IEICE TRANS. FUNDAMENTALS, VOL.E105-A, NO.9 SEPTEMBER 2022

1381

[LETTER

|

An Efficient Exponentiation Algorithm in GF (2™) Using Euclidean

Inversion

Wei HE®, Nonmember, Yu ZHANG', Member, and Yin LI'", Nonmember

SUMMARY We introduce a new type of exponentiation algorithm in
G F(2') using Euclidean inversion. Our approach is based on the fact that
Euclidean inversion cost much less logic gates than ordinary multiplication
in GF(2"). By applying signed binary form of the exponent instead
of classic binary form, the proposed algorithm can reduce the number of
operations further compared with the classic algorithms.

key words: finite field, exponentiation, Euclidean inversion, cryptography

1. Introduction

Finite field GF(2™) has many practical applications in pub-
lic key cryptography or error correcting codes. Therefore,
it is crucial to perform the underlying arithmetic operations,
including multiplication, exponentiation and inversion, ef-
ficiently. Generally speaking, exponentiation and inversion
are much more time-consuming than other arithmetic opera-
tions. Therefore, many researchers devoted particular inter-
est to provide efficient implementations for these operations.
So far, there are three main strategies for computing the in-
version over GF(2™), i.e., Eulerian (Euler-Fermat theorem)
based, Gaussian based and Euclidean based algorithms. All
these approaches and their variations have been extensive
studied in [5]. Compared with the inversion, the exponenti-
ation of (E > 0) in GF(2") is even harder, as the exponent
can be any nonzero numbers. In fact, according to Euler-
Fermat theorem, the inverse of @ € GF(2™) can be rewritten
as @' = a?"~2, which indicates that inversion could be
recognized as a special case of exponentiation with related
exponent fixed. The main approaches for computing expo-
nentiation consist of binary method [2], [3], sliding window
[3], addition chain [4] or their variations [6]. Algorithm 1
presents the well-known binary method for exponentiation.

It is obvious that binary exponentiation costs at most
n — 1 field multiplications, where n represents the number
of bits in the binary form of E. The sliding window is an
extension of the binary method, which partition the exponent
into zero and nonzero parts. If these small exponentiations
related to nonzero parts are pre-computed and stored, the
overall exponentiation will obtain a faster implementation.

Manuscript received January 12, 2022.
Manuscript revised March 25, 2022.
Manuscript publicized April 26, 2022.
TThe authors are with Department of Computer Science and
Technology, Xinyang Normal University, Henan, China.
¥ The author is with School of Cyberspace Security, Dongguan
University of Technology, Guangdong, China.
a) E-mail: violahw @ 126.com
DOI: 10.1587/transfun.2022EAL2002

Addition chain [2] can also be applied to calculate exponenti-
ation. The key idea of this approach builds an addition chain
from 1 to E, which corresponds to the intermediate steps of
exponentiation. Theoretically, it costs the fewest multiplica-
tions if the related shortest addition chain is found. However,
different exponents always lead to different addition chain,
which requires updating related addition chain frequently. In
[4], the authors proposed sliding window methods for expo-
nentiation under an addition-subtraction chain (an extension
of addition chain). The authors in [6] combined the idea
of sliding window and addition chain to obtain the optimal
window size.

Algorithm 1 Binary Exponentiation [2]
Input: A € GF(2™), f(x), e = (en—1€n—2 - - -€1€0)2
Output: B = A° mod f(x)
1: B:=A;
2: for i fromn —2to0do
3 B := B2 mod f(x);
4 if e; = 1 then
5: B =B - Amod f(x);
6
7
8

end if
. end for
: return B

Motivation. In this letter, our work is devote to building an
efficient exponentiation scheme to reduce the number of mul-
tiplications further, but maintain a relatively simple structure.
Our approach is based on the fact that @ 1=ao? a7l A
straightforward way to compute such a exponentiation costs
t — 2 field multiplications (using binary algorithm) plus ¢ — 1
squarings. On the contrary, this exponent can also be ob-
tained using one multiplication, one inversion plus ¢ squar-
ings. Obviously, if the inverse of @ can be easily obtained,
the latter approach is much more efficient than the former
one, as squarings are usually easy to calculate compared with
multiplication.

The authors in [5] already demonstrated that the in-
version using Euclidean algorithm costs only m XOR gates
with 2m Tx delays, where T is the delay of one 2-input XOR
gate. That is to say, Euclidean inversion is even faster than
ordinary field multiplication in GF(2™) (see Table 1). Based
on this observation, an efficient exponentiation algorithm is
developed in the following sections.

2. Signed Binary Form

In order to utilize inversion, we consider an alternative rep-

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

1382

Table1 Comparison of Euclidean inversion and ordinary multiplication
over GF(2™) generated with x™ + x* + 1 [5].

#AND | #XOR Delay
< Ta+[(2+logy(m — 1)1Tx

Mult. m? m? -1

Euclidean 0 2m 2mTx

T4 represents the delay of an 2-input AND gate

resentation mentioned in [4], i.e., signed binary form, for
the exponent E other than the binary form. The signed bi-
nary form consists of the symbols “1”, “0” and “—~1". For
concision, we use the notation 1 = —1 instead of “—1”.
For example, 15 is “1111” in binary form, and is “10001”
in signed binary form. Also note that the signed binary
form w.r.t. a fixed number is not unique. For instance,
23 =10111 = 11001 = 101001.

Although the canonical signed binary representation
(CSBR) generated by Booth algorithm [1] are sparse and
minimal, we do not use it for efficiency consideration. The
reason is that, if there is only two consecutive “1”s in the
binary form of E, the signed binary form cannot optimize
its exponentiation. Let us consider the simplest case o =
a* - a!'. The direct computation of o only cost one field
multiplications plus one squaring, while a* - @~! cost one
multiplication, two squarings as well as one inversion. Only
if there exist at least three consecutive “1”’s in the binary
form, our method is better than the binary exponentiation.
Accordingly, the following algorithm gives the converting
algorithm from binary to signed binary form.

Algorithm 2 Signed Binary Form Conversion

Input: Binary form of E = e,,_1e,,-2 - - - e1€p
Output: Signed binary form of E = (ej,e] _; -

'e; e(’)).\‘i_qZ
1: fori fromOupton —3 do

2: e;. = ej;

3 ife; =e;41 =e;+2 =1 then
4. Ji=i+3;

5: while e¢; # 0 do

6: ji=j+1

7 end while

8: for k from i + 1 up to j do
9: e;c =0;

10: end for

11: e}H =Li=j+1
12: end if

13: end for

14: return ey el | ---eje;

Description: The notation (x),;42 represent the signed bi-
nary form of E. Algorithm 2 scans the binary form of E
from left to right. If there is no at least three consecutive
“1”s in the binary form of E, the binary form keeps un-
changed, otherwise it transforms all consecutive “1”’s of the
form “11---11”to “100 - - - 01”. Accordingly, we prefer the
signed form of 23 as 11001 rather than 101001.

Proposition 1. The signed binary form of E contains at most
one more bit compared with its binary form.

IEICE TRANS. FUNDAMENTALS, VOL.E105-A, NO.9 SEPTEMBER 2022

Proof. Recall that the binary form of E is e,_1e,-2 - - €p.
We first know that the most significant bit of E is certainly
1, i.e., e,_1 = 1. Then, the value of ¢,,_» can be 1 or 0. If
e,—» = 0, no matter which values the rest bits ¢,,_3 - - - ejeg
are, the conversion from binary to signed binary form can
only set e"172 to 1, and e;H = ¢,,_1. Thus, in this case, the
number of bits in signed binary form of E is equal to that of
the binary form of E.

If e,—» = 1 and e,,_3 = 0, one can easily check that the
signed binary form of E also contains # bits, which is similar
to previous case.

If -2 = e,-3 = ey—1 = 1, according to the transfor-
mation rule, there are at least three consecutive “1”’s, thus,
the signed binary form of E sete; ,e’ ,,e’ - to0andone
extra bit e, to 1. In this case, the signed binary form of E
has n + 1 bits, which contains one more bits compared with
its binary form. O

3. Exponentiation Algorithm Using Euclidean Inver-
sion

We now give the explicit exponentiation algorithm using
signed binary form. Denoted by EU(x) the Euclidean in-
version computation. Then, the proposed exponentiation
algorithm is given as follows:

Algorithm 3 Signed Binary Exponentiation using Inversion
Input: A € GF(2™), f(x), e = (ep-1€5-2 - - 'eleO)sigZ
Output: B = A¢ mod f(x)

1: B:=A;

2: for i fromn —2to 0 do

3: B := B? mod f(x);

4: if ¢; = 1 then

5: B := B - Amod f(x);

6: else

7: if e; = 1 then

8: B := B - EU(A) mod f(x);
9: end if

10: end if

11: end for

12: return B

Compared with Algorithm 1, Algorithm 3 only requires one
more component for Euclidean inversion. In hardware im-
plementation, based on Table 1, one can check that only 2m
more XOR gates are required.

Complexity Analysis. Assume that the signed binary form
of the exponent contains a(a > 0) “I1”s and (8 > 0) “1”s.
From Algorithm 3, it is easy to see that the proposed al-
gorithm costs n — 2 squarings and « inversions and a + 8
field multiplications. As mentioned in Sect. 2, since we only
convert the exponent that contains at least three consecutive
“1”s into its signed binary form, at least one multiplication
can be saved at the cost of one Euclidean inversion. Now we
investigate the number of squarings required in Algorithm 3.
We have the following proposition.

LETTER

Table2 Computation of A2,
i Rule Result
3| B=A%-A A3
2 B =B? A®
B =R Al2
0| B=B%* A" A3

Proposition 2. Algorithm 3 costs at most one more squaring
compared with Algorithm 1.

Proof. Based on Algorithms 1 and 3, it is clear that the
numbers of required squaring in these algorithms are equal
to n— 1, where n is the number of bits of e, in both binary or
signed binary form.

Then we consider number of bits for different represen-
tations. Based on proposition 1, we know that signed binary
form has at most one more bit compared with the binary one.
We then directly conclude the proposition. O

An Example. Consider the exponentiation of A% over the
field GF(2?7), where A is an arbitrary element of GF(2%7).
Based on previous description, the exponent 23 is rewritten
in signed binary form 23 = 11001. Then, according to
Algorithm 3, we can compute the exponentiation as follows:
Obviously, in this example, our algorithm only costs two
multiplications, one inversion and four squarings. On the
contrary, binary algorithm costs three multiplications plus
four squarings.

Comparison. Please note that both the sliding window
and the addition chain approaches require pre-computations,
which are more suitable for software implementation. In
the following, we make an explicit comparison between the
binary exponentiation algorithm and our proposal. Firstly,
as shown in Sect. 3, our scheme costs 2m more XOR gates
than the binary exponentiation, by adding a Euclidean in-
version component. However, with the results presented in
this paper, we argue that our proposal can be even more ef-
ficient than the binary exponentiation algorithm in terms of
bit operations. It is worthy to note that the number of bit
operations can also be used to evaluate the algorithm effi-
ciency [7], where more bit operations lead to more signal
processing, more energy consumption.

Since the numbers of required bit operations depend on
the representation of the exponent E, it is difficult to give
an explicit complexity formulation w.r.t all the exponents.
For simplicity, we assume that the signed binary form of E
has one more bit than its binary form (n bits), but the signed
binary form is more sparse. However, if there exist no at least
three consecutive 1s in the binary form of £, we do not use the
signed binary form as it leads to no reduction of the number of
multiplications. In fact, we have searched all the exponents
E € [1,2%°] and found that more than 78% of such exponents
contain at least three consecutive “1”’s, the proportion also
increases with the increase of E. Thus, our assumption here
is reasonable. Denoted by A(E) the Hamming weight of
binary form of E. So, the Hamming weight of its signed

1383
Table 3 Comparison of bit operations for Algorithm 1 and 3.
Approaches Number of bit operations
Algorithm 1 2h(E) -m? + mn —4m? — h(E) —m + 2
Algorithm 3 | 2h(E) - m? + 2am — 6m? + mn — h(E) + 3

binary form is no more than h(E) — 1. Also provide that
GF(2™) is generated with an irreducible trinomial and the
polynomial basis is used. If there is no irreducible trinomial
for a certain degree, an irreducible pentanomial can be used,
but the corresponding multiplier has higher space and time
complexities.

We utilize the squarer (cost at most m XOR gates), the
field multiplier presented in [7], and the Euclidean Algo-
rithm presented in [5] for hardware implementation of Al-
gorithms 1 or 3, please see Table 1. For the exponentiation
AE in GF(2™), Algorithm 1 requires h(E) — 2 field multipli-
cations and n — 1 squarings. Meanwhile, our proposal uses
at most A(E) — 3 field multiplications, n squarings plus @
inversions, where a represents the number of 1 in the signed
binary form of E. The following table presents bit operations
for two algorithms.

Since @ << m, it is obvious that, even if our
proposal saves one field multiplication, it still requires
fewer bit operations than the classic binary exponentia-
tion. In [8], the authors defined new Modular Expo-
nential (MODP) Groups for the Internet Key Exchange
(IKE) protocol. They gave 1536, 2048, 3072, 4096, 6144
and 8192 bit prime numbers for Diffie-Hellman groups.
The binary extension fields of the same security level are
GF(21536), GF(22048), GF(23072), GF(24096), GF(26144) and
GF(281%?). 1In these cases, the degrees of the generating
polynomials are very big, we can easily check that, even
if our scheme only reduces one field multiplication, a lot
of bit operations can be saved and our algorithm is more
favourable.

4. Conclusion

In this paper, we have proposed a new GF(2"™) exponenti-
ation algorithm using Euclidean inversion. By choosing a
signed binary form of the exponent, the proposed scheme can
reduce the number of field multiplications further by substi-
tuting consecutive multiplications with one multiplication
plus a inversion. Compared with classic binary exponenti-
ation, our proposal only costs m more XOR gates but has
fewer bit operations for certain exponent, which is more effi-
cient in practical implementation. We also demonstrate that
such exponent is abundant.

Acknowledgments

This work has been supported by the National Natural Sci-
ence Foundation of China (Grant No. 61601396).

References

[1] K. Hwang, Computer Arithmetic, Wiley, New York, 1979.

1384

[2] D.Knuth, The Art of Computer Programming, Addison-Wesley, Stan-
ford, CA, 1998.

[3] C.K.Kog, “Analysis of sliding window techniques for exponentiation,”
Comput. Math. Appl., vol.30, no.10, pp.17-24, 1995.

[4] N. Kunihiro and H. Yamamoto, “Window and extended window meth-
ods for addition chain and addition-subtraction chain,” IEICE Trans.
Fundamentals, vol.E81-A, no.1, pp.72-81, Jan. 1998.

[5] M. Leone and M. Elia, “On the complexity of parallel algorithms for
computing inverses in GF(2"") with m prime,” Acta Appl. Math.,
vo0l.93, no.1-3, pp.149-160, 2006.

(6]

(7]

(8]

IEICE TRANS. FUNDAMENTALS, VOL.E105-A, NO.9 SEPTEMBER 2022

AM. Noma, A. Muhammed, Z.A. Zukarnain, M.A. Mohamed, and
D. Pham, “Iterative sliding window method for shorter number of op-
erations in modular exponentiation and scalar multiplication,” Cogent
Engineering, vol.4, no.1, 1304499, 2017.

H. Wu, “Bit-parallel finite field multiplier and squarer using polyno-
mial basis,” IEEE Trans. Comput., vol.51, no.7, pp.750-758, 2002.

T. Kivinen and M. Kojo, “More modular exponential (MODP) Diffie—
Hellman groups for internet key exchange (IKE),” Internet Engineer-
ing, Task Force 2003, RFC 3526 (Standards Track).

http://dx.doi.org/10.1016/0898-1221(95)00153-p
http://dx.doi.org/10.1016/0898-1221(95)00153-p
http://dx.doi.org/10.1007/s10440-006-9050-5
http://dx.doi.org/10.1007/s10440-006-9050-5
http://dx.doi.org/10.1007/s10440-006-9050-5
http://dx.doi.org/10.1080/23311916.2017.1304499
http://dx.doi.org/10.1080/23311916.2017.1304499
http://dx.doi.org/10.1080/23311916.2017.1304499
http://dx.doi.org/10.1080/23311916.2017.1304499
http://dx.doi.org/10.1109/tc.2002.1017695
http://dx.doi.org/10.1109/tc.2002.1017695
http://dx.doi.org/10.17487/rfc3526
http://dx.doi.org/10.17487/rfc3526
http://dx.doi.org/10.17487/rfc3526

