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More on Incorrigible Sets of Binary Linear Codes∗

Lingjun KONG†a), Member, Haiyang LIU††b), Nonmember, and Lianrong MA†††c), Member

SUMMARY This letter is concerned with incorrigible sets of binary
linear codes. For a given binary linear code C, we represent the numbers
of incorrigible sets of size up to

⌈ 3
2 d − 1

⌉
using the weight enumerator of

C, where d is the minimum distance of C. In addition, we determine the
incorrigible set enumerators of binary Golay codes G23 and G24 through
combinatorial methods.
key words: incorrigible set, incorrigible set enumerator, weight enumera-
tor, binary linear codes, binary Golay codes

1. Introduction

The incorrigible set enumerator of a binary linear code, which
enumerates the numbers of incorrigible sets according to
their sizes, is an important property of the code [1], since
it can be used to exactly characterize the optimal decoding
performance over the binary erasure channel (BEC). From
the theoretical point of view, it has been shown in [2] that
the property is closely related to the matroid theory, which
is an important part of combinatorial mathematics. In fact,
the incorrigible set enumerator of a binary linear code is a
specialization of the Tutte polynomial of the vector matroid
induced by the parity-check matrix of the code [2]. From
the computation point of view, however, it is a difficult prob-
lem to compute the incorrigible set enumerator for a code
in general. In [3], the authors have established a relation
between the incorrigible set enumerator and the generalized
weight distributions of a code. But the relation is helpless
in practice, since it is intractable to obtain the generalized
weight distributions of a code. Only sporadic studies have
considered the problem for some specific families of codes
(e.g., codes related to graphs [2] or related to finite geome-
tries [4]). Since the incorrigible set enumerator is of great
importance, it is deserved to further investigate the problem.

In this letter, we presentmore results on incorrigible sets
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of binary linear codes. First, we provide a relation between
the incorrigible set enumerator and the weight enumerator
of a binary linear code. More concretely, for a binary linear
code with minimum distance d, we represent the numbers
of incorrigible sets of sizes up to

⌈ 3
2 d − 1

⌉
using the weight

enumerator of the code, where dxe is the smallest integer
that is greater than or equal to x. Although the incorrigible
set enumerator cannot be determined completely from the
relation in general, we may get a better understanding on the
code performance over the BEC using the obtained result,
especially in the situation where the erasure probability is
high. Second, we focus on the well-known binary Golay
codes [5], [6], which are important codes discovered in the
early days of error correction coding. The nice properties of
the two codes have been studied in the literature, and both
codes have been adopted in practical applications. Most
interestingly, each code is the unique binary code with the
corresponding code parameters under the code equivalence
[6]. Using their properties, we determine the incorrigible set
enumerators of the two codes through combinatorial meth-
ods, which is helpful in understanding the performance of
the two codes over the BEC.

2. Preliminaries

In this section, we provide the concept of incorrigible sets.
For more details, the reader can refer to [1]. We also review
the constructions and properties of two binary Golay codes.

2.1 Incorrigible Sets

Assume C is an [n, k, d] binary linear code, where n, k, and
d are the code’s length, dimension, and minimum distance,
respectively. Assume c = (c1, c2, · · · , cn) ∈ C. The set {l :
cl , 0} is called the support of c, denoted by supp(c). The
size of supp(c), |supp(c)|, is called the weight of c, denoted
by wt(c). Let Al(0 ≤ l ≤ n) be the number of codewords in
C with weight l. The polynomial A(x) =

∑n
l=0 Al xl is said

to be the weight enumerator of C. It is evident that A0 = 1
and Al = 0 for 1 ≤ l ≤ d − 1.

Let D be a subcode of C. The support of D is defined
as supp(D) =

⋃
c∈D

supp(c). The size of supp(D) is called

the support weight of D. Let A(r)i be the number of r-
dimensional subcodes of C with support weight i for 1 ≤
r ≤ k. The polynomial A(r)(x) =

∑n
l=0 A(r)

l
xl is said to be

the r-th generalized weight enumerator of C. By definition,
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we have A(1)(x) = A(x) − 1.
Definition 1 ([1]): Let C be a binary linear code of

length n. An incorrigible setI ofC is a subset of {1,2, · · · ,n}
such that I contains the support of a nonzero codeword in
C. Let Il = |{I is an incorrigible set of C : |I | = l}|. The
polynomial I(x) =

∑n
l=0 Il xl is called the incorrigible set

enumerator of C.
The following two lemmas are direct consequences of

the definition.
Lemma 1 ([1]): Let C be a binary linear code specified

by the parity-check matrix H = [h1,h2, · · · ,hn]. Then a
non-empty set I ⊆ {1,2, · · · ,n} is incorrigible if and only if
the set of column vectors {hl : l ∈ I} are linearly dependent.

Lemma2 ([1]): With the above definition and notations,
we have

Il =


0, if 0 ≤ l ≤ d − 1
Al, if l = d(n
l

)
, if n − k + 1 ≤ l ≤ n

(1)

for an [n, k, d] binary linear code C, where
(n
l

)
= n!

l!(n−l)! is
the binomial coefficient.

For 1 ≤ r ≤ k, define

F(r)
l
=

n∑
j=0

(
n − j
l − j

)
A(r)j . (2)

It has been shown in [3] that

Il =
k∑

r=1
(−1)r−12

r (r−1)
2 F(r)

l
(3)

for a binary linear code C.
In practice, the incorrigible set enumerator can be used

to exactly characterize the optimal decoding performance
of a code over the BEC. Suppose the codewords in C is
transmitted over a BEC with erasure probability ε . The
probability of unsuccessful decoding for C under optimal
decoding is given by [1]

p =
n∑
l=1

Ilε l(1 − ε)n−l . (4)

2.2 Binary Golay Codes

Now we introduce the construction as well as several prop-
erties of binary [24,12,8] Golay code G24 and [23,12,7]
Golay code G23. The code G24 is a self-dual code, whose
parity-check matrix can be written as [5]

H = [I12 | P], (5)

where

P =

[
0 1
1T A

]
, (6)

1 is the all-one row vector of length 11. The matrix A is an

11×11 cyclic matrix whose first row is (1 1 0 1 1 1 0 0 0 1 0)
and the i-th row is the cyclic shift of the (i − 1)-th row for
2 ≤ i ≤ 11.

The weight enumerator of G24 is A(x) = 1 + 759x8 +
2576x12 + 759x16 + x24. In addition, the minimum-weight
codewords in G24 have the following nice property.

Lemma 3 ([6], [7]): There is a unique codeword of
weight 8 in G24 that has ones in any five given coordinates.

Remark 1: Due to the above lemma, the number of
codewords of weight 8 can be calculated as

(24
5
)
/
(8
5
)
= 759.

The code G23 is a perfect triple-error-correction code
[5], [6], whose weight enumerator is A(x) = 1 + 253x7 +
506x8 + 1288x11 + 1288x12 + 506x15 + 253x16 + x23. It
is interesting to note that G23 can be obtained from G24 by
puncturing the last coordinate from each codeword [6]. Fur-
thermore, each codeword of weight 7 in G23 can be obtained
from a codeword of weight 8 in G24 by puncturing the last
coordinate with value 1 [6].

3. Main Results

In this section, we will present the main results of this letter.
First, we provide a formula to represent the numbers of in-
corrigible sets of certain sizes using the weight enumerator
of the code.

Theorem 1: Let A(x) =
∑n

l=0 Al xl and I(x) =
∑n

l=0 Il xl

be the weight enumerator and the incorrigible set enumerator
of an [n, k, d] binary linear code C, respectively. Then

Il =
l∑

i=d

Ai

(
n − i
l − i

)
(7)

holds for d ≤ l ≤
⌈ 3

2 d − 1
⌉
.

Proof: By inspection, the theorem is true if l = d.
Now consider l > d. Suppose c is a codeword in C of
weight i and S = supp(c), where d ≤ i ≤ l ≤

⌈ 3
2 d − 1

⌉
.

Let N = {1,2, · · · ,n} and S̄ = N\S. Suppose I is the set
formed by the union ofS and a subset of S̄ with size l−i. By
definition,I is an incorrigible set of size l. Moreover, c is the
unique codeword in C such that supp(c) ⊆ I. (Otherwise,
assume c ′ is another codeword in C satisfying supp(c ′) ⊆ I.
Then we have l ≥ wt(c)+wt(c ′) − |supp(c) ∩ supp(c ′)|, i.e.,
|supp(c) ∩ supp(c ′)| ≥ wt(c)+wt(c ′) − l. Since C is linear,
c + c ′ is also a codeword in C. Moreover,

wt(c + c ′) = wt(c) + wt(c ′) − 2|supp(c) ∩ supp(c ′)|
≤ wt(c) + wt(c ′) − 2(wt(c) + wt(c ′) − l)
= 2l − wt(c) − wt(c ′).

Since l ≤
⌈ 3

2 d − 1
⌉
, we have 2l < 3d. This, together with

wt(c) ≥ d and wt(c ′) ≥ d, indicates that wt(c + c ′) < d,
a contradiction.) This, together with the facts that C has Ai

codewords of weight i and S̄ has a total of
(n−i
l−i

)
subsets with

size l − i, proves the theorem. �
Remark 2: For an [n, k, d] binary linear code C such

that n − k ≤ d 3
2 d − 1e, we can obtain the incorrigible set

enumerator of C using Theorem 1 and Lemma 2. It should
be noted that such binary linear code is non-trivial.

Remark 3: A codeword c in a binary linear code C is
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said to be minimal if there does not exist a codeword c ′ in C
such that supp(c ′) ⊂ supp(c) (see e.g., [8]). In other words,
c is the only codeword whose support is a subset of supp(c).
It is known from [8, Lemma 2.1] that every codeword c in C
such that wt(c) ≤

⌈ 3
2 d − 1

⌉
is minimal. On the other hand,

we know from the proof of Theorem 1 that if an incorrigible
set I of C satisfying |I | ≤

⌈ 3
2 d − 1

⌉
contains the support

of a codeword c, then c is the only codeword in C whose
support is a subset of I.

We note that the numbers of incorrigible sets with sizes
from d to

⌈ 3
2 d − 1

⌉
can also be calculated from Eqs. (2) and

(3). Consider r = 1 in (2). Using the property that A(1)j = 0
for 1 ≤ j < d, we conclude that F(1)

l
=

∑l
j=d A(1)j

(n−j
l−j

)
. (By

convention,
( n
m

)
= 0 if m > n or m < 0.) Now let us consider

2 ≤ r ≤ k. We let

dr = min{ j : A(r)j > 0}, (8)

which is the r-th generalized Hamming weight of C [9]. We
have d1 = d. It is known that di < dj if i < j [9]. As
a consequence, we have F(r)

l
=

∑l
j=d A(r)j

(n−j
l−j

)
. Moreover,

dr satisfies the generalized Griesmer bound [9], i.e., dr ≥∑r−1
i=0

⌈
d
2i

⌉
. From (8), we conclude that A(r)j = 0 for d ≤ j ≤

l ≤
⌈ 3

2 d − 1
⌉
. Hence, it holds that F(r)

l
= 0 for 2 ≤ r ≤ k.

Then we have Il =
∑l

j=d A(1)j
(n−j
l−j

)
according to (3). For

d ≤ j ≤ l, we have A(1)j = Aj . In other words, Eqs. (2) and
(3) can be brought into (7) for d ≤ l ≤

⌈ 3
2 d − 1

⌉
. Compared

to (2) and (3), our formula (7) is formally simpler. It is known
from (7) that we need at most l − d + 1 binomial coefficient
computations, l−d+1 integermultiplications and l−d integer
additions to calculate Il for a given l(d ≤ l ≤

⌈ 3
2 d − 1

⌉
). If a

code has few weights in the range between d and
⌈ 3

2 d − 1
⌉
,

the calculations can be further reduced.
Example 1: Consider the triple-error-correcting BCH

code C, which is a [15,5,7] cyclic code with generator poly-
nomial g(x) = 1+ x+ x2+ x4+ x5+ x8+ x10 [5]. After listing
the codewords in C, we obtain the weight enumerator of C is
A(x) = 1 + 15x7 + 15x8 + x15. By Theorem 1, we have I7 =
A7 = 15, I8 = A7

(8
1
)
+ A8 = 135, I9 = A7

(8
2
)
+ A8

(7
1
)
= 525,

and I10 = A7
(8
3
)
+ A8

(7
2
)
= 1155. Combing these results with

Lemma 2, we have I(x) = 15x7+135x8+525x9+1155x10+
1365x11 + 455x12 + 105x13 + 15x14 + x15.

Example 2: SupposeC⊥ is the dual of the code provided
in Example 1. It can be verified that C⊥ is a code with
parameters [15,10,4], which contains all the codewords in
the [15,11,3]Hamming code with even weights. The weight
enumerator of Hamming codes is provided in [5, Eq. (4.1)].
As a consequence, we conclude that theweight enumerator of
C⊥ is A(x) = 1+ 105x4 + 280x6 + 435x8 + 168x10 + 35x12.
By Theorem 1, we have I4 = A4 = 105, I5 = A4

(11
1
)
=

1155. Combing these results with Lemma 2, we have I(x) =
105x4 + 1155x5 + 5005x6 + 6435x7 + 6435x8 + 5005x9 +
3003x10 + 1365x11 + 455x12 + 105x13 + 15x14 + x15.

In general, we cannot get the complete formula of I(x)
from Theorem 1. However, it is worth mentioning that the

results in Theorem 1 allow us to make a better understanding
on the code performance over the BEC.

Now we analyze several methods for approximating p,
the probability of unsuccessful decoding for a code over a
BEC with erasure probability ε , provided in (4). It is known
that the probability p can be well approximated by

p(1) = Idεd = Adε
d (9)

if ε is small [1]. However, the approximation p(1) is degraded

as ε increases. In particular, if
(

1
Ad

) 1
d
< ε < 1, we have

p(1) > 1, which becomes meaningless.
Using the results in Lemma 2, p can be approximated

by

p(2) = Idεd(1 − ε)n−d +
n∑

l=n−k+1
Ilε l(1 − ε)n−l . (10)

Our Theorem 1, together with the results in Lemma 2,
suggests that p can be approximated by

p(3) =
d 3

2 d−1e∑
l=d

Ilε l(1−ε)n−l+
n∑

l=n−k+1
Ilε l(1−ε)n−l . (11)

Define e(2) = p−p(2) and e(3) = p−p(3). By calculation,
we obtain e(2) ≥ e(3) ≥ 0. This indicates that the gap between
p and p(3) is no larger than that between p and p(2) for a
given ε . In order to compare the performance evaluations,
we provide examples for two codes whose incorrigible set
enumerators are known.

Example 3: Consider binary Golay code G24. By The-
orem 1, we can get Ii for 8 ≤ i ≤ 11. In [3, Table II],
the values of Ii have been provided, from which I(x) can be
determined for G24. Figure 1(a) illustrates the performances
of G24 under various methods. We can see from the figure
that p(1) and p(3) are desirable if ε is small. As ε increases,
p(1) becomes unsatisfactory. In particular, when ε is close to
0.5, p(1) is larger than 1, which is meaningless. In contrast,
p(2) and p(3) can be used as approximations in this situation,
in which p(3) is better than p(2). This indicates that the
determination of Ii for d < i ≤

⌈ 3
2 d − 1

⌉
can help us better

understand the code performance as a whole.
Example 4: Consider the [31,26,3] Hamming code.

By Theorem 1, we can get Ii for i = 3 and 4. For the
code, the values of Ii can be calculated by [4, Eq. (23)],
from which I(x) can be determined for the code. We also
evaluate the code performances using various approaches,
as shown in Fig. 1(b). We can also conclude from the figure
that our Theorem 1 can help us better understand the code
performance as a whole.

Now we determine the incorrigible set enumerator of
binary Golay codes G24 and G23 as an application of The-
orem 1. In fact, the incorrigible set enumerator of G24 can
be obtained using the results in [3, Table II]. However, our
proof only uses the weight enumerator ofG24 as well as some
combinatorial methods. For the sake of completeness, the
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Fig. 1 Performance comparisons of different approaches.

proof is also provided. Also, we note that the incorrigible set
distributions of the dual of G23 are provided in [3, Table I].

Lemma 4: For G24, we have I12 = 1313116.
Proof: Assume I is an incorrigible set of G24 with size

12. Then I contains the support of a codeword c of weight
8 or 12 in G24 but not both. (Otherwise, G24 has a codeword
of weight 4, a contradiction.) We consider the following two
cases.

Case 1: wt(c) = 12. In this case, I is the support of
a codeword of weight 12 in G24 and vice versa. We know
from the weight enumerator of G24 that there are 2576 such
incorrigible sets.

Case 2: wt(c) = 8. Let N = {1,2, · · · ,24}. Suppose
c is a codeword in G24 of weight 8 and S = supp(c). Then,
I, the union of S and a subset of S̄ with size 4, is an
incorrigible set of size 12, where S̄ = N\S. For each of
the 759 minimum-weight codewords, we have

(16
4
)
ways to

choose a subset of S̄with size 4 and form such an incorrigible
set of G24. On the other hand, it should be noted that some
incorrigible sets of size 12 contain the supports of more than
one codeword of weight 8 in G24.

Assume c and c ′ are different codewords of weight 8
in G24 whose supports are the subsets of an incorrigible set
I of size 12. Let c ′′ = c + c ′. Then c ′′ = c + c ′ is also a
codeword in G24, whose support is also a subset of I. Since
|supp(c ′′)| = |supp(c)| + |supp(c ′)| − 2|supp(c) ∩ supp(c ′)|,
supp(c) ⊂ I, and supp(c ′) ⊂ I, it holds that |supp(c) ∩
supp(c ′)| ≥ 4, which implies wt(c ′′) = |supp(c ′′)| ≤ 8.
Because the minimum codeword weight of G24 is 8, we have
wt(c ′′) = 8 and |supp(c) ∩ supp(c ′)| = 4. In other words, I
contains the supports of three minimum-weight codewords
c, c ′, and c ′′. Moreover, c, c ′, and c ′′ are the only three
minimum-weight codewords in G24 whose supports are the
subsets ofI. (Otherwise, G24 contains a codeword of weight
less than 8, a contradiction.)

Denote by T the number of triples (c, c ′, c ′′), where c,
c ′, and c ′′ are the codewords of weight 8 in G24 satisfying
c ′′ = c + c ′. From the above discussions, we conclude

that the number of incorrigible sets of size 12 is given by
759

(16
4
)
− 2T in this case. Now let us calculate the number

T . Recall that |supp(c) ∩ supp(c ′)| = 4 for the above triple.
Assume R is a subset of S = supp(c) with size 4. We
know from Lemma 3 that for each i ∈ S̄ there is a unique
codeword of weight 8 in G24 whose support contains i as
well as the coordinates in the set R. Since |S̄ | = 16, we can
obtain a list of 16 codewords, each of which occurs in the
list four times. As a result, for any four given coordinates
in supp(c), there are 16/4 = 4 ways of choosing c ′ such
that supp(c ′) also contains these four coordinates. Since
G24 has a total of 759 minimum-weight codewords, there are
4×759

(8
4
)
ways of choosing the codeword pairs c and c ′ in the

above triple, and each pair is counted twice in this manner.
Finally, because each triple contributes three such codeword
pairs, T is 1

2×3 × 4 × 759
(8
4
)
= 35420. Hence, the number

of incorrigible sets in this case is 759
(16

4
)
− 2 × 35420 =

1310540.
Combining the above two cases, we have I12 = 1310540

+ 2576 = 1313116. �
Theorem 2: The incorrigible set enumerator of G24 is

I(x) = 759x8 + 12144x9 + 91080x10 + 425040x11+
1313116x12 + 2496144x13 + 1961256x14 + 1307504x15 +
735471x16+346104x17+134596x18+42504x19+10626x20+
2024x21 + 276x22 + 24x23 + x24.

Proof: The theorem follows from Lemmas 2 and 4 as
well as Theorem 1. �

Now let us consider G23. From Lemma 2 and Theo-
rem 1, we only need to calculate I11 for the code.

Lemma 5: For G23, we have I11 = 655270.
Proof: LetN = {1,2, · · · ,23}. AssumeI is an incorri-

gible set of G23 with size 11. Then I contains the support of
a codeword of weight 7 or 8 in G23. Suppose c (resp., c ′) is a
codeword inG23 ofweight 7 (resp., 8). AssumeS = supp(c),
S′ = supp(c ′), S̄ = N\S, and S̄′ = N\S′. Then, I, the
union of S (resp., S′) and a subset of S̄ (resp., S̄′) with size
4 (resp., 3), is an incorrigible set of size 11. For each of the
253 codewords of weight 7, we have

(16
4
)
ways to choose a

subset of S̄ with size 4 and form such an incorrigible set of
G23. Similarly, for each of the 506 codewords of weight 8,
we have

(15
3
)
ways to choose a subset of S̄′ with size 3 and

form such an incorrigible set of G23. On the other hand, it
should be noted that some incorrigible sets of size 11 contain
the supports of more than one codeword of weight 7 or 8 in
G23.

Using the similar method as in Case 2 of Lemma 4, we
conclude that if an incorrigible set I of size 11 contains the
supports of more than one codeword in G23, then it exactly
contains the supports of three codewords c, c ′, and c ′′ in
G23, two of which are of weight 7 and the remaining of
which is of weight 8.

Denote by T the number of minimum-weight codeword
pair (c, c ′′) in G23 such that c + c ′′ is a codeword of weight
8. Then I11 is given by 253

(16
4
)
+ 506

(15
3
)
− 2T . Now let

us calculate the number T . Recall the property that G23 can
be obtained from G24 by puncturing the last coordinate from
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each codeword. Denote by c̃ and c̃ ′′ the codewords in G24
that correspond to c and c ′′, respectively. Then the last
coordinates of c̃ and c̃ ′′ are both 1. Again, using the similar
method as in Case 2 of Lemma 4, we conclude that for the last
coordinate as well as any other three coordinates in supp(c̃),
there are 4 ways of choosing c̃ ′′ such that supp(c̃ ′′) also
contains these four coordinates. Because G24 has a total of
253 codewords of weight 8 whose last coordinate is 1, there
are 4 × 253

(7
3
)
ways of choosing the codeword pair (c̃, c̃ ′′),

and each pair is counted twice in this manner. Since there
is a one-to-one correspondence between (c, c ′′) and (c̃, c̃ ′′),
the number T is 1

2 × 4 × 253
(7
3
)
= 17710.

Hence, I11 = 253
(16

4
)
+506

(15
3
)
−2×17710 = 655270. �

Theorem 3: The incorrigible set enumerator of G23 is
I(x) = 253x7+4554x8+37950x9+194810x10+655270x11+
1352078x12 + 1144066x13 + 817190x14 + 490314x15+
245157x16 + 100947x17 + 33649x18 + 8855x19 + 1771x20 +
253x21 + 23x22 + x23.

Proof: The theorem is a direct consequence of Lem-
mas 2 and 5 as well as Theorem 1. �

4. Concluding Remarks

In this letter, we have provided a formula to represent the
numbers of incorrigible sets of sizes between d and

⌈ 3
2 d − 1

⌉
for a binary linear code with minimum distance d, which is
helpful in understanding the code performance over theBEC.
We have also determined the incorrigible set enumerators of

binary Golay codes G23 and G24.
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