner, M.J. FIscher, “The string-to-string correction problem,”
J. ACM, vol.21, no.1, pp.168–173, 1974.

http://dx.doi.org/10.1016/j.ipl.2004.02.008
http://dx.doi.org/10.1016/j.ipl.2004.02.008
http://dx.doi.org/10.1016/j.ipl.2004.02.008
http://dx.doi.org/10.1007/s00453-021-00898-5
http://dx.doi.org/10.1007/s00453-021-00898-5
http://dx.doi.org/10.1007/s00453-021-00898-5
http://dx.doi.org/10.1006/inco.1996.0011
http://dx.doi.org/10.1006/inco.1996.0011
http://dx.doi.org/10.1006/inco.1996.0011
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1016/j.tcs.2019.06.020
http://dx.doi.org/10.1016/j.tcs.2019.06.020
http://dx.doi.org/10.1016/j.ipl.2003.07.001
http://dx.doi.org/10.1016/j.ipl.2003.07.001
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1145/321796.321811

