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Construction of Odd-Variable Strictly Almost Optimal Resilient
Boolean Functions with Higher Resiliency Order via Modifying
High-Meets-Low Technique∗

Hui GE† ,††a), Zepeng ZHUO††† ,††††, Nonmembers, and Xiaoni DU†††††, Member

SUMMARY Construction of resilient Boolean functions in odd vari-
ables having strictly almost optimal (SAO) nonlinearity appears to be a
rather difficult task in stream cipher and coding theory. In this paper, based
on the modified High-Meets-Low technique, a general construction to ob-
tain odd-variable SAO resilient Boolean functions without directly using
PW functions or KY functions is presented. It is shown that the new
class of functions possess higher resiliency order than the known functions
while keeping higher SAO nonlinearity, and in addition the resiliency order
increases rapidly with the variable number n.
key words: Boolean functions, cryptography, nonlinearity, resiliency,
stream ciphers

1. Introduction

Boolean functions are critical designing blocks used in cryp-
tography, in particular in block and stream ciphers. An im-
portant prerequisite on these cryptographic functions is a
higher resistance to the linear and (fast) correlation crypt-
analyses, which are measured by nonlinearity and resiliency
of functions, respectively. In other words, high nonlinearity
and high order of resiliency are two of the most important
criteria of Boolean functions when they are used in non-
linear combiner or nonlinear filter models of stream cipher
systems. More precisely, the nonlinearity measures the min-
imum distance between a given Boolean function and the set
of affine functions, it reflects the ability of the cipher to with-
stand various modes of linear attacks [1]. Resiliency ensures
the cipher is not prone to (fast) correlation attacks [2], [3].
Based on their wide applications in cryptography and cod-
ing theory, construction of resilient functions with as high
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nonlinearity as possible has been extensively studied from
the mid 1980s, see for instance Refs. [5]–[7], [10], [12].

When n is even, there have been extensive research ef-
forts towards efficient methods for obtaining SAO resilient
functions [13]–[16], [18]. For odd n, the toughest challenge
is to get resilient functions having SAO nonlinearity. Un-
fortunately, the progress on constructing SAO resilient func-
tions in odd number of variables has been considerably slow.
In [8] and [9], some superiormethods and algorithms for con-
structing SAO 1-resilient functions in odd variables n ≥ 41
were proposed. In 2008, the technique of modifying a PW
function to construct 1-resilient functions on 15-variables
with SAO nonlinearity 16264 was first demonstrated in [4].
In 2014, Zhang and Pasalic [17] presented a generalized
Maiorana-McFarland (G-M-M) construction method to ob-
tain odd-variable SAO resilient functions. Recently, the
“High-Meets-Low” construction technique via fragmentary
Walsh transform to obtain odd-variable resilient functions
with currently best known nonlinearity was proposed by
Zhang [19], and it is shown that the nonlinearity of the
constructed functions can reach 2n−1 −2(n−1)/2 +5 · 2(n−11)/2

or 2n−1 − 2(n−1)/2 + 2(n−7)/2.
In this paper, without directly using PWfunctions orKY

functions, we introduce a modified “High-Meets-Low” con-
struction technique for designing odd-variable resilient func-
tions with SAO nonlinearity. Compared to the best known
design methods in [19], it is shown that we can construct
odd-variable resilient functions with higher resiliency order,
while keeping the same nonlinearity 2n−1−2(n−1)/2+2(n−7)/2

when using 21-variable 1-resilient functions (generated by
theKYcase in [19]). It isworthmentioning that the restricted
relationship between resiliency and nonlinearity can achieve
the best possible improvement through the constructed re-
silient functions.

2. Preliminaries

Let F2 = {0,1} and Fn2 be the vector space of all n-tuples
over F2. A Boolean function of n variables may be viewed
as a mapping from Fn2 into F2 and we denote by Bn the set of
all the Boolean functions in n variables. A Boolean function
f (X) ∈ Bn is commonly represented as a multivariate poly-
nomial over F2, called Algebraic normal form (ANF), in the
form:
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f (X) =
⊕
u∈Fn2

au(
n∏
j=1

xu j

j ), (1)

where au ∈ F2, u = (u1, . . . ,un). The algebraic degree of
f , denoted by deg( f ), corresponds to the maximum value of
wt(u) such that au , 0. Functions of degree at most one are
called affine functions.

Definition 1: For any α = (α1, . . . , αn), X = (x1, . . . , xn) ∈
Fn2 , let α · X = α1 · x1 + α2 · x2 + · · · + αn · xn be the inner
(dot) product of α and X . The Walsh transform of f ∈ Bn

in point α is denoted by W f (α) and calculated as

W f (α) =
∑
X∈Fn2

(−1) f (X)+α ·X . (2)

A function f ∈ Bn is said to be balanced if the number of
ones is equal to the number of zeros in the truth table of f
(i.e.,W f (0) = 0). In terms ofWalsh spectra, the nonlinearity
of a Boolean function f is given by Ref. [11].

Definition 2: The nonlinearity of a Boolean function f ∈
Bn can be defined as

Nf = 2n−1 −
1
2

max
α∈Fn2

|W f (α)|. (3)

The upper bound on nonlinearity is limited by well-known
Parseval’s equation∑

α∈Fn2

(W f (α))
2 = 22n, (4)

which then implies that Nf ≤ 2n−1 − 2n/2−1.

Definition 3: [17] An n-variable Boolean function is called
strictly almost optimal (SAO) if its nonlinearity is strictly
greater than 2n−1 − 2 bn/2c .

In Ref. [21], a convenient spectral characterization of re-
silient Boolean functions has been presented, which we use
as a lemma here.

Lemma 1: [21] A Boolean function f ∈ Bn is t-resilient if
and only if its Walsh transform satisfies

W f (α) = 0, for all α ∈ Fn2 such that 0 ≤ wt(α) ≤ t . (5)

Next, we introduce the notion of the fragmentary Walsh
transform of an n-variable fragmentary Boolean function
in [19].

Definition 4: Let S be a nonempty proper subset of Fn2 . A
function fS : S → F2 is called an n-variable fragmentary
Boolean function on S. The fragmentary Walsh transform
of fS at point ω ∈ Fn2 , is an integer valued function over S
defined by

FW fS (ω) =
∑
X∈S

(−1) fS (X)+ω ·X . (6)

Lemma 2: [19] For i = 1,2, . . . , d, let Si be a nonempty

subset ofFn2 so that
d⋃
i=1

Si = Fn2 and S1,S2, . . . ,Sd aremutually

disjoint, i.e., for all i, j = 1,2, . . . , d,

Si ∩ Sj = ∅, 1 ≤ i < j ≤ d. (7)

Let f ∈ Bn, and

fSi (X) = f (X), f or X ∈ Si, i = 1,2, . . . , d. (8)

Then we have

W f (ω) =

d∑
i=1

FW fSi
(ω) (9)

and

|W f (ω)| ≤

d∑
i=1
|FW fSi

(ω)|. (10)

3. The Main Construction Method

In this section, based on a modification of High-Meets-Low
technique, we will give a new construction of odd-variable
resilient Boolean functions with higher resiliency order and
SAO nonlinearity.

Let g ∈ B21 be a 1-resilient boolean function, generated
by the KY case in [19], and the truth table of g can be found
in [20]. The spectral distribution of g is given by:

Wg(β) =



0, β ∈ U1, #U1 = 130816,
±256, β ∈ U2, #U2 = 83904,
±512, β ∈ U3, #U3 = 64512,
±768, β ∈ U4, #U4 = 317376,
±1024, β ∈ U5, #U5 = 34048,
±1280, β ∈ U6, #U6 = 353856,
±1792, β ∈ U7, #U7 = 1112640,

(11)

whereU1∪U2∪U3∪U4∪U5∪U6∪U7 = F
21
2 andUi∩Uj = ∅

for any 1 ≤ i < j ≤ 7.

Construction 1: Let n ≥ 43 be an odd number and t ≥ 0.
Let k = (n − 21)/2. Let

T1 = {η | wt(η) ≥ t − 1, η ∈ Fk2 }.

For i = 1,2, . . . ,6, let

Γi(v, t) ={
{(δ, β) | wt(δ, β) ≥ t + 1, δ ∈ Fv2, β ∈ Ui}, if v ≥ 0
∅, if v < 0. (12)

Let

T2 = Γ1(k−11, t)∪Γ2(k−11, t)∪Γ3(k−11, t)∪Γ4(k−11, t),
T3 = Γ1(k−12, t)∪Γ2(k−12, t)∪Γ5(k−12, t)∪Γ6(k−12, t),

and

T4 = Γ1(k − 13, t) ∪ Γ3(k − 13, t) ∪ Γ5(k − 13, t),

where
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Table 1 Ni (τ) for 1-resilient function g ∈ B21 in [19].

τ 0 1 2 3 4 5 6 7 8 9 10
N1(τ) 1 21 174 781 2337 5422 10596 17512 23672 25424 21317
N2(τ) 0 0 0 0 7 100 539 2106 5434 10591 15084
N3(τ) 0 0 16 230 1311 4196 8707 12705 13759 11429 7311
N4(τ) 0 0 0 0 139 1459 6512 18437 36371 53528 61607
N5(τ) 0 0 5 74 447 1575 3720 6248 7614 6762 4405
N6(τ) 0 0 0 0 37 432 2539 8942 21677 39031 54943
τ 11 12 13 14 15 16 17 18 19 20 21
N1(τ) 13756 6708 2401 597 91 6 0 0 0 0 0
N2(τ) 16585 14295 10097 5519 2463 856 200 26 2 0 0
N3(τ) 3477 1134 219 18 0 0 0 0 0 0 0
N4(τ) 56425 41273 24420 11516 4250 1181 233 25 0 0 0
N5(τ) 2150 803 215 30 0 0 0 0 0 0 0
N6(τ) 62907 59814 47122 30596 16125 6778 2230 562 106 14 1

• #Γi(v, t) = 2v · #Ui −
∑min{t ,21}

j=0 (Ni( j) ·
∑min{v,t−j }

e=0
(v
e

)
);

• Ni(τ) = #{β | wt(β) = τ, β ∈ Ui} and its values Ni(τ)
for 1-resilient function g ∈ B21 is given in Table 1,
satisfying at the same time

2k+21#T1 + 2k+10#T2 + 2k+9#T3 + 2k+8#T4 ≥ 2n. (13)

Set d = 4. Let S1 = E1 × F
k+21
2 , S2 = E2 × F

k+10
2 , S3 =

E3 × F
k+9
2 and S4 = E4 × F

k+8
2 be nonempty proper subsets

of Fn2 , where E1 ⊂ F
k
2 , E2 ⊂ F

k+11
2 , E3 ⊂ F

k+12
2 , E4 ⊂ F

k+13
2 .

In view of (13), it ensures that there exist Ei , i = 1,2,3,4,
such that

#Ei ≤ #Ti, 1 ≤ i ≤ 4 (14)
4⋃
i=1

Si = Fn2

and

Si ∩ Sj = ∅, 1 ≤ i < j ≤ 4.

By (14), it is easy to build four injective mappings as follows:

φi : Ei → Ti, i = 1,2,3,4. (15)

Let (X,Y ) ∈ Fn2 with X = (x1, . . . , x2k) ∈ F
2k
2 and Y ∈ F21

2 .
Then, we can construct fragmentary Boolean functions fSi
on Si , i = 1,2,3,4, as follows:

fS1 (X,Y ) = φ1(X(1,k)) · X(k+1,2k) + g(Y ),
fS2 (X,Y ) = φ2(X(1,k+11)) · (X(k+12,2k),Y ),
fS3 (X,Y ) = φ3(X(1,k+12)) · (X(k+13,2k),Y ),
fS4 (X,Y ) = φ4(X(1,k+13)) · (X(k+14,2k),Y ).

Therorem 1: The function f ∈ Bn proposed by Construc-
tion 1 is a t-resilient function with nonlinearity

Nf = 2n−1 − 2(n−1)/2 + 2(n−7)/2.

Proof. Let α = (α1, . . . , α2k) ∈ F
2k
2 and β ∈ F21

2 . We first

calculate the fragmentary Walsh spectra of fS1 .

FW fS1
(α, β)

=
∑

X(1,k)∈E1

∑
X(k+1,2k)∈F

k
2

∑
Y ∈F21

2

(−1) fS1 (X ,Y)+(α,β)·(X ,Y)

= Wg(β)
∑

X(1,k)∈E1

(−1)α(1,k) ·X(1,k)∑
X(k+1,2k)∈F

k
2

(−1)[φ1(X(1,k))+α(k+1,2k)]·X(k+1,2k)

=

{
0, α(k+1,2k) < T1 or β ∈ U1,

±2k ·Wg(β), α(k+1,2k) ∈ T1, β ∈ Ui, 2 ≤ i ≤ 7.
(16)

That is,

FW fS1
(α, β) =

±256 · 2k, β ∈ U2 and φ−1
1 (α(k+1,2k)) exists,

±512 · 2k, β ∈ U3 and φ−1
1 (α(k+1,2k)) exists,

±768 · 2k, β ∈ U4 and φ−1
1 (α(k+1,2k)) exists,

±1024 · 2k, β ∈ U5 and φ−1
1 (α(k+1,2k)) exists,

±1280 · 2k, β ∈ U6 and φ−1
1 (α(k+1,2k)) exists,

±1792 · 2k, β ∈ U7 and φ−1
1 (α(k+1,2k)) exists,

0, otherwise.

(17)

For 0 ≤ wt(α, β) ≤ t − 2, we have α(k+1,2k) < T1, which
implies

FW fS1
(α, β) = 0, f or 0 ≤ wt(α, β) ≤ t − 2. (18)

When t − 1 ≤ wt(α, β) ≤ t, we have 0 ≤ wt(α), wt(β) ≤ t.
It can be classified into the following three cases.

Case 1 0 ≤ wt(α) ≤ t − 2. Obviously, α(k+1,2k) < T1,
and then by (16), we have FW fS1

(α, β) = 0.
Case 2 wt(α) = t − 1. For any wt(α) = t − 1, we

have 0 ≤ wt(β) ≤ 1. Since g ∈ B21 is a 1-resilient boolean
function, it givesWg(β) = 0, which implies FW fS1

(α, β) = 0.
Case 3 wt(α) = t. Similarly, we can easily deduce that

FW fS1
(α, β) = 0.

In view of Cases 1-3 and (18), it is clear that
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Table 2 Comparison of resiliency order with [19] for KY case.

n 231 269 273 311 315 319 353 357 361 365 369
t (Ours) 49 58 59 68 69 70 78 79 80 81 82
t ([19]) 48 57 58 67 68 69 77 78 79 80 81
n 403 407 411 415 419 423 427 449 453 457 461
t (Ours) 90 91 92 93 94 95 96 101 102 103 104
t ([19]) 89 90 91 92 93 94 95 100 101 102 103

FW fS1
(α, β) = 0, f or 0 ≤ wt(α, β) ≤ t . (19)

Nowwe calculate the fragmentaryWalsh spectra of fS2 .

FW fS2
(α, β)

=
∑

X(1,k+11)∈E2

∑
(X(k+12,2k) ,Y)∈F

k+10
2

(−1) fS2 (X ,Y)+(α,β)·(X ,Y)

=
∑

X(1,k+11)∈E2

(−1)α(1,k+11) ·X(1,k+11)∑
(X(k+12,2k) ,Y)∈F

k+10
2

(−1)[φ2(X(1,k+11))+(α(k+12,2k) ,β)]·(X(k+12,2k) ,Y)

=

{
±2k+10, (α(k+12,2k), β) ∈ T2,

0, (α(k+12,2k), β) < T2.
(20)

That is,

FW fS2
(α, β) =


±2k+10, β ∈ U1 ∪U2 ∪U3 ∪U4 and

φ−1
2 (α(k+12,2k), β) exists,

0, otherwise.
(21)

When 0 ≤ wt(α, β) ≤ t, we have (α(k+12,2k), β) < T2, which
implies

FW fS2
(α, β) = 0, f or 0 ≤ wt(α, β) ≤ t . (22)

By the similar calculations, we can obtain

FW fS3
(α, β) =


±2k+9, β ∈ U1 ∪U2 ∪U5 ∪U6 and

φ−1
3 (α(k+13,2k), β) exists,

0, otherwise.
(23)

FW fS4
(α, β) =


±2k+8, β ∈ U1 ∪U3 ∪U5 and

φ−1
4 (α(k+14,2k), β) exists,

0, otherwise.
(24)

From the discussion above, for i = 1,2,3,4, according
to the definitions of Ti , we have

FW fSi
(α, β) = 0, f or 0 ≤ wt(α, β) ≤ t, (25)

which implies that f is t-resilient. By (10),

|W f (α, β)| ≤

4∑
i=1
|FW fSi

(α, β)|

≤



2k+10 + 2k+9 + 2k+8, β ∈ U1,

256 · 2k + 2k+10 + 2k+9, β ∈ U2,

512 · 2k + 2k+10 + 2k+8, β ∈ U3,

768 · 2k + 2k+10, β ∈ U4,

1024 · 2k + 2k+9 + 2k+8, β ∈ U5,

1280 · 2k + 2k+9, β ∈ U6,

1792 · 2k, β ∈ U7,

which leads to
max

(α,β)∈F2k+21
2

|W f (α)| = 1792 · 2k .

It then follows that
Nf = 2n−1 − 2(n−1)/2 + 2(n−7)/2.

Example 1: When n = 231 with k = 105, let t = 49.
Based on the data Ni(τ) for 1-resilient functions g ∈ B21 in
Table 1, we have #T1 = 3.3889e+031, #T2 = 1.0786e+034,
#T3 = 5.4802e + 033 and #T4 = 9.3772e + 032. Then, the
relationship (13) holds, which implies that there exist Ei .
1 ≤ i ≤ 4.

i) Let E1 ⊂ F
105
2 with #E1 = #T1, and S1 = E1 × F

126
2 .

ii) Let E ′1 = E1 × F
11
2 , where E1 = F

105
2 \E1. Note that

#E ′1 = 1.3672e + 034 > #T2. Let E2 ⊂ E ′1 with #E2 = #T2,
and S2 = E2 × F

115
2 .

iii) Let E ′2 = E2 × F2, where E2 = E ′1\E2. Note that
#E ′2 = 5.7720e + 033 > #T3. Let E3 ⊂ E ′2 with #E3 = #T3,
and S3 = E3 × F

114
2 .

iv) Let E4 = E3 × F2, where E3 = E ′2\E3. Note that
#E4 = 5.8360e + 032 < #T4, Let S4 = E4 × F

113
2 .

It is easy to verify that S1, S2, S3 and S4 are mutu-
ally disjoint, and S1 ∪ S2 ∪ S3 ∪ S4 = F

231
2 . Therefore, a

(231,49,2230 − 2115 + 2112) resilient Boolean function can
be obtained by Construction 1. The resiliency order of this
function is better than the (231,48,2230−2115+2112) resilient
Boolean function in [19] while keeping the same nonlinear-
ity. For more examples, see Table 2.
Remark 1: When the variable number n reaches a suffi-
ciently large level, we believe that the gap between the re-
siliency order of our functions and the constructed functions
in [19] will be greater than 1.

4. Conclusions

In this paper, we present a novelmethod for constructing odd-
variable SAO resilient functions, and obtain a large class
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of resilient functions possess higher resiliency order than
the known functions while keeping higher SAO nonlinear-
ity. Further improvements toward the tradeoff relationship
between nonlinearity and resiliency order appear to be an
interesting research direction, and in addition it is still a
challenging problem to get odd-variable resilient functions
with better SAO nonlinearity than previous studies without
using PW functions or KY functions.
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