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L0-Norm Based Adaptive Equalization with PMSER Criterion for
Underwater Acoustic Communications

Tian FANG†, Feng LIU†a), Conggai LI†, Fangjiong CHEN††, Nonmembers, and Yanli XU†, Member

SUMMARY Underwater acoustic channels (UWA) are usually sparse,
which can be exploited for adaptive equalization to improve the system
performance. For the shallow UWA channels, based on the proportional
minimum symbol error rate (PMSER) criterion, the adaptive equalization
framework requires the sparsity selection. Since the sparsity of the L0 norm
is stronger than that of the L1, we choose it to achieve better convergence.
However, because the L0 norm leads to NP-hard problems, it is difficult
to find an efficient solution. In order to solve this problem, we choose the
Gaussian function to approximate the L0 norm. Simulation results show
that the proposed scheme obtains better performance than the L1 based
counterpart.
key words: underwater acoustic channels, sparsity selection, PMSER, L0
norm approximation, adaptive equalization

1. Introduction

The environment of the underwater acoustic (UWA) channel
is complex. Multi-path fading leads to serious inter-symbol
interference (ISI) [1], [2]. Due to the low carrier frequency,
Doppler effect has a heavier effect on the UWA channels than
the terrestrial radio. Measurements showed that the shallow
UWA channels with slow-time-varying coherent multipath
characteristics are sparse and can be considered as time-
invariant [3], where most energy only focuses on several
time-delay and Doppler spreads. Improving sparsity can
achieve better system performance.

How to improve sparsity has become a popular topic in
recent years. For this goal, the basis pursuit (BP) algorithm
was used in [4] and [5], which is based on the L1 norm to
reconstruct the sparse signal. However, the BP algorithm is
often too complex to reconstruct the sparse signal efficiently.
In addition, there are many sparse reconstruction algorithms,
such as the orthogonal matching pursuit (OMP) [6], and the
iteratively reweighted least squares (IRLS) [7]. However, the
above algorithms are usually not efficient enough.

Compression sensing (CS) method recovers all infor-
mation of the original signal [8], through a measure far less
than the collected signal data amount. The most sparse one
is found under the constraints of satisfying Ax = b. The Lp

norm of a vector x is defined by
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| |x | |p =

(
n∑
i=1
|xi |p

) 1
p

(1)

In fact, Ax = b represents a straight line in the Euclidean
space, and | |x | |p can be represented as a Lp norm sphere. We
can represent them on the two-dimensional axis, observing
the existing relationship between them.

• When p = 1, the Lp ball at this time can be described as
a diamond. The Lp ball and the space line Ax = b have
an intersection, which must be on the coordinate axis.
The number of intersections on the axis is the sparsity
of the vector. The sparsity of the L1 norm is 1.

• When p = 0, the radius of the Lp sphere is zero, the
Lp sphere is two lines on the coordinate axis. The
Lp ball and the space line Ax = b should have two
intersections on two axes. So the sparsity of the L0
norm is 2. Thus the L0 norm has better sparsity than
the L1. The L0 norm is used to measure the number of
non-zero elements in a vector [9], which is also known
as the vector’s sparsity.
Considering the inherent sparsity of the UWA channels,

minimum symbol error rate (MSER) criterion was applied
to the adaptive equalizer design in [10]. Then the propor-
tional MSER criterion (PMSER) based sparse equalization
algorithm was proposed to reduce the SER [11], where its
fast convergence is achieved by adding sparse matrix with
the L1 norm.

Motivated by the better sparsity of the L0 norm, the
L1 norm can be replaced by the L0 norm in the adaptive
equalization design. Unfortunately, since the L0 will lead
to a NP-hard problem [12], it’s difficult to find a solution in
closed form. In this letter, we use the Gaussian function to
approximate the L0 norm for a better solution to adaptive
equalization with PMSER criterion for UWA communica-
tions. Simulation results show the proposed the scheme has
a faster convergence and a lower symbol error rate (SER).

2. System Model

The systemmodel is demonstrated in Fig. 1, where a point-to-
point UWA communication with adaptive decision-feedback
equalizer (DFE) is considered as that in [13]. The input
signal sequence is denoted by r (k), and the time-invariant
channel is represented by h (k) (k = 0,1, · · · , L − 1) where
L is the channel length. Then the output sequence of the
channel can be expressed as
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Fig. 1 System model.

y (k) =
L−1∑
l=0

h (l) r (k − l) + n (k) (2)

where y (k) is the received signal, and n (k) is the additive
whiteGaussian noise (AWGN) of the channelwith zeromean
and σ2

0 variance. The transmit power of {rk} is normalized
as P = 1 to obtain the same average power under different
transmitter processing, and to provide fair comparison un-
der the same condition. The above sequence model can be
transformed into matrix form as

yk = Hrk + nk (3)

where yk =
[
y (k) , · · · , y

(
k − Nf − 1

) ]T is the received
column vector with Nf as the number of forward fil-
ter taps, H is the channel matrix with Toeplitz structure,
rk =

[
r (k) , · · · ,r

(
k − L − Nf − 1

) ]T is the transmitted sig-
nal vector, nk =

[
n (k) , · · · ,n

(
k − Nf − 1

) ]T is the noise
vector, and (·)T is the transpose operation of a vector/matrix.

The output of the decision feedback equalizer can be
expressed as

m (k) = wT
k yk + bTk r̂k (4)

where m (k) is the output of the decision feedback equal-
izer, wk =

[
wk (0) , wk (1) , · · · , wk

(
Nf − 1

) ]T , bk =

[bk (0) , bk (1) , · · · , bk (Nb − 1)]T , r̂k = [r̂k (D − 1) , · · · ,
r̂k (D − Nb)]

T , wk(d) represents forward filter coefficient at
time slot k, bk(d) represents backward filtering coefficients
at time slot k, r̂k is the past estimated symbols, Nb represents
the number of feedback filter taps, and D is the delay of the
equalizer.

The error of the signal can be defined as

ek = mk − rk(D) (5)

where rk(D) is obtained by the decision of mk .
Our goal is to get the minimum value of ek , so as to

minimize the SER performance.

3. Proposed Scheme

In order to realize a faster convergence of the algorithm, we
replaces the L1 norm by the L0 norm to increase the sparsity
of the PMSER algorithm. The iterative formula of wk can
be expressed as

wk = wk−1 +
µG f ,k ykek
yT
k
G f ,k yk

− ||ĥ | |0 (6)

where G f ,k and Gb,k are diagonal sparse matrices, µ in-
dicates the impact of all scalars, and | |ĥ | |0 represents the
sparsity selection of the L0 norm.

The L0 norm leads to the NP hard problem, which
is difficult to obtain a closed form. In order to solve this
problem, we use the following Gaussian method to obtain an
approximation of | |ĥ | |0.

Firstly, the Gaussian function with zero mean and vari-
ance σ2 is used

ϕσ (xi) = exp
(
−x2

i /2σ
2
)

(7)

From [14], we have

lim
σ→0

ϕσ (x) =
{

1, x = 0
0, x , 0 (8)

which is equivalent to

ϕσ (x) =
{

1, |x | ≤ σ
0, |x | > σ

(9)

For simplification, we define the following function

u (x) =
{

1, x , 0
0, x = 0 (10)

Combining the above Eqs. (8)–(10) we can get

| |x | |0 =
L−1∑
i=0

u (xi) (11)

Thus, the estimation of the L0 norm of x can be trans-
formed into the expression with function u. Through the
above analyses, we can get

lim
σ→0

ϕσ (x) = 1 − u (x) (12)

and

lim
σ→0

L−1∑
i=0

ϕσ (xi) =
L−1∑
i=0
[1 − u (xi)] (13)

By defining

φσ (x) =
L−1∑
i=0

ϕσ (xi) (14)

we rewrite (13) as

φσ (x) = L − ||x | |0 (15)

So we can get the expression of the L0 norm as

| |x | |0 = L − φσ (x) (16)

With the above analysis and current research [15], a
general expression of the L0 norm is obtained

| |x | |0 =
L−1∑
i=0

[
1 − e−x

2
i /2σ

2
]

(17)
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Substituting the above expression of the L0 norm into the
model, we can get

| |wk−1 | |0 =

L−1∑
l=0

[
1 − e−β |wk−1(l) |

]
(18)

where β is the coefficient parameter of theGaussian function.
As in [16], in order to take advantage of the sparsity of the
L0 norm, gradient descend algorithm is used as

| |ĥ | |0 =
| |wk−1 | |0
∂wk−1

= βsgn (|wk−1 |) e−β |wk−1 | (19)

Bringing (19) into (6), we can get

wk = wk−1 +
µG f ,k ykek
yT
k
G f ,k yk

− βsgn (|wk−1 |) e−β |wk−1 |

(20)

where sgn (·) is defined as

sgn (x) =
{ x
|x | , x , 0
0, elsewhere

(21)

To reduce the computational complexity of (14), espe-
cially that caused by the last term, the first order Taylor series
expansions of exponential functions is taken into considera-
tion

e−β |wk−1 | ≈ 1 − β |wk−1 | (22)

Combining (20)–(22), we have

wk = wk−1 +
µG f ,k ykek
yT
k
G f ,k yk

− β
wk−1
|wk−1 |

(1 − β |wk−1 |)

(23)

Since the exponential function is larger than zero, the ap-
proximation of (22) is bounded to be positive. Thus we
discuss the following two cases.

Case I: when − 1
β < wk−1 < 0

wk = wk−1+
µG f ,k ykek
yT
k
G f ,k yk

− β
wk−1
−wk−1

(1 + βwk−1) (24)

Case II: when 0 < wk−1 <
1
β

wk = wk−1 +
µG f ,k ykek
yT
k
G f ,k yk

− β
wk−1
wk−1

(1 − βwk−1) (25)

The above expressions (24) and (25) can be unified as

wk = wk−1 +
µG f ,k ykek
yT
k
G f ,k yk

+ fβ (wk−1) (26)

where

fβ (x) =

β2x + β, − 1

β < x < 0
β2x − β, 0 < x < 1

β

0, elsewhere
(27)

is operated on each element of the vector.
Usually the selection of matrices G f ,k and Gb,k should

take into account the sparseness of the equalizer. We use the
measure function of sparsity as that in [17]

S (wk) =
L

L −
√

L

(
1 −

||wk | |1
√

L | |wk | |2

)
(28)

where | |wk | |1 and | |wk | |2 are the L1 norm and L2 norm of
|wk |, respectively. Then the tap step length of the forward
filter can be updated by

ζf ,k = λ f ζf ,k−1 +
(
1 − ζf ,k−1

)
S (wk−1) (29)

where λ is the forgetting factor.
To avoid the problem of overlong steps, we should as-

sign smaller steps to filter taps, which can also effectively
improve the convergence speed. So, we use | |wk−1 | |0 instead
of | |wk−1 | |1 to calculate the step length in (29).

By adopting the Lagrangian relaxation method, we ob-
tain the element of the forward sparse matrix G f ,k as

gf ,k(l) =
(1 − α) ζf ,k

2Nf
+(1 + α)

1 − e−β |wk−1 |

2
∑L−1

l=0
[
1 − e−β |wk−1 |

]
(30)

and the element of the feedback sparse matrix Gb,k as

gb,k(l) =
(1 − α) ζb,k

2Nb
+ (1 + α)

1 − e−β |bk−1 |

2
∑L−1

l=0
[
1 − e−β |bk−1 |

]
(31)

where α ∈ [−1,1]. And the sparsity of sparse matrix ele-
ments is determined by parameter α.

In similar way, we can obtain the iterative expression of
the feedback filter as

bk = bk−1 +
µGb,k r̂kek
r̂Tk Gb,k r̂k

+ fβ (bk−1) (32)

3.1 Complexity Analysis

Since the index of wk is from 0 to L − 1, by analyzing the
iterative processing of the related methods, the complexity
of the L0 algorithm is found to be increased by 2L-fold
compared with that of the L1 algorithm.

4. Simulation Results

In the simulation, information bits are modulated by the
BPSK constellation. Parameter configuration is given as
[10]: the sampling rate is 48 kHz, the date transmission rate
is 2 kHz, the maximum delay spread of the channel is about
100 symbol periods, α = −0.5, and β = 0.5. The UWA
channel instance used for simulation is plotted in Fig. 2.

For comparison, we use the MSER algorithm and the
PMSER algorithm based on the L1 norm (which is referred
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Fig. 2 The UWA channel instance used for simulation.

Fig. 3 Convergence performance at SNR=17 dB.

to as L1). The proposed sparse PMSER algorithm based on
the approximation with Gaussian function is abbreviated as
L0-G.

To show the convergence behavior of the related
schemes, Fig. 3 is given with SNR=10 log P

σ2
0
=17 dB. It is

clear that as the iteration goes on, the SER performance
of all these schemes converges, while the proposed scheme
shows the fastest convergence and lowest SER among them.
In detail, all curves converge after 2000 iterations. The pro-
posed L0-G scheme curve has a significant improvement
than the MSER scheme and the L1 scheme. Obviously, both
PMSER algorithms have a faster decreasing within iterations
of 2000 than the MSER. The MSER takes about 1600 itera-
tions to achieve a SER of 10−2 and 3000 iterations to a SER
of near 2 × 10−3. The L1 takes about 1100 and 1700 itera-
tions to achieve the SER of 10−2 and 2 × 10−3, respectively.
In contrast, the iterations needed by the L0-G are about 950
and 1250, respectively. With 3000 iterations, the converged
SER is 2.1 × 10−3, 8.9 × 10−4, and 1.4 × 10−4, for the three
schemes, respectively.

Then we show the performance under different SNR

Fig. 4 SER performance versus SNR with 3000 iterations.

in Fig. 4, where the iteration numbers are set to be 3000.
By observing the curves in Fig. 4, we can find that with
the increase of SNR, the SER of the three algorithms are
gradually decreasing as expected and the proposed scheme
shows the best SER performance. In detail, the proposed
L0-G scheme significantly outperforms the L1 counterpart
and the both curves show better performance of the SER in
high SNR region than theMSER scheme. On the other hand,
at the SNR of 25 dB, the SER is 9.2 × 10−4, 4.5 × 10−4, and
17 × 10−5 for the MSER, L1, and L0-G, respectively. The
SERperformance in high SNR region indicates that the L0-G
has the highest diversity gain, while theMSER has the lowest
diversity gain. When the SNR is between 0 dB and 8 dB, the
L0-G shows inefficient SER performance. However, the
performance gap between them becomes more and more big
after the SNR of 10 dB. For example, the SNR gains of the
L0-G over the L1 are about 0.5 dB and 3.5 dB at the SER of
10−2 and 10−3, respectively. Particularly, the MSER scheme
achieves a SER of 10−3 at 24 dB of SNR. In contrast, the
L1 method obtains the SER of 10−3 about 16 dB, while the
L0-G achieve it at a SNR of about 12.5 dB.

5. Conclusion

In this paper, we proposed a new PMSER adaptive equal-
ization scheme, which is based on the L0 norm. The Gaus-
sian function is used to approximate the L0 norm to achieve
the sparse selection. The simulation results showed that
Gaussian approximation of L0 norm has faster convergence
and lower SER than the L1 method, while the both PMSER
schemes significantly outperform the MSER method.
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