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Novel Auto-Calibration Method for 7-Elements Hexagonal Array
with Mutual Coupling

Fankun ZENG† ,††a), Xin QIU††b), Jinhai LI†c), Biqi LONG†††d), Wuhai SU†e), Nonmembers,
and Xiaoran CHEN†f), Student Member

SUMMARY Mutual coupling between antenna array elements will sig-
nificantly degrade the performance of the array signal processing methods.
Due to the Toeplitz structure of mutual coupling matrix (MCM), there exist
some mutual coupling calibration algorithms for the uniform linear array
(ULA) or uniform circular array (UCA). But few methods for other arrays.
In this letter, we derive a new transformation formula for the MCM of the 7-
elements hexagonal array (HA-7). Further, we extend two mutual coupling
auto-calibration methods from UCA to HA by the transformation formula.
Simulation results demonstrate the validity of the proposed two methods.
key words: array signal processing, mutual coupling, hexagonal array,
auto-calibration

1. Introduction

Beamforming and direction-of-arrival (DOA) estimation have
been two classical problems in array signal processing in the
last decades. Many excellent methods have been proposed
[1], [2], which have attracted interest in many fields, such
as radar, sonar, and mobile communication. Most of these
methods work with the assumption that the array is ideal.
However, in practice, the ideal array model is often broken
by some characteristics of the array antenna, like the mutual
coupling between the array elements. It will degrade the
performance of these methods [3], [4].

Manymethods have been proposed to calibrate the array
mutual coupling. Generally, these methods can be divided
into two categories, offline calibration algorithms [5]–[8] and
auto-calibration algorithms [9]–[15]. The offline calibration
algorithms need a set of auxiliary sources. The number
and DOA of sources are usually known in advance. Liter-
ature [7] uses a set of time-disjoint sources to calibrate the
phase-amplitude mutual coupling errors for ULA or UCA
by solving the constructed optimization model. Literature
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[8] handles array errors in the DFT beam space and only
uses a single auxiliary source to accomplish the calibration
of phase-amplitude and mutual coupling errors for UCA.
Although the offline method’s computational complexity is
low, the effect of this kind of method will degrade with time
and environmental changes. Therefore, the auto-calibration
method, which can estimate the direction of arrival angle and
the mutual coupling coefficient simultaneously, has aroused
much interest these years. Literature [12] uses the GEESE
method to complete the estimation of DOA and mutual cou-
pling coefficients for ULA; Literature [13] proposed an it-
erative method to estimate DOA and mutual coupling coef-
ficients for UCA. However, most offline or auto-calibration
methods for mutual coupling are limited to UCA or ULA
because the MCMs of these two arrays have a Toeplitz struc-
ture, which other arrays do not have.

Hexagonal arrays have great potential in many applica-
tions such as satellite and radar because they provide compact
triangular-grid element arrangements with the ability to steer
high-gain directive beams in the full azimuth. Moreover,
hexagonal arrays show lower sidelobe amplitudes than rect-
angular arrays and UCA [16], [17]. However, the MCM
of HA does not have the Toeplitz structure, and HA has
attracted little attention in the mutual coupling calibration.

In this letter, a kind ofmutual coupling calibrationmethod
for an HA-7 is presented. First, A transformation formula
for theMCM of the hexagonal array is derived. This formula
allows most of the mutual coupling calibration algorithm for
UCA orULA to be extended to HA-7. Then, combiningwith
the methods of literature [10] and [13], two mutual coupling
auto-calibration algorithms for HA-7 are proposed. Simula-
tion results show that the performance of the two proposed
methods on HA-7 is close to the methods of literature [10]
and [13] on UCA.

2. Signal Model and Problem Formulation

Consider anHA-7 consisting of 7 antenna elements, as shown
in Fig. 1, where the distance between any two adjacent sen-
sors is d, and the position vectors (x, y, z) of elements are
[p1, p2, · · · , p7] = [(d,0,0), (d/2,

√
3d/2,0), (−d/2,

√
3d/2,0),

(−d,0,0), (−d/2,−
√

3d/2,0), (d/2,−
√

3d/2,0), (0,0,0)]. As-
sume the antenna array receives K uncorrelated narrow-band
signals, s1(t), s2(t), · · · , sK (t), with the wavelength λ, and the
DOA of the k-th signal is ϕk, (k = 1,2, · · · ,K). Define vk =
[cos ϕk, sin ϕk,0], (k = 1,2, · · · ,K). The received signal of
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Fig. 1 Planar 7-elements hexagonal array geometry.

i-th antenna element in the ideal array can be written as:

ri(t) =
∑K

k=1
sk(t)e

− j2πvk pT
i

λ + ni(t), (1)

where ni(t) is the white Gaussian noise with a mean of 0
and variance of σ2. Further, the vector form of the received
signal of HA-7 can be written as:

r(t) = [r1(t), · · · ,r7(t)]T =
∑K

k=1
a(ϕk)sk(t) + n(t)

= AS(t) + n(t), (2)

where a(ϕk) = [e−j2πvk p
T
1 /λ,· · ·, e−j2πvk p

T
7 /λ]T is the steering

vector, A = [a(ϕ1),· · ·, a(ϕk)] is the array manifold matrix,
S(t) = [s1(t),· · ·, sK (t)]T is the signal vector, and n(t) =
[n1(t),· · ·,n7(t)]T is the noise vector.

When the mutual coupling between each array element
exists, Eq. (2) should be modified as:

r(t) = CAS(t) + n(t), (3)

where C is the MCM of the HA-7. Reference [14] points
out the conclusion that the mutual coupling coefficients are
inversely proportional to the distance between the elements,
and the coupling between any two equally spaced sensors
is the same. Reference [18] present the absolute value of
the elements of the full electromagnetic C and verifies the
conclusion proposed by Reference [14]. Therefore theMCM
of the HA-7 can be denoted as:

C =



c1 c2 c3 c4 c3 c2 c2
c2 c1 c2 c3 c4 c3 c2
c3 c2 c1 c2 c3 c4 c2
c4 c3 c2 c1 c2 c3 c2
c3 c4 c3 c2 c1 c2 c2
c2 c3 c4 c3 c2 c1 c2
c2 c2 c2 c2 c2 c2 c1


. (4)

Actually, C1:6,1:6, the first six rows and six columns of C, is
the MCM of the 6-elements UCA (UCA-6), and it has the
Toeplitz structure but C does not. Further, the covariance
matrix of the array received signal can be written as:

R =E[r(t)rH (t)] = CARsA
HCH + σ2I, (5)

where Rs =E[S(t)SH (t)] is the desired signal covariance
matrix, and I is an identity matrix.

Further, the eigendecomposition of R is written as:

R =
∑7

i=1
λiei e

H
i = ESΣSE

H
S + ENΣNEH

N , (6)

where λi is the i-th eigenvalue, and λi > λi+1. ei is the
eigenvector of λi . ES = [e1, · · · , eK ], the signal subspace,
contains K eigenvectors corresponding to the K maximum
eigenvalues. EN = [eK+1, · · · , e7], the noise subspace, con-
tains the rest of eigenvectors. The subspace principle can be
denoted as follows:

span{CA} =span{ES} ⊥span{EN } . (7)

Therefore, it can be derived as follow:

‖EH
N Ca(ϕ)‖2 = 0. (8)

Without considering the mutual coupling, C is an identity
matrix, Eq. (8) will hold when the ϕ is the actual DOA of the
signal, and the DOA estimation can be obtained by searching
in 0–360 degrees. However, the abovemethodwill be invalid
when mutual coupling exists.

3. Review of Calibration Methods for UCA

In this section, two UCA auto-calibration methods proposed
in [10] and [13] will be reviewed. For the UCA, the MCM
Cuca has Toeplitz structure, so there exists transformation
T[·] as follow:

Cucaa(ϕ) =T[a(ϕ)]cuca, (9)

where cuca= [c1,1, c1,2,· · ·, c1,q]
T , c1,i is the element in row 1,

column i of Cuca, q = bM/2 + 1c, and M is the number of
UCA antenna elements. Define the matrix T[a(ϕ)] as:

T[a(ϕ)] = T1 +T2 +T3 +T4, (10)

[T1]i j =

{
a(ϕ)i+j−1 i + j ≤ M + 1
0 otherwise, (11a)

[T2]i j =

{
a(ϕ)i−j+1 i ≥ j ≥ 2
0 otherwise, (11b)

[T3]i j =

{
a(ϕ)M+1+i−j i < j ≤ 2
0 otherwise, (11c)

[T4]i j =

{
a(ϕ)i+j−M−1 2≤ j ≤p, i+ j ≥M+2
0 otherwise. (11d)

Where p = b(M + 1)/2c, and a(ϕ)i is the i-th element of
a(ϕ). According to Eq. (9), the T[·] transforms the problem
of estimating theMCM Cuca into estimating the vector cuca,
which reduces the computational complexity significantly.
Moreover, the transformation provides a new idea for DOA
estimation with mutual coupling.

Combined with Eqs. (9) and (10), Eq. (8) can be written
as:

cHucaQ(ϕ)cuca = 0, (12)

where Q(ϕ) =T[a(ϕ)]HENEH
N T[a(ϕ)]. In general, Q(ϕ) is

full rank, and the rank reduction will take place only when
ϕ coincides with one of the signal directions {ϕk}Kk=1 [10].
Therefore, reference [10] (C.Qi method) proposed a novel
DOA estimator:
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f (ϕ) =
1

det{Q(ϕ)}
. (13)

It can be seen from Eq. (12) that cuca is the eigenvector
corresponding to the eigenvalue 0 of Q(ϕ). The estimation
of cuca can be written as:

c̃uca = vmin

{∑K

k=1
Q(ϕ̃k)

}
, (14)

where vmin{·} means obtaining the eigenvector of the mini-
mum eigenvalue, ϕ̃k is the estimated k-th DOA.

Reference [13] proposed an iterative method (M.Wang
method) to estimate DOA and mutual coupling coefficients.
It constructs a quadratic minimization problem as follows:

({ϕk}
K
k=1, cuca)= arg min

{ϕk}
K
k=1,cuca

cHucaQ(ϕ)cuca . (15)

Then the spatial spectrum can be expressed as:

p(ϕ) = J−1 =
(
cHucaQ(ϕ)cuca

)−1
. (16)

With Eqs. (14) and (16), the M.Wang method can obtain the
accurate estimations of DOA and cuca by times iterations.

4. Proposed Calibration Method for HA-7

Obviously, the transformation T[·] is the basis of the above
twomethods canwork normally onUCA.However, theMCM
of HA-7 is not a Toeplitz matrix, and the transformation
T[·] cannot be applied to the HA-7. In this section, a new
transformation for the HA-7 is derived. Further, using the
new transformation, we extend the above two methods to
the HA-7. For the convenience of analysis, Eq. (4) can be
rewritten as:

C =

[
CTOP c5 × 1

c5 × 1T c6

]
, (17)

where CTOP = C1:6,1:6, and 1 ∈ C6,1 is a column vector
with six 1-elements. In Eq. (17), c2 and c1 in the last row
and column of C are substituted as c5 and c6, and it is just a
symbols substitution.

Further, the equation can be obtained as follow:

Ca(ϕ) =

[
CTOP × a(ϕ)1:6 + c5 × a(ϕ)7 × 1
c5 × a(ϕ)1:6 × 1T + c6 × a(ϕ)7

]
. (18)

Define the mutual coupling vector of the HA-7 as:

c = [c1, c2, c3, c4, c5, c6]
T . (19)

Combined with Eq. (9), we rewrite Eq. (18) as:

Ca(ϕ) =

[
T[a(ϕ)1:6]c1:4 + c5a(ϕ)71
c5

∑6
i=1 a(ϕ)i + c6a(ϕ)7

]
= TH[a(ϕ)]c

=

[
T[a(ϕ)1:6] a(ϕ)71 0

0T
∑6

i=1 a(ϕ)i a(ϕ)7

]
c, (20)

where 0 ∈ C6,1 is a column vector with six 0-elements. It can

Algorithm 1 Proposed ECH Algorithm
1: Calculate the covariancematrix Rwith equation (5), and

get the noise subspace EN with equation (6).
2: Construct spatial spectrum with equation (21) and (22),

and search for theK highest peaks of the spatial spectrum
as the estimated DOA {ϕ̃k}Kk=1.

3: Obtain the estimated mutual coupling vector c̃ with
equation (23).

Algorithm 2 Proposed EMH Algorithm
1: Initial c̃(0) = [1,0, · · · ,0]T , and set l = 0, and the

threshold δ. calculate the covariance matrix R with
equation (5), and get the noise subspace EN with
equation (6).

2: Construct spatial spectrum with c̃(0) and equation (24),
search for the K highest peaks of the spatial spectrum as
the estimated DOA {ϕ̃(0)

k
}K
k=1, and calculate J(0).

3: Obtain the estimated mutual coupling vector c̃(l+1) with
equation (23).

4: Construct spatial spectrumwith c̃(l+1) and equation (24),
search for the K highest peaks of the spatial spectrum as
the estimated DOA {ϕ̃(l+1)

k
}K
k=1, and calculate J(l+1).

5: Update iteration coefficient. l = l + 1.
6: Judge whether the condition

��J(l) − J(l−1)
�� ≤ δ is true.

If true, process ends, and consider {ϕ̃(l+1)
k
}K
k=1 and c̃(l+1)

as final estimated DOAs and mutual coupling vector,
respectively. If not, jump to step 3.

be seen that the derived transformation TH[·] has the same
form as T[·]. Thus, the C.Qi method and M.Wang method
can be extended to HA-7 easily. For the HA-7, Eqs. (12),
(13), (14), and (16) can be modified as follow:

cHTH[a(ϕ)]
HENEH

N TH[a(ϕ)]c= c
HQH (ϕ)c=0, (21)

f (ϕ) =
1

det{QH (ϕ)}
, (22)

c̃ = vmin

{∑K

k=1
QH (ϕ̃k)

}
, (23)

p(ϕ) = J−1 =
(
cHQH (ϕ)c

)−1
. (24)

The two extended calibration methods, called the extended
C.Qi method for HA-7 (ECH) and the extended M.Wang
method for HA-7 (EMH), respectively, are shown as follow:

It is worth mentioning that, in addition to the two meth-
ods proposed above, transformation TH[·] can extend any
UCA calibration method based on T[·] to HA-7.

5. Simulation Results

In this section, simulations on HA-7 will be presented to
illustrate the validity of the proposed methods. For compari-
son, the C.Qi method andM.Wang method will be simulated
on UCA-6 which can be seen as an HA-7 without the center
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Fig. 2 RMSEof theDOAs estimation and the correspondingCRBsversus
SNR in Simulation 1, K=512.

Fig. 3 RMSE of the DOAs estimation and the CRBs versus snapshot
number in Simulation 1, SNR=25 dB.

element. The distance between any two adjacent elements
of HA-7 is d = 0.7λ, the mutual coupling vector is c =
[1,0.7 + 0.44 j,0.39 + 0.24 j,0.31 + 0.2,0.39 + 0.24 j,0.7 +
0.44 j,0.7+ 0.44 j]T . In order to ensure the same simulation
conditions, the value of d and c are chosen from reference
[13]. For UCA, the distance d is same as HA-7’s, and
cuca = c1:4. Define the root mean square errors (RMSE) of
DOA estimation and mutual coupling coefficient as follow:

RMSEϕi =

√(∑N

n=1

(
ϕ̃i
(n) − ϕi

) )2
/N, (25)

RMSEc =

√(∑N

n=1

(
‖ c̃(n) − c‖

)
/‖c‖

)2
/N . (26)

where ϕ̃i (n) and c̃(n) are the n-th estimated results of DOA
ϕi and mutual coupling coefficient c, respectively. In this
section, the RMSE results are averaged over 2000 trials.

Simulation 1 is performed to verify the validity of EMH.
Meanwhile, the C.Qi method is simulated. Assume there is
a source from ϕ = 60° impinges on the arrays. In this
simulation, there are two experiments, called experiments 1
and 2. The experiments are to know the relationship between
the performance of methods and SNR, and snapshot number,
respectively. Results are shown in Fig. 2, Fig. 3, and Table 1.

In experiment 1, the snapshot number K is 512, SNR
range from 5 dB to 35 dB. Figure 2 plots the RMSE of the
DOA estimation versus SNR. Besides the C.Qi method and
the EMH, the DOA estimation performances ofMUSICwith
known mutual coupling coefficients, and the corresponding
CRBs are also plotted in Fig. 2. Meanwhile, the RMSE of
the mutual coupling coefficients is given in the second and

Table 1 Mutual coupling coefficients RMSE of the methods.

SNR(dB) C.Qi ECH M.Wang EMH
5 1.72E-02 2.21E-02 1.42E-02 1.83E-02
10 9.46E-03 1.25E-02 7.88E-03 1.02E-02
15 5.37E-03 7.00E-03 4.35E-03 5.84E-03
20 3.02E-03 3.89E-03 2.45E-03 3.21E-03
25 1.71E-03 2.22E-03 1.36E-03 1.80E-03
30 9.51E-04 1.24E-03 7.75E-04 1.01E-03
35 5.35E-04 6.96E-04 4.46E-04 5.86E-04

Fig. 4 RMSEof theDOAs estimation and the correspondingCRBsversus
SNR in Simulation 2, K=512.

third rows of Table 1. In experiment 2, the SNR is 25 dB,
snapshot number K ranges from 100 to 1600, and Fig. 3 plots
the RMSE of the DOA estimation versus snapshot number.

From Fig. 2 and Fig. 3, it can be seen that (1) the ECH
method can achieve the auto mutual coupling calibration for
the HA-7; (2) The DOA estimation performance of the ECH
is close to that of MUSIC and CRB; (3) The DOA estimation
performance of the ECH for HA-7 is close to that of the C.Qi
method for UCA-6.

The validity of the EMH method is verified by simula-
tion 2, and the M.Wang method is also simulated. Assume
there are two uncorrelated sources from ϕ1 = 60°, ϕ2 = 120°
impinge on arrays. In this simulation, three experiments are
presented, called experiments 3–5. The simulation purposes
and conditions of experiments 3, 4 are the same as those of
experiments 1, 2. Figure 4 plots the RMSE of the DOA es-
timation versus SNR, and the RMSE of the mutual coupling
coefficients is given in the 4-th and 5-th rows of Table 1.
Figure 5 plots the RMSE of the DOA estimation versus
snapshots number. Experiment 5 is to compare the spatial
spectrum of the EMH and uncalibrated MUSIC on HA-7,
the SNR is 35 dB, snapshot number K is 512, and the result
is depicted in Fig. 6.

From Fig. 4, Fig. 5 and Fig. 6, it can be seen that (1) the
EMHmethod can handle themutual coupling auto-calibration
for the HA-7, and the performance of the MEH is close to
that of the M.Wang method for UCA; (2) Under the mu-
tual coupling, the MUSIC cannot form the peak at DOAs.
However, the EMHmethod can estimate the DOA of desired
signals accurately.

FromTable 1, it can be seen that both the ECHandEMH
can achieve an estimation of the mutual coupling for HA-7.
However, the mutual coupling estimation performances of
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Fig. 5 RMSEof theDOAs estimation and the correspondingCRBsversus
snapshot number in Simulation 2, SNR=25 dB.

Fig. 6 Comparison of spatial spectrums for HA-7, SNR=35 dB, K=512.

the ECH and EMH are lower than that of C.Qi and M.Wang,
respectively. The main reason for this phenomenon is that
the substitution in equation (17) makes the estimations of c5,
c6 independent of c1, c2. Further, it will introduce additional
mutual coupling estimation errors.

6. Conclusion

In this letter, we derive a new transformation formula for the
MCM of the HA-7. Based on the derived transformation,
we extend two mutual coupling auto-calibration methods
from UCA to HA-7 and get new methods, ECH and EMH.
Computer simulations show that the ECH and EMH can
effectively handle the mutual coupling problem for HA-7,
and the performances of the two methods are close to that of
the C.Qi and M.Wang methods on UCA.
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