
1082
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

PAPER Special Section on Discrete Mathematics and Its Applications

Enumerating Empty and Surrounding Polygons

Shunta TERUI†, Nonmember, Katsuhisa YAMANAKA†a), Takashi HIRAYAMA†b), Takashi HORIYAMA††c),
Kazuhiro KURITA†††d), and Takeaki UNO††††e), Members

SUMMARY We are given a set S of n points in the Euclidean plane.
We assume that S is in general position. A simple polygon P is an empty
polygon of S if each vertex of P is a point in S and every point in S is
either outside P or a vertex of P. In this paper, we consider the problem
of enumerating all the empty polygons of a given point set. To design
an efficient enumeration algorithm, we use a reverse search by Avis and
Fukuda with child lists. We propose an algorithm that enumerates all the
empty polygons of S in O(n2 |E(S) |)-time, where E(S) is the set of empty
polygons of S. Moreover, by applying the same idea to the problem of
enumerating surrounding polygons of a given point set S, we propose an
enumeration algorithm that enumerates them in O(n2)-delay, while the
known algorithm enumerates in O(n2 log n)-delay, where a surrounding
polygon of S is a polygon such that each vertex of the polygon is a point in S
and every point in S is either inside the polygon or a vertex of the polygon.
key words: enumeration algorithm, reverse search, simple polygon, empty
polygon, surrounding polygon

1. Introduction

Enumeration problems are fundamental and important in
computer science and have applications including data min-
ing, bioinformatics, and artificial intelligence. A lot of enu-
meration algorithms for enumeration problems have been
proposed [1]. Among them, enumeration problems for geo-
metric objects have been studied. For example, enumeration
algorithms have been proposed for triangulations [2]–[5],
non-crossing spanning trees [2], [4]–[6], non-crossing span-
ning cycles [5], [6], non-crossing convex partitions [5], non-
crossing perfect matchings [5], non-crossing convex sub-
divisions [5], pseudoline arrangements [7], unfoldings of
Platonic solids [8], Archimedian solids [9], and so on.

In this paper, we focus on the enumeration problem
of generating simple polygons with the following property.

Manuscript received September 15, 2022.
Manuscript revised January 12, 2023.
Manuscript publicized April 3, 2023.
†The authors are with Iwate University, Morioka-shi, 020-8551

Japan.
††The author is with Hokkaido University, Sapporo-shi, 060-

0814 Japan.
†††The author is with Nagoya University, Nagoya-shi, 464-8601

Japan.
††††The author is with National Institute of Informatics, Tokyo,
101-8430 Japan.

a) E-mail: yamanaka@iwate-u.ac.jp
b) E-mail: hira6377@iwate-u.ac.jp
c) E-mail: horiyama@ist.hokudai.ac.jp
d) E-mail: kurita@i.nagoya-u.ac.jp
e) E-mail: uno@nii.jp
DOI: 10.1587/transfun.2022DMP0007

Fig. 1 (a) A point set S. (b) An empty polygon, (c) an empty convex
polygon, (d) a non-crossing spanning cycle, and (e) a surrounding polygon
of S.

We are given a set S of n points in the Euclidean plane
and in general position. An empty polygon of S is a simple
polygon P such that each vertex of P is a point in S and
every point in S is either outside the polygon or a vertex of
the polygon. Fig. 1(b) is an example of an empty polygon
of the point set in Fig. 1(a). The class of empty polygons
includes two important classes of simple polygons: empty
convex polygons and non-crossing spanning cycles.

An empty polygon of S is an empty convex polygon of
S if the polygon is convex. See Fig. 1(c) for an example. The
empty convex polygons have been studied in the contexts of
counting and enumeration. For counting, Rote et al. [10]
presented an O(nk−2)-time algorithm that counts the number
of the empty convex k-gons of a given point set S for any
k ≥ 4, where a k-gon of S is a simple polygon such that the
polygon consists of k vertices and each vertex is a point in S.
Rote and Woeginger [11] improved the running time of the
algorithm to O(n dk/2e)-time. Moreover, Mitchell et al. [12]
improved the running time. Their algorithm is based on
a dynamic programming and runs in O(kn3)-time. Very
recently, Bae proposed O(kγk(S))-time counting algorithm,
where γk(S) is the number of the empty convex k-gons of S.
For enumeration, Dobkin et al. [13] proposed an enumeration
algorithm that enumerates all the empty convex k-gons of a
given point set S and runs in O(γ3(S) + kγk(S))-time.

An empty polygon of a point set S is called a non-
crossing spanning cycle of S if every point S is a vertex of
the polygon. See Fig. 1(d) for an example. The non-crossing
spanning cycles of a point set are known as appealing ob-
jects in the area of computational geometry and have been
studied in the context of counting [5], [6], [14], random
generation [15]–[18], and enumeration [5], [6].

Recently, Yamanaka et al. [19] proposed surrounding
polygons as a new class of simple polygons. For a point set
S, a surrounding polygon of S is a simple polygon such that
each vertex of the polygon is a point in S and every point
in S is either inside the polygon or a vertex of the polygon.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

TERUI et al.: ENUMERATING EMPTY AND SURROUNDING POLYGONS
1083

See Fig. 1(e) for an example. They showed that one can
enumerate all the surrounding polygons of S in O(n2 log n)-
delay and O(n2)-space, where the delay of an enumeration
algorithm is the worst-case running time between two con-
secutive outputs in the algorithm.

Our contributions are as follows. We first design an
algorithm that enumerates all the empty polygons of a given
set of n points in O(n2 |E(S)|)-time, where E(S) is the set
of empty polygons of S. The algorithm is based on the re-
verse search by Avis and Fukuda [2] with the “child list”
technique, which is often used to design efficient enumer-
ation algorithms ([20]). Moreover, we apply the technique
to the problem of enumerating surrounding polygons of S.
We present an algorithm that enumerates all the surrounding
polygons of S in O(n2)-delay and O(n2)-space, while the
known algorithm enumerates them in O(n2 log n)-delay and
O(n2)-space.

2. Preliminary

2.1 Notations

In this section, we define some notations required in this
paper.

A simple polygon is a closed region of the plane en-
closed by a simple cycle of edges. Here, a simple cycle
means that two adjacent line segments intersect only at their
common endpoint and no two non-adjacent line segments in-
tersect. A line segment connecting two vertices on a simple
polygon P is a diagonal if the line segment is included inside
P. An ear of a simple polygon P is a triangle such that one of
its edges is a diagonal of P and the remaining two edges are
edges of P. We say that two ears in P are non-overlapping if
their inside regions are disjoint. Otherwise, we say that they
are overlapping. The following theorem for ears is known.

Theorem 1 ([21]): Every simple polygon with n ≥ 4 ver-
tices has at least two non-overlapping ears.

Let S be a set of n points in the Euclidean plane.
Throughout this paper, we assume that S is in general posi-
tion, i.e., no three points are collinear. The upper-left point
of S is the point with the minimum x-coordinate. If a tie
exists, we choose the point with the maximum y-coordinate
among them.

A sequence P = 〈p1, p2, . . . , pk〉, (k ≤ n), of points in S
is a simple polygon of S if the alternating sequence of points
and line segments

p1, (p1, p2), p2, (p2, p3), . . . , pk, (pk, p1)

forms a simple polygon. Let P = 〈p1, p2, . . . , pk〉 be a simple
polygon of S. We suppose that the vertices on P appear
in counterclockwise order. We denote by in(P) ⊆ S and
out(P) ⊆ S the sets of the points inside and outside P,
respectively. We denote by pi ≺ pj if i < j holds, and
we say that pj is larger than pi on P. pred(pi) and succ(pi)
denote the predecessor and successor of pi on P, respectively.
Note that the successor of pk is p1. Suppose that P has 4 or

more vertices. A removal of pi on P is to remove two line
segments (pred(pi), pi) and (pi,succ(pi)) and insert the line
segment (pred(pi),succ(pi)). We denote by rem(P, pi) the
simple polygon obtained from P by applying the removal of
pi to P. Intuitively, the remove operation picks out a point
from a simple polygon. Note that rem(P, pi)may or may not
be a simple polygon of S. An insertion of p ∈ in(P) ∪ out(P)
after pi on P is to remove the line segment (pi,succ(pi)) and
insert the two line segments (pi, p) and (p,succ(pi)). We
denote by ins(P, pi, p) the simple polygon obtained from P
by applying the insertion of p after pi on P. Intuitively,
the insertion operation adds a point as a vertex of a simple
polygon.

The convex hull, denoted by CH(S), of S is the simple
polygon with the smallest area that contains all the points
in S. An empty polygon of S is a simple polygon such that
every point in S is either outside the polygon or a vertex of
the polygon. A surrounding polygon of S is a simple polygon
such that every point in S is either inside the polygon or a
vertex of the polygon.

2.2 Reverse Search with Child Lists

The reverse search by Avis and Fukuda [22] is a framework
for designing enumeration algorithms. In this section, we re-
describe the reverse search in the context of our paper. In this
paper, we consider problems of enumerating simple polygons
with the designated properties. Moreover, to design efficient
algorithms, we use “child lists”, which is an idea for speeding
up reverse-search-enumeration algorithms [20].

Let S be a set of n points in the Euclidean plane. Let
C(S,Q) be the set of simple polygons of S with a property
Q. We consider designing an enumeration algorithm for all
the polygons in C(S,Q) by using the reverse search. In the
reverse search, we first define an undirected simple graph
G = (V,EG) such that each node in V corresponds to a sim-
ple polygon in C(S,Q) and each branch in EG corresponds
to a relation between two simple polygons in C(S,Q). The
relation between two simple polygons is defined by using
“basic operations”. For two simple polygons P and P′, the
node corresponding to P is adjacent to that corresponding
to P′ in G if P is obtained from P′ by applying the basic
operation and P′ is obtained from P by applying the inverse
operation of the basic operation. That is, one of P and
P′ is constructed from the other by applying an operation.
(In this paper, we use the removal and insertion as a basic
operation and its inverse operation for the problems of enu-
merating empty and surrounding polygons.) Next, we define
a spanning forest F = (V,EF) of G with the root node set
VR ⊆ V . Let denote the parent of v ∈ V in F by par(v). A
reverse-search-enumeration algorithm visits every node inV
by traversing F and enumerates all the polygons in C(S,Q).

For a node v ∈ V , NG(v) and CF (v) denote the set of
the neighbour of v in G and the set of the children of v in
F, respectively. To traverse F, we have to generate all the
children of a node v in F. A naïve way to generate all the
children is as follows. First, we check whether v = par(u)

1084
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

Algorithm 1: Reverse-Search(S)
1 foreach r ∈ VR do
2 Naïve-Find-Children(r)

Algorithm 2: Naïve-Find-Children(v)
1 Output v
2 foreach u ∈ NG (v) do
3 if v = par(u) then
4 Naïve-Find-Children(u)

Algorithm 3: Find-Children-With-List(v, L(v))
1 /* L(v) and L(u) is the lists of the children of

v and u, respectively. */
2 Output v
3 foreach u ∈ L(v) do
4 Construct L(u) from L(v)
5 Find-Children-With-List(u, L(u))

holds for each u ∈ NG(v). If the condition is true, u is a
child of v. Note that CF (v) ⊆ NG(v) holds, since F is a
spanning forest of G. A pseudo-code of such an algorithm is
shown in Algorithm 1 and Algorithm 2. In the algorithms,
we enumerate all the roots in VR. Let tR be the running time
to enumerate all the roots in VR in Algorithm 1. Let tu be
the running time to perform Algorithm 2 for a node u of G
and let tC(S,Q) be the worst-case running time for tu (thus,
tu ≤ tC(S,Q) for any u ∈ V). Then, we have the following
theorem.

Theorem 2: Algorithm 1 and Algorithm 2 enumerate all
the polygons in C(S,Q) in O(tR + tC(S,Q) |C(S,Q)|) time.

To accelerate the algorithm for generating children, we
maintain the list of the children of the current polygon. The
pseudo-code is shown in Algorithm 3. In Algorithm 3,
before calling Algorithm 3 for a child u of v, we construct
the list of the children of u. Themain routine of Algorithm 3
is almost the same as Algorithm 1 (for each root node, we
construct the child list of the root and call Algorithm 3).
Let t ′R be the running time to enumerate all the roots in VR

and construct their child lists. Let t ′u be the running time
to construct the child list for the polygon corresponding to
the node u and let t ′

C(S,Q)
be the worst-case running time for

t ′u (thus, t ′u ≤ t ′
C(S,Q)

for any u ∈ V).

Theorem 3: One can enumerate all the polygons in C(S,Q)
in O(t ′R + t ′

C(S,Q)
|C(S,Q)|) time.

3. Enumeration of Empty Polygons

Let S be a set of n points in the Euclidean plane, and let
E(S) be the set of empty polygons of S. In this section,
we propose enumeration algorithms of empty polygons of

S. An empty polygon P is an empty triangle† if P has three
vertices. Let T(S) ⊆ E(S) be the set of empty triangles of
S. Our algorithms are based on reverse search, shown in
Sect. 2.2. In Sect. 3.1, we define a forest structure over E(S)
such that each node corresponds to an empty polygon in E(S)
and each root node corresponds to an empty triangle inT(S).
Next, in Sect. 3.2, we design an enumeration algorithm by
using the standard reverse search. The algorithm traverses
the forest structure in depth-first manner and enumerates all
the empty polygons in E(S). Finally, in Sect. 3.3, we design
a more efficient algorithm by using the reverse search with
child lists.

3.1 Family Forest

Now, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉
be an empty polygon in E(S) \ T (S). A vertex pi of P is
ear-central if pred(pi), pi,succ(pi) form an ear of P. We
have the following observation.

Observation 1: Let P = 〈p1, p2, . . . , pk〉 be an empty poly-
gon in E(S) \ T (S). Let pi be an ear-central vertex of P.
Then, rem(P, pi) is an empty polygon with k − 1 vertices.

Proof. Immediate from the definition of an ear-central
vertex. �

Next, we define a parent of P. Since P ∈ E(S) \ T (S), P
has four or more vertices. From Theorem 1, P has two or
more non-overlapping ears. Thus, we have the following
observation.

Observation 2: An empty polygon with four or more ver-
tices has two or more ear-central vertices.

Let l-ear(P) be the largest ear-central vertex on P. We define
rem(P, l-ear(P)) as the parent of P. For convenience, we
denote the parent of P by epar(P) := rem(P, l-ear(P)). We
say that P is a child of epar(P). The following lemma shows
the properties of the parent of P.

Lemma 1: Let S be a point set in the Euclidean plane, and
let P be an empty polygon in E(S) \ T (S). Then,
(1) epar(P) is an empty polygon with one less vertex,
(2) epar(P) always exists, and
(3) epar(P) is unique.

Proof. The properties (1) and (2) are immediate from
Observations 1 and 2. The property (3) holds, since the
largest ear-central of P is defined uniquely. �

By repeatedly finding the parents from P, we obtain a se-
quence of empty polygons. For an empty polygon P ∈ E(S),
the parent sequence EPS(P) = 〈P1,P2, . . . ,P`〉 of P is a
sequence of empty polygons such that the first polygon is P
itself and Pi = epar(Pi−1) for each i = 2,3, . . . , `. See an
example in Fig. 2. Note that the parent sequence of an empty
triangle P is EPS(P) = 〈P〉. As we can see in the following
†Empty triangles of a point set are equivalent to the empty

convex 3-gons of the point set. In this paper, we use the terminology
“empty triangles”.

TERUI et al.: ENUMERATING EMPTY AND SURROUNDING POLYGONS
1085

Fig. 2 A parent sequence of empty polygon.

Fig. 3 An example of a family forest. An input point is illustrated in the
top-left of the figure. In this figure, only two trees are illustrated in the
family forest.

lemma, the last polygon in a parent sequence is always an
empty triangle in T(S).

Lemma 2: Let S be a set of n points in the Euclidean plane,
and let P be an empty polygon in E(S). The last polygon in
EPS(P) is an empty triangle in T(S).

Proof. If P is an empty triangle, the claim holds clearly.
Hence, we assume that P is not an empty triangle. Let
EPS(P) = 〈P1,P2, . . . ,P`〉 be the parent sequence of P. For
a polygon Pi in EPS(P), we define a function φ(Pi) as the
number of the vertices on Pi . Note that, for any T ∈ T (S),
φ(T) = 3 and φ(T) ≤ φ(Pi) holds. It can be observed that
φ(Pi) = 3 if and only if Pi ∈ T (S) holds. From the condition
(1) in Lemma 1, it can be observed that φ(Pi) = φ(Pi−1) − 1
for each i = 2,3, . . . , `. Moreover, from the condition (2) in
Lemma 1, the parent of an empty polygon in E(S) \ T (S)
always exists. Therefore, P` ∈ T (S) holds. �

FromLemma 2, for any empty polygon, the last polygon
of its parent sequence is an empty triangle. By merging
parent sequences of all the empty polygons in E(S), we
obtain a forest structure, called a family forest of E(S). A
family forest consists of trees, each of which is rooted at
an empty triangle in T(S). Each empty triangle in T(S)
appears as the root of a tree in a family forest. An example
of a family forest is shown in Fig. 3.

3.2 Enumeration by Reverse Search

In this subsection, we present an algorithm that, for a
given set S of n points, enumerates all the empty polygons
in E(S). We use the standard reverse search technique,
shown in Sect. 2.2. We propose an O((n log n) |T (S)| +

(n2 log n) |E(S)|)-time and O(n2)-space enumeration algo-
rithm.

In the previous subsection, we defined the family forest
over E(S). We know that the roots of the family forest are
the empty triangles in T(S). Hence, we obtain the following
enumeration algorithm. We first enumerate the empty trian-
gles in T(S). Then, we traverse the tree rooted at each empty
triangle in depth-first manner by recursively generating chil-
dren from the current empty polygons. This algorithm can
enumerate all the empty polygons in E(S).

Now, we describe how to generate all the children of
an empty polygon. Let P = 〈p1, p2, . . . , pk〉 be an empty
polygon in E(S). An empty polygon P′ is a child of P if
P = epar(P′) holds. Hence, a child of P is obtained by
applying an insertion to P, which is a reverse operation of
removal Thus, any child of P is described as ins(P, pi, p) for
p on P and pi ∈ out(S). It is easy to observe that, for all
possible ins(P, pi, p), if we check whether or not ins(P, pi, p)
is a child, then one can generate all the children of P. We
have the following lemma.

Lemma 3: Let P = 〈p1, p2, . . . , pk〉 be an empty polygon
of a set S of points. For a vertex pi (1 ≤ i ≤ k) on P and a
point p ∈ out(P), ins(P, pi, p) is a child of P if
(1) ins(P, pi, p) is an empty polygon of S and
(2) epar(ins(P, pi, p)) = P holds.

Actually, using the conditions in Lemma 3, we ob-
tain the child-enumeration algorithm. However, we give a
more detailed case analysis for child generation. Clearly, if
ins(P, pi, p) is not an empty polygon, then ins(P, pi, p) is not
a child of P. Hence, in the case analysis below, we only
consider the cases that ins(P, pi, p) is an empty polygon.

Case 1: pi ≺ pred(l-ear(P)).
If we apply an insertion to the vertex pi smaller

than pred(l-ear(P)), in the polygon ins(P, pi, p), the largest
ear-central vertex is still l-ear(P), that is, l-ear(P) =
l-ear(ins(P, pi, p)) holds. Hence, epar(ins(P, pi, p)) , P
holds. Therefore, ins(P, pi, p) is not a child of P. See
Fig. 4(b) for an example.

Case 2: pi = pred(l-ear(P)).
If l-ear(P) is still the largest ear-central vertex in

ins(P, pi, p), then epar(ins(P, pi, p)) , P holds, since
epar(ins(P, pi, p)) is obtained from ins(P, pi, p) by removing
l-ear(P). Hence, ins(P, pi, p) is not a child ofP. See Fig. 4(c).
However, if l-ear(P) is not ear-central in ins(P, pi, p),
l-ear(ins(P, pi, p)) = p. Hence, epar(ins(P, pi, p)) = P holds.
Thus, ins(P, pi, p) is a child of P. See Fig. 4(d).

Case 3: pred(l-ear(P)) ≺ pi
In this case, pi = l-ear(ins(P, pi, p)) always holds.

Hence, P = epar(ins(P, pi, p)) holds. Thus, ins(P, pi, p) is a
child of P. See Fig. 4(e).

From the above case analysis and Lemma 3, we can
generate all the children of P.

Now, we describe our enumeration algorithm in Algo-

1086
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

Fig. 4 (a)An empty polygon P, where l-ear(P) = p7. (b) ins(P, p4, p13)
is not a child of P, since p13 , l-ear(ins(P, p4, p13)). (c) ins(P, p6, p12)
is not a child of P. (d) ins(P, p6, p11) is a child of P, since p7 turns to be
a non-ear. (e) ins(P, p6, p10) is a child of P.

rithm 4 and Algorithm 5. In Algorithm 4, we enumerate
all the empty triangles by checking whether or not any three
points p,q,r ∈ S form an empty triangle. Then, from each
empty triangle, we traverse the family forest by recursively
applying Algorithm 5. We have the following theorem.

Theorem 4: Let S be a set of n points in the Euclidean
plane. One can enumerate all the empty polygons of S
in O((n log n) |T (S)| + (n2 log n) |E(S)|)-time and in O(n2)-
space.

Proof. We first show that Algorithm 4 and Algorithm 5
enumerate all the empty polygons in E(S) without dupli-
cates. For any empty polygon in E(S), the parent is always
defined (Lemma 1), and its parent sequence ends up with
an empty triangle (Lemma 2). Hence, every empty poly-
gon is included in the family forest of E(S). Moreover, for
any empty polygon in E(S) \ T (S), the parent is defined
uniquely (Lemma 1). Hence, Algorithm 5 outputs each
empty polygon exactly once. Therefore, the algorithm enu-
merates all the empty polygons in E(S) without duplicates.

Next, we estimate the running time of our enumeration
algorithm. In Algorithm 4, we enumerate all the empty
triangles. This can be done in O((n log n) |T (S)|)-time by
using triangular range query [23], as follows. Three points
p,q,r ∈ S form an empty triangle in T(S) if 4(p,q,r) has
no point in its inside. This can be checked in O(log n)-time
by the triangular range query with O(n2)-preprocessing and
O(n2)-additional space. This preprocessing is performed to
an input point set S. That is, throughout the enumeration
algorithm, the preprocessing for the triangular range query
is performed once. For any three points in S, we check
the above condition and enumerate all the empty triangles
in T(S). We take O(n3 log n)-time for this enumeration.
However, we can have a tighter estimation. Let (p,q) be
a line segment connecting two points in S and let r be the
closest point from (p,q). Then, 4(p,q,r) is an empty triangle
in T(S). Thus, for each line segment connecting two points
in S, there exists an empty triangle in T(S). Moreover, any
empty triangle corresponds to 3 line segments. This implies

Algorithm 4: Enum-Empty-Polygons(S)
1 /* S is a set of n points in the Euclidean

plane. */
2 foreach Three points p, q, r ∈ S do
3 if 4(p, q, r) is an empty triangle then
4 Find-Children(4(p, q, r))

Algorithm 5: Find-Children(P)
1 /* P is an empty polygon of a point set S. */
2 Output P.
3 Set pi = pred(l-ear(P)).
4 foreach p ∈ out(P) do // Case 2
5 if l-ear(P) is not ear in ins(P, pi , p) then
6 if ins(P, pi , p) is an empty polygon then
7 Find-Children(ins(P, pi , p))

8 foreach pi on P with pred(l-ear(P)) ≺ pi do // Case 3
9 foreach p ∈ out(P) do

10 if ins(P, pi , p) is an empty polygon then
11 Find-Children(ins(P, pi , p))

that |T (S)| ∈ Ω(n2) holds. Therefore, we can observe that
the enumeration algorithm for the empty triangles in T(S)
takes O((n log n) |T (S)|)-time.

In Algorithm 5, each recursive call checks whether
ins(P, pi, p) is a child of P for each vertex pi of P and each
point p ∈ out(P). If ins(P, pi, p) is a child ofP, we recursively
call Algorithm 5 to ins(P, pi, p). Here, we estimate the
running time for checking whether ins(P, pi, p) is a child of
P. To do this, we checkwhether the following two conditions
are satisfied: (1) ins(P, pi, p) has no intersection and (2) the
triangle 4(pi, p,succ(pi)) has no point in its inside. The
condition (1) can be checked by using ray-shooting query in
O(log n)-time with O(n log n)-time preprocessing and O(n)-
additional space [24], [25], which is performed for each
empty polygon (thus, each recursive call of Algorithm 5).
The condition (2) can be checked by using triangular range
query. The above two conditions can be checked in O(log n)-
time. Hence, each recursive call takes O(n2 log n)-time.
Algorithm 5 stores the input point set S, the current empty
polygon P and l-ear(P) in global memory. Hence, each
recursive call of Algorithm 5 uses O(n)-space. The height
of the family tree of E(S) is bounded by O(n), the whole of
our algorithm uses O(n2)-space. �

3.3 Improvement: Enumeration by Reverse Search with
Child Lists

In this subsection, we improve the running time bymodifying
Algorithm 5 in Theorem 4. To improve the running time,
we use the reverse search with child lists, shown in Sect. 2.2.
Algorithm 5 checks whether or not ins(P, pi, p) is a child for
every vertex pi on P and every point p ∈ out(P) of an empty
polygon P. On the other hand, the algorithm proposed in this

TERUI et al.: ENUMERATING EMPTY AND SURROUNDING POLYGONS
1087

subsectionmaintains, for every outside point p, a list of every
vertex pi such that ins(P, pi, p) is a child. In Algorithm 5,
each recursive call takes O(n2 log n)-time. We improve this
running time to O(n2)-time.

Now, we introduce some notations. Let S be a set of n
points in the Euclidean plane. Let P = 〈p1, p2, . . . , pk〉 be
an empty polygon in E(S). A vertex pi on P for p ∈ out(P)
is active if ins(P, pi, p) is a child of P. We define the active
sequence of p ∈ out(P), denoted by eact(P, p), as the cyclic
sequence of the active vertices for p ∈ out(P). In eact(P, p),
the active vertices are arranged in clockwise order around p.

If we have eact(P, p) for every p ∈ out(P), it is easy to
generate all the children of P. Thus, our algorithm main-
tains active sequences for the current empty polygon in the
traversal of a family forest. To achieve this, we update the
active sequences, when a child is generated. Below, we
explain how to update the active sequences. Suppose that
ins(P, pi, p) is a child of P. When ins(P, pi, p) is generated as
a child of P, for each q ∈ out(P) \ {p}, some vertices may be
deleted from eact(P,q) and some vertices may be inserted
into eact(P,q). Then, eact(ins(P, pi, p),q) is obtained. See
Fig. 5 for examples. We consider the deletion and insertion
of vertices for active sequences, respectively.

Deletion

Let q be a point in out(P) \ {p}. Here, we consider finding
and deleting every vertex pj in eact(P,q) such that pj is
non-active in ins(P, pi, p).

Phase 1: Check the largest ear-central vertex.
In ins(P, pi, p), p is the largest ear-central vertex. Hence,

every vertex pj in eact(P,q) with pj ≺ pred(p) is non-
active in ins(P, pi, p) and deleted from eact(P,q). Suppose
that pj = pred(p) holds. In this case, we delete pj from
eact(P,q), since (pj,succ(pj)) in P is removed. (In the in-
sertion process described later, pj may be inserted in active
sequence of q.)

Phase 2: Check intersections.
By inserting p to P, the two line segments (pi, p) and

(succ(pi), p) are inserted. Hence, pj in eact(P, pi) is deleted
if (1) (pj,q) intersects with (pi, p) or (succ(pi), p) or (2)
(succ(pj),q) intersects with (pi, p) or (succ(pi), p).

The above two phases can be done in O(n)-time for updating
the active sequence of out(P) \ {p}. Hence, we take O(n2)-
time for the deletions of all the active sequences.

Insertion

Suppose that a child ins(P, pi, p) of P is generated from P.
For any q ∈ out(P) \ {p}, each of pi and p can be active in
ins(P, pi, p). Hence, we have to insert them into the active
sequence eact(P,q) of q if they are active for q. The details
are as follows. First, we check whether pi is active for q.
Note that the vertex pi is active for q in ins(P, pi, p) if neither
(q, pi) nor (q, p) has an intersection and the triangle4(q, pi, p)

Fig. 5 Illustration for updating the active sequence of q. Each dashed
line connects q and its active vertex. In the empty polygon P on the left side,
the active sequence of q is eact(P, q) = 〈p7, p8, p9 〉. In ins(P, p8, p) on
the right side, the active sequence of q is eact(ins(P, p8, p), q) = 〈p, p9 〉.

Algorithm 6: Find-Children-With-Lists(P)
1 /* P is an empty polygon of a point set S. */
2 Output P.
3 foreach p ∈ out(P) do
4 foreach pi in eact(P, p) do
5 Construct the active sequences of ins(P, pi , p) by

updating the active sequences of P.
6 Find-Children-With-Lists(ins(P, pi , p))

includes no point in its inside. This check can be done
in O(log n)-time using ray-shooting query [24], [25] and
triangular range query [23]. Recall that the preprocessing of
the ray-shooting query takes O(n log n)-time for ins(P, pi, p)
and the preprocessing of the triangular range query takes
O(n2)-time for an input point set. If pi is active for q, we
insert it into eact(q,P(pi, p)). This can be done in O(n)-
time. Next, we do the same process for checking whether p
is active for q and insert into eact(q,P(pi, p)) if p is active.
See an example of an insertion in Fig. 5. Since the active
sequence of each q ∈ out(P) \ {p} takes O(n)-time for the
insertion. Hence, we take O(n2)-time for the insertions of
all the active sequences.

Now, we re-describe our algorithm, which is shown
in Algorithm 6. First, we output the current empty poly-
gon P. Next, for each point pi in the active sequence of
each p ∈ out(P), we generate a child ins(P, pi, p). Once a
child is generated, we update all active sequences and ob-
tain active sequences of ins(P, pi, p). Last, we recursively
call Algorithm 6 to ins(P, pi, p). Note that the main routine
is almost the same as Algorithm 4. We enumerate all the
empty triangles in T(S), construct the active sequences for
each empty triangle, and call Algorithm 6 for each empty
triangle T ∈ T (S).

Below, we estimate the running time and space of our
enumeration algorithm. Suppose that a child ins(P, pi, p) is
generated from an empty polygon P. To generate ins(P, pi, p)
and its active sequences, we take O(n2)-time for the dele-
tion and insertion processes. Next, we estimate the space
complexity of our algorithm. Remember that the main rou-
tine (Algorithm 4) enumerates all the empty polygons in
T(S) in O((n log n) |T (S)|)-time. A call of Algorithm 6 to

1088
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

empty polygon P uses O(n2)-space to store child lists for all
the points in out(P). When the algorithm visits a deep recur-
sive call, we have to store the information (including child
lists) for all the ancestor recursive calls. Since the depth of
the family forest is bounded above by O(n), such informa-
tion uses O(n3)-space. However, this can be improved to
O(n2)-space, as follows. In the traversal of a family tree, let
P be the current empty polygon in E(S). We store the active
sequence of each q ∈ out(P) in global memory and update it
while the algorithm traverses the family tree. When a child
P′ of P is generated, we store the difference of the active
sequence for each q. The difference consists of (1) the list of
deleted active vertices, which is stored in the clockwise or-
der, and (2) the list of inserted active vertices. Note that only
at most two active vertices can be inserted into the sequence.
When the algorithm turns back from the recursive call of P′

to the one of P, active sequence of each q ∈ out(P) can be
recovered in O(n)-time. Note that both the active sequence
of q and the list of deleted active vertices are stored in the
clockwise order. The total space for storing differences from
the current recursive call to the recursive call of the root node
is bounded by O(n2), since the size of a list of deleted active
vertices is bounded by O(n). Hence, we have the following
theorem.

Theorem 5: Let S be a set of n points in the Euclidean
plane. One can enumerate all the empty polygons in E(S) in
O((n log n) |T (S)| + n2 |E(S)|)-time and O(n2)-space.

4. Enumeration of Surrounding Polygons

Let S be a set of n points in the Euclidean plane, and let S(S)
be the set of surrounding polygons of S. Yamanaka et al. [19]
proposed an algorithm that enumerates all the surrounding
polygons in S(S) in O(n2 log n)-delay and O(n2)-space. The
enumeration algorithm byYamanaka et al. [19] was designed
using the (standard) reverse search. In this section, we mod-
ify the algorithm such that it uses the reverse search with
child lists. Our algorithm enumerates all the surrounding
polygons in S(S) in O(n2)-delay and O(n2)-space.

We first explain a tree structure overS(S) and the child-
enumeration algorithm proposed by Yamanaka et al. [19]
briefly. Next, we explain an enumeration algorithm by using
the reverse search with child lists. The content of this section
is similar to Sect. 3. However, for self-containment of this
section, we describe an enumeration algorithm in the context
of enumerating surrounding polygons.

4.1 Family Tree

Now, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉
be a surrounding polygon of S. The vertex pi on P is embed-
dable if the triangle consisting of pred(pi), pi , and succ(pi)
does not intersect the interior of P. See examples in Fig. 6(a).
Note that, for an embeddable vertex pi , rem(P, pi) is a sur-
rounding polygon. A surrounding polygon of S exceptCH(S)

Fig. 6 (a) A surrounding polygon, where p10, p13, and p14 are embed-
dable. (b) The surrounding polygon obtained by removing p13. The point
p13 is embedded inside the polygon. (c) The parent of the polygon in (a),
which is obtained by removing p14.

Fig. 7 A parent sequence of surrounding polygon.

always has an embeddable vertex, as mentioned in the fol-
lowing lemma.

Lemma 4 ([19]): Let S be a set of points, and let P be a
surrounding polygon in S(S) \ {CH(S)}. Then, P has at least
one embeddable vertex.

We denote by l-emb(P) the largest embeddable vertex
on P. We define the parent of P, denoted by spar(P), as
rem(P, l-emb(P)). For convenience, we denote spar(P) :=
rem(P, l-emb(P)). Note that spar(P) is also a surrounding
polygon of S. By repeatedly finding the parents from P, we
obtain a sequence of surrounding polygons of S. The parent
sequence SPS(P) = 〈P1,P2, . . . ,P`〉 of P is a sequence of
surrounding polygons such that the first polygon is P itself
and Pi = spar(Pi−1) holds for each i = 2,3, . . . , `. See Fig. 7.
As we can see in the following lemma, the last polygon in a
parent sequence is always CH(S).

Lemma 5 ([19]): Let S be a set of n points in the Euclidean
plane, and let P be a surrounding polygon in S(S). The last
polygon of SPS(P) is CH(S).

From Lemma 5, for any surrounding polygon, the last
polygon of its parent sequence is the convex hull. Bymerging
the parent sequences for all the surrounding polygons in
S(S), we have the tree structure rooted at CH(S). We call
such a tree the family tree of S(S). An example of a family
tree is shown in Fig. 8.

4.2 Enumeration by Reverse Search with Child Lists

In this subsection, we first describe the enumeration algo-
rithm by Yamanaka et al. [19], which uses the reverse search.
Then, we modify the algorithm such that it uses the reverse
search with child lists.

Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon in
S(S). From the definition of the parent, it can be observed
that any child of P is described as ins(P, pi, p) for pi on P
and p ∈ in(P). However, ins(P, pi, p) may or may not be a

TERUI et al.: ENUMERATING EMPTY AND SURROUNDING POLYGONS
1089

Fig. 8 An example of a family tree.

child of P. By using the following lemma, one can check
whether ins(P, pi, p) is a child of P.

Lemma 6 ([19]): Let P = 〈p1, p2, . . . , pk〉 be a surrounding
polygon of a set S of points. For a point pi (1 ≤ i ≤ k) on P
and a point p ∈ in(P), ins(P, pi, p) is a child of P if
(1) ins(P, pi, p) is a surrounding polygon of S and
(2) spar(ins(P, pi, p)) = P holds.

Now, we describe the details of the condition (2) using a
case analysis. If ins(P, pi, p) is not a surrounding polygon,
then ins(P, pi, p) is not a child of P. Hence, in the case
analysis below, we only consider the cases that ins(P, pi, p)
is a surrounding polygon.

Case 1: pi ≺ pred(l-emb(P)).
If we apply an insertion to a point pi smaller

than pred(l-emb(P)), in the polygon ins(P, pi, p), the
largest embeddable is still l-emb(P), that is, l-emb(P) =
l-emb(ins(P, pi, p)) holds. Hence, spar(ins(P, pi, p)) , P
holds. Therefore, ins(P, pi, p) is not a child of P. See
Fig. 9(b) for an example.

Case 2: pi = pred(l-emb(P)).
If l-emb(P) is still embeddable in ins(P, pi, p), then

ins(P, pi, p) is not a child of P. See Fig. 9(c). However, if
l-emb(P) is non-embeddable in ins(P, pi, p), then ins(P, pi, p)
is a child. See Fig. 9(d).

Case 3: pred(l-emb(P)) ≺ pi
In this case, p = l-emb(ins(P, pi, p)) always holds.

Hence, P = spar(ins(P, pi, p)) holds. Thus, ins(P, pi, p) is a
child of P. See Fig. 9(e).

From the above case analysis and Lemma 6, we can
generate all the children of P. Since the enumeration algo-
rithm using the child-enumeration above is almost the same
as Algorithm 4 and Algorithm 5, we omit the description
of their pseudo-codes.

Now, we describe an enumeration algorithm with child
lists for surrounding polygons. As for empty polygons, we
maintain the list of every vertex pi on P for a point p ∈ in(P)
such that ins(P, pi, p) is a child of P.

Below, we re-define active vertices and active sequences
in the context of surrounding polygons. A vertex pi on

Fig. 9 (a) A surrounding polygon P, where l-ear(P) = p6. (b)
ins(P, p1, p13) is not a child of P, since p13 is not the largest embed-
dable vertex. (c) ins(P, p5, p15) is not a child of P, since p15 is not the
largest embeddable vertex. (d) ins(P, p5, p14) is a child of P, since p6
turns to be non-embeddable. (e) ins(P, p11, p14) is a child.

P for p ∈ in(P) is active if ins(P, pi, p) is a child of P.
We define the active sequence of p ∈ in(P), denoted by
sact(P, p), as the cyclic sequence of the active vertices for
p ∈ in(P). In sact(P, p), the active vertices are arranged in
counterclockwise order around p.

Next, we explain how to update the active sequences,
when a child is generated. Suppose that ins(P, pi, p) (p ∈
in(P)) is a child of P. We consider the deletion and insertion
of vertices for sact(P, p), respectively.

Deletion

Let q be a point in in(P) \ {p}. Here, we consider finding
and deleting every vertex pj in sact(P,q) such that pj is
non-active in ins(P, pi, p).

Phase 1: Check the largest embeddable vertex.
In ins(P, pi, p), p is the largest embeddable vertex.

Hence, every vertex pj in sact(P,q) with pj ≺ pred(pi) is
non-active in ins(P, pi, p) and deleted from sact(P,q). Sup-
pose that pj = pred(pi) holds. In this case, we delete pj

from sact(P,q), since (pj,succ(pj)) in P is removed. (In the
insertion process described later, pj may be inserted in the
active sequence of q.)

Phase 2: Check intersections.
By inserting pi to P, the two line segments (pi, p) and

(succ(pi), p) are inserted. Hence, pj in sact(P, pi) is deleted
if (1) (pj,q) intersects with (pi, p) or (succ(pi), p) or (2)
(succ(pj),q) intersects with (pi, p) or (succ(pi), p).

The above two phases can be done in O(n2)-time for
updating all the active sequences of P.

Insertion

For any q ∈ in(P) \ {p}, each of pi and p can be active for q
in ins(P, pi, p). Hence, we have to insert them into the active
sequence sact(P,q) of q if they are active. The details are as

1090
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.9 SEPTEMBER 2023

Fig. 10 Illustration for updating the active sequence of q. Each
dashed line connects q and its active vertex. In the surrounding poly-
gon P on the left side, the active sequence of q is sact(P, q) =
〈p2, p3, p5, p6, p7, p8 〉. In ins(P, p6, p) on the right side, the active
sequence of q is sact(ins(P, p6, p), q) = 〈p, p7, p8 〉.

follows.
First, we check whether pi is active for q. Note that

the vertex pi is active for q in ins(P, pi, p) if neither (q, pi)
nor (q, p) has an intersection and the triangle 4(q, pi, p) in-
cludes no point in its inside. This check can be done in
O(log n)-time using ray-shooting query [24], [25] and trian-
gular range query [23]. If pi is active for q, we insert it into
sact(ins(P, pi, p),q). This can be done in O(n)-time. Next,
we do the same process to check whether p is active for q.
See Fig. 10 for an example.

From the deletion and insertion above, we can design
a child-enumeration algorithm with child lists. The pseudo-
code of the algorithm is almost the same as Algorithm 6.
Hence, we omit the description of the pseudo-code. Note
that the root of the family tree of S(S) is CH(S)which can be
computed by a standard algorithm for finding convex hulls
in O(n log n)-time.

Now, we estimate the running time and space of our
enumeration algorithm. Suppose that a child ins(P, pi, p)
is generated from a surrounding polygon P. We estimate
the running time for generating ins(P, pi, p) and its active
sequences. To generate ins(P, pi, p) and its active sequences,
we take O(n2)-time for the insertion and deletion processes.
Next, we estimate the space complexity of our algorithm.
Similar to Theorem 5, we store only differences of active
sequences when a child is generated. This attains O(n2)-
space. Hence, we have the following theorem.

Theorem 6: Let S be a set of n points in the Euclidean
plane. One can enumerate all the surrounding polygons in
S(S) in O(n log n + n2 |S(S)|)-time and O(n2)-space.

From the theorem above, one can see that the running
time of our algorithm is output-polynomial†. Using the
alternative output method by Nakano and Uno [26], we have
a polynomial-delay enumeration algorithm. In the traversal,
the algorithm outputs polygons with even depth when we
go down a family tree and outputs polygons with odd depth
when we go up. More precisely, we modify our algorithm so
that the algorithm outputs the current surrounding polygon
P before the children of P in even depth and outputs P after

†A running time is output-polynomial if the running time is a
polynomial of an input size and an output size.

the children of P in odd depth. It is easy to see that the
modified algorithm outputs a surrounding polygon once at
most three edge traversals in a family. See [26] for further
details.

Corollary 1: Let S be a set of n points in the Euclidean
plane. One can enumerate all the surrounding polygons in
E(S) in O(n2)-delay and O(n2)-space.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers JP18H04091, JP19H01133, JP20H00595, JP20H00605,
JP20H05962, JP20H05964, JP21H03559, JP21K17812, and
JP21H05861 and JST ACT-X Grant Number JPMJAX2106,
Japan.

References

[1] K. Wasa, “Enumeration of enumeration algorithms,” CoRR,
vol.abs/1605.05102, 2016.

[2] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol.65, no.1-3, pp.21–46, 1996.

[3] S. Bespamyatnikh, “An efficient algorithm for enumeration of tri-
angulations,” Computational Geometry, vol.23, no.3, pp.271–279,
2002.

[4] N.Katoh and S. Tanigawa, “Enumerating edge-constrained triangula-
tions and edge-constrained non-crossing geometric spanning trees,”
Discrete AppliedMathematics, vol.157, no.17, pp.3569–3585, 2009.

[5] M. Wettstein, “Counting and enumerating crossing-free geometric
graphs,” Journal of Computational Geometry, vol.8, no.1, pp.47–77,
2017.

[6] Y. Nakahata, T. Horiyama, S. Minato, and K. Yamanaka, “Com-
piling crossing-free geometric graphs with connectivity constraint
for fast enumeration, random sampling, and optimization,” CoRR,
vol.abs/2001.08899, 2020.

[7] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada,
“Efficient enumeration of pseudoline arrangements,” Proc. European
Workshop on Computational Geometry 2009, pp.143–146, March
2009.

[8] T. Horiyama and W. Shoji, “Edge unfoldings of platonic solids never
overlap,” Proc. 23rd Annual Canadian Conference on Computational
Geometry, pp.65–70, 2011.

[9] T.Horiyama,M.Miyasaka, andR. Sasaki, “Isomorphism elimination
by zero-suppressed binary decision diagrams,” Proc. 30th Canadian
Conference on Computational Geometry, CCCG 2018, Aug. 2018,
University of Manitoba, Winnipeg, Manitoba, Canada, S. Durocher
and S. Kamali, eds., pp.360–366, 2018.

[10] G. Rote, G.J. Woeginger, B. Zhu, and Z. Wang, “Counting k-subsets
and convex k-gons in the plane,” Inf. Process. Lett., vol.38, no.3,
pp.149–151, 1991.

[11] G. Rote andG.J.Woeginger, “Counting convex k-gons in planar point
sets,” Inf. Process. Lett., vol.41, no.4, pp.191–194, 1992.

[12] J.S.B. Mitchell, G. Rote, G. Sundaram, and G.J. Woeginger, “Count-
ing convex polygons in planar point sets,” Inf. Process. Lett., vol.56,
no.1, pp.45–49, 1995.

[13] D.P. Dobkin, H. Edelsbrunner, and M.H. Overmars, “Searching for
empty convex polygons,” Algorithmica, vol.5, no.4, pp.561–571,
1990.

[14] D. Marx and T. Miltzow, “Peeling and nibbling the cactus:
Subexponential-time algorithms for counting triangulations and re-
lated problems,” 32nd International Symposium on Computational
Geometry, SoCG 2016, June 2016, Boston, MA, USA, pp.52:1–
52:16, 2016.

https://doi.org/10.48550/arXiv.1605.05102
https://doi.org/10.48550/arXiv.1605.05102
http://dx.doi.org/10.1016/0166-218x(95)00026-n
http://dx.doi.org/10.1016/0166-218x(95)00026-n
http://dx.doi.org/10.1016/s0925-7721(02)00111-6
http://dx.doi.org/10.1016/s0925-7721(02)00111-6
http://dx.doi.org/10.1016/s0925-7721(02)00111-6
http://dx.doi.org/10.1016/j.dam.2009.04.019
http://dx.doi.org/10.1016/j.dam.2009.04.019
http://dx.doi.org/10.1016/j.dam.2009.04.019
https://doi.org/10.20382/jocg.v8i1a4
https://doi.org/10.20382/jocg.v8i1a4
https://doi.org/10.20382/jocg.v8i1a4
https://doi.org/10.48550/arXiv.2001.08899
https://doi.org/10.48550/arXiv.2001.08899
https://doi.org/10.48550/arXiv.2001.08899
https://doi.org/10.48550/arXiv.2001.08899
http://dx.doi.org/10.1016/0020-0190(91)90237-c
http://dx.doi.org/10.1016/0020-0190(91)90237-c
http://dx.doi.org/10.1016/0020-0190(91)90237-c
http://dx.doi.org/10.1016/0020-0190(92)90178-x
http://dx.doi.org/10.1016/0020-0190(92)90178-x
http://dx.doi.org/10.1016/0020-0190(95)00130-5
http://dx.doi.org/10.1016/0020-0190(95)00130-5
http://dx.doi.org/10.1016/0020-0190(95)00130-5
http://dx.doi.org/10.1007/bf01840404
http://dx.doi.org/10.1007/bf01840404
http://dx.doi.org/10.1007/bf01840404

TERUI et al.: ENUMERATING EMPTY AND SURROUNDING POLYGONS
1091

[15] T. Auer and M. Held, “Heuristics for the generation of random poly-
gons,” Proc. 8th Canadian Conference on Computational Geometry,
pp.38–43, 1996.

[16] C. Sohler, “Generating random star-shaped polygons,” Proc. 11th
Canadian Conference on Computational Geometry, pp.174–177,
1999.

[17] S. Teramoto, M. Motoki, R. Uehara, and T. Asano, “Heuristics for
generating a simple polygonalization,” IPSJ SIG Technical Report,
2006-AL-106(6), Information Processing Society of Japan, May
2006.

[18] C. Zhu, G. Sundaram, J. Snoeyink, and J.S.B. Mitchell, “Generating
random polygons with given vertices,” Computational Geometry,
vol.6, no.5, pp.277–290, 1996.

[19] K. Yamanaka, D. Avis, T. Horiyama, Y. Okamoto, R. Uehara, and
T. Yamauchi, “Algorithmic enumeration of surrounding polygons,”
Discrete Applied Mathematics, vol.303, pp.305–313, 2021.

[20] K.Yamanaka and S.Nakano, “Listing all plane graphs,” Proc. Second
International Workshop on Algorithms and Computation, (WAL-
COM 2008), LNCS, vol.4921, pp.210–221, 2008.

[21] G.H. Meisters, “Polygons have ears,” American Mathematical
Monthly, vol.82, no.6, pp.648–651, 1975.

[22] D. Avis, “Generating rooted triangulations without repetitions,” Al-
gorithmica, vol.16, pp.618–632, 1996.

[23] P.P. Goswami, S. Das, and S.C. Nandy, “Triangular range counting
query in 2D and its application in finding k nearest neighbors of a
line segment,” Computational Geometry, vol.29, no.3, pp.163–175,
2004.

[24] B. Chazelle, H. Edelsbrunner, M.Grigni, L.J. Guibas, J. Hershberger,
M. Sharir, and J. Snoeyink, “Ray shooting in polygons using geodesic
triangulations,” Algorithmica, vol.12, no.1, pp.54–68, 1994.

[25] B. Chazelle and L.J. Guibas, “Visibility and intersection problems in
plane geometry,” Discrete Comput. Geom., vol.4, pp.551–581, 1989.

[26] S. Nakano and T. Uno, “Generating colored trees,” Proc. 31th Work-
shop onGraph-TheoreticConcepts inComputer Science, (WG2005),
LNCS, vol.3787, pp.249–260, 2005.

Shunta Terui received his B.E. and M.E.
degrees from Iwate University in 2020 and 2022,
respectively. His research interests include com-
binatorial algorithms and computational geome-
try.

Katsuhisa Yamanaka is a professor of Fac-
ulty of Science and Engineering, Iwate Univer-
sity. He received B.E., M.E. and Dr. Eng. de-
grees from Gunma University in 2003, 2005 and
2007, respectively. His research interests include
combinatorial algorithms and graph algorithms.

Takashi Hirayama received his B.E., M.E.,
and Dr. Eng. degrees in computer science from
Gunma University in 1994, 1996, and 1999, re-
spectively. From 1999 to 2001 he was a re-
search assistant in the Department of Electrical
and Electronics Engineering, Ashikaga Institute
of Technology. He is currently a associate pro-
fessor of Faculty of Science and Engineering,
Iwate University. His research interests include
high level and logic synthesis and design for
testability of VLSIs.

Takashi Horiyama received the B.E. and
M.E. degrees in information science and Ph.D. in
informatics from Kyoto University, Kyoto, Japan
in 1995, 1997 and 2004, respectively. He was
a research associate at Nara Institute of Science
and Technology from 1999, a research associate
at Kyoto University from 2002, and an asso-
ciate professor at Saitama University from 2007.
Since 2019, he is a professor atHokkaidoUniver-
sity. His current interests include computational
geometry and algorithm design.

Kazuhiro Kurita is an assistant professor
of Graduate School of Informatics, Nagoya Uni-
versity. He received B.E., M.E. and Dr. Eng. de-
grees from Hokkaido University in 2015, 2017
and 2020, respectively. His research interests
include enumeration algorithms, graph algo-
rithms, and the design and analysis of algorithms
in these fields.

Takeaki Uno received the Ph.D. degree
(Doctor of Science) from Department of Sys-
tems Science, Tokyo Institute of Technology
Japan, 1998. He was an assistant professor in
Department of Industrial and Management Sci-
ence in Tokyo Institute of Technology from 1998
to 2001, and was an associate professor of Na-
tional Institute of Informatics Japan, from 2001
to 2013. He is currently a professor of National
Institute of Informatics Japan, from 2014. His
research topic is discrete algorithms, especially

enumeration algorithms, algorithms on graph classes, and data mining al-
gorithms. On the theoretical part, he studies low degree polynomial time
algorithms, and hardness proofs. In the application area, he works on the
paradigm of constructing practically efficient algorithms for large scale data
that are data oriented and theoretically supported. In an international fre-
quent pattern mining competition in 2004 he won the best implementation
award. He got Young Scientists’ Prize of The Commendation for Science
and Technology by the Minister of Education, Culture, Sports, Science and
Technology in Japan, 2010.

https://dl.acm.org/doi/10.5555/648249.751880
https://dl.acm.org/doi/10.5555/648249.751880
https://dl.acm.org/doi/10.5555/648249.751880
http://dx.doi.org/10.1016/0925-7721(95)00031-3
http://dx.doi.org/10.1016/0925-7721(95)00031-3
http://dx.doi.org/10.1016/0925-7721(95)00031-3
http://dx.doi.org/10.1016/j.dam.2020.03.034
http://dx.doi.org/10.1016/j.dam.2020.03.034
http://dx.doi.org/10.1016/j.dam.2020.03.034
http://dx.doi.org/10.1007/978-3-540-77891-2_20
http://dx.doi.org/10.1007/978-3-540-77891-2_20
http://dx.doi.org/10.1007/978-3-540-77891-2_20
http://dx.doi.org/10.1080/00029890.1975.11993898
http://dx.doi.org/10.1080/00029890.1975.11993898
http://dx.doi.org/10.1007/bf01944353
http://dx.doi.org/10.1007/bf01944353
http://dx.doi.org/10.1016/j.comgeo.2004.02.001
http://dx.doi.org/10.1016/j.comgeo.2004.02.001
http://dx.doi.org/10.1016/j.comgeo.2004.02.001
http://dx.doi.org/10.1016/j.comgeo.2004.02.001
http://dx.doi.org/10.1007/bf01377183
http://dx.doi.org/10.1007/bf01377183
http://dx.doi.org/10.1007/bf01377183
http://dx.doi.org/10.1007/bf02187747
http://dx.doi.org/10.1007/bf02187747
http://dx.doi.org/10.1007/11604686_22
http://dx.doi.org/10.1007/11604686_22
http://dx.doi.org/10.1007/11604686_22

