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LETTER
New Constructions of Sidon Spaces and Cyclic Subspace Codes∗

Xue-Mei LIU†a), Tong SHI†b), Min-Yao NIU††c), Nonmembers, Lin-Zhi SHEN†d), Member,
and You GAO†††e), Nonmember

SUMMARY Sidon space is an important tool for constructing cyclic
subspace codes. In this letter, we construct some Sidon spaces by using
primitive elements and the roots of some irreducible polynomials over
finite fields. Let q be a prime power, k,m, n be three positive integers and
ρ = d m

2k e − 1, θ = d n
2m e − 1. Based on these Sidon spaces and the union

of some Sidon spaces, new cyclic subspace codes with size 3(qn−1)
q−1 and

θρqk(qn−1)
q−1 are obtained. The size of these codes is lager compared to the

known constructions from [14] and [10].
key words: random network coding, cyclic subspace codes, Sidon spaces

1. Introduction

Let Fq be the finite field of size q and q be a prime power.
Let Fqn be an extension field of degree n over Fq, which
can be viewed as a vector space of dimension n over Fq.
For any nonnegative integers k ≤ n, Gq(n, k) is the set of
all k-dimensional subspaces of Fqn (see [1]). We can equip
Gq(n, k) with a metric: d(U,V) = 2k − 2 dim(U ∩ V), where
U,V ∈ Gq(n, k). If C is a nonempty subset of Gq(n, k), then
C is called a constant dimension subspace code. A subspace
code C is cyclic if αV ∈ C for any α ∈ F∗qn and V ∈ C. Define
the orbit of V as orb(V) = {αV | α ∈ F∗qn }, then consider the
action of the multiplicative group F∗qn to the set orb(V), it is
evident that orb(V) is a cyclic constant dimension subspace
code. The size of orb(V) is qn−1

qt−1 for some t | n and the
distance of orb(V) is 2k−2s with 0 ≤ s ≤ k (see [12]). If the
size of orb(V) is qn−1

q−1 , it is called a f ull-length orbit code.
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The largest minimum distance of such code is 2k − 2, if it
reaches this bound then the code is optimal (see [13]).

Subspace codes, particularly cyclic subspace codes
have attracted extensive attention due to their applications
in random network coding (see [4]) for correction of errors
and erasures (see [2], [16], [18], [21]). One of the research
directions is the construction of cyclic subspace codes with
large minimum distance and as many codewords as possible
for fixed q, n and k (see [19]). There are two main systematic
methods to construct cyclic subspace codes. One is to use
subspace polynomials (see [3], [5]–[7], [20]), the other is
to use Sidon spaces. In [8], Roth et al. found the connec-
tion between Sidon spaces and cyclic subspace codes. They
proved that the cyclic subspace code orb(V) has size qn−1

q−1 and
minimum distance 2k − 2 if and only if V is a Sidon space.
In [9], Niu, Yue and Wu used the union of Sidon spaces to
construct cyclic subspace codes with more codewords and
the minimum distance is still 2k−2. In [14], Li and Liu gave
a sufficient condition that the sum of several Sidon spaces is
still a Sidon space, and provided a new idea for construct-
ing Sidon spaces. For more methods of constructing cyclic
subspace codes by Sidon spaces, see articles [14], [17].

In this letter, some new Sidon spaces can be constructed
with primitive elements and the roots of some irreducible
polynomials over finite fields. Moreover, several new kinds
of cyclic subspace codes are presented, whose size is the
multiple of qn−1

q−1 and the minimum distance is still 2k − 2.
The structure of this letter is as follows. In Sect. 2, we

state some relevant preliminaries which will be needed in
our constructions. In Sect. 3, some new Sidon spaces are
presented. In Sect. 4, based on these Sidon spaces, some
cyclic subspace codes with new parameters are obtained.
Finally, conclusions are presented in Sect. 5.

2. Preliminaries

LetFq be a finite fieldwith q elements andFqn be an extension
field of degree n over Fq, which can be viewed as a vector
space of dimension n over Fq.

Definition 2.1 ([11]) A subspaceU ∈ Gq(n, k) is called
a Sidon space if for any nonzero elements a, b, c, d ∈ U, if
ab = cd, then {aFq, bFq} = {cFq, dFq}.

Proposition 2.2 shows that we can construct cyclic sub-
space codes by Sidon spaces.

Proposition 2.2 ([8]) For a subspaceU ∈ Gq(n, k), the
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cyclic subspace code orb(U) has size qn−1
q−1 and minimum

distance 2k − 2 if and only ifU is a Sidon space.
Proposition 2.3 shows that we can construct cyclic sub-

space codes from the union of some Sidon spaces.
Proposition 2.3 ([8]) For any distinct subspaces

U,V ∈ Gq(n, k), the following two conditions are equiv-
alent.

(1) For any α ∈ F∗qn , dim(U ∩ αV) ≤ 1.
(2) For any nonzero elements a, c ∈ U and nonzero

elements b, d ∈ V, if ab = cd, then {aFq} = {cFq} and
{bFq} = {dFq}.

Conjecture 2.4 ([12], [15]) For any positive integers
n, k and n > 2k, there exists a cyclic subspace code C ⊆
Gq(n, k) with size qn−1

q−1 and minimum distance 2k − 2.
Lemma 2.5 ([10]) Suppose that l, k are two positive

integers with gcd(l, k) = 1 and u, v, s, t are nonzero elements
of Fqk such that uv = st and uql

v = sql
t. Then u

s =
t
v
∈ F∗q.

Remark 2.6 From De f inition 2.1, U is a Sidon space
if for nonzero elements a, b, c, d ∈ U, ab = cd, then
{aFq, bFq} = {cFq, dFq}. There are two cases. When {aFq} =

{cFq} and {bFq} = {dFq}, there exist λ1, λ2, λ3, λ4 ∈ Fq such
that aλ1 = cλ2 and bλ3 = dλ4. Then a

c =
λ2
λ1
∈ Fq and

d
b =

λ3
λ4
∈ Fq. By ab = cd, we have a

c =
d
b ∈ Fq. The

other case could be similar to getting a
d =

c
b ∈ Fq. There-

fore, {aFq, bFq} = {cFq, dFq} is equivalent to a
c =

d
b ∈ Fq or

a
d =

c
b ∈ Fq.

3. Constructions of Sidon Space

In order to make the following proof more concise, we give
some results.

Theorem 3.1 Suppose that t is a positive integer such
that gcd(t, k) = 1 and u, u′, v, v′ ∈ F∗qk are nonzero elements
such that uv = u′v′, uvqt

+ uqt
v = u′v′q

t
+ u′q

t
v′. Then u

v′
=

u′
v
∈ F∗q.

Proof From uv = u′v′, suppose u
u′ =

v′

v
= τ ∈ F∗qk .

Replace the equation uvqt
+ uqt

v = u′v′q
t
+ u′q

t
v′ by u = τu′,

v′ = τv. We have

τu′vqt
+ τqt

u′q
t
v = τqt

u′vqt
+ τu′q

t
v.

Thus, ( u′
v

)qt−1 = 1, hence u′
v
∈ Fqt . Since gcd(t, k) = 1, we

have u′
v
∈ F∗q. �

Now we construct Sidon spaces with the roots of some
irreducible polynomials over finite fields.

Theorem 3.2 Let n, k,m, t be positive integers and
k | m | n. Let γ ∈ F∗qm be a root of an irreducible poly-
nomial of degree m

k ≥ 3 over Fqk , ξ ∈ F∗qn be a root of an
irreducible polynomial of degree n

m ≥ 3 over Fqm . Then

U = {u + uqγ + uqt
ξ | u ∈ Fqk }

is a Sidon space with dimension k.
Proof Now we check whether U is a Sidon space by

De f inition 2.1. Let α = u+uqγ+uqt
ξ, α′ = u′+u′qγ+u′q

t
ξ,

β = v + vqγ + vqt
ξ and β′ = v′ + v′qγ + v′qt

ξ be four nonzero

elements inU such that αβ = α′β′, where u, u′, v, v′ ∈ F∗qk .

Since m
k ≥ 3 and n

m ≥ 3, we know that {1, γ, ξ, γξ,
γ2, ξ2} is a linear independent set overFqk . By comparing and
simplifying their coefficients in αβ = α′β′ after expansion,
we deduce that

uv = u′v′

uvq + uqv = u′v′q + u′qv′

uvqt
+ uqt

v = u′v′q
t
+ u′q

t
v′

uqvqt
+ uqt

vq = u′qv′q
t
+ u′q

t
v′q.

(1)

From uv = u′v′, suppose u
u′ =

v′

v
= τ ∈ F∗qk . Replace the

equation uvq + uqv = u′v′q + u′qv′ by u = τu′, v′ = τv. Hence

τu′vq + τqu′qv = τqu′vq + τu′qv.

We have ( u′
v

)q−1 = 1, so u′
v
∈ F∗q. Suppose u′

v
= u

v′
= τ′ ∈ F∗q.

Replace the equation α
β′
=

u+uqγ+uqt
ξ

v′+v′qγ+v′q
t
ξ
by u′ = τ′v, u = τ′v′.

We have α
β′
= τ′ ∈ F∗q, hence α

β′
= α′

β
= τ′ ∈ F∗q. By

Remark 2.6,U is a Sidon space.
It is evident that for any u ∈ Fqk , there is a unique α ∈ U

corresponding to it. Therefore, U has qk distinct elements.
Since Fqk can be viewed as a vector space of dimension k
over Fq, we know thatU is a Fq−subspace of dimension k.

Therefore,U is a Sidon space with dimension k. �
Remark 3.3 The conditions are the same as Theorem

3.2. Similarly,V = {uqt
+uqγ+uξ | u ∈ Fqk } is a Sidon space

with dimension k.
We introduce some notations that will be used.
Definition 3.4 For three positive integers k,m, n and

k|m|n. Let q be a prime power and ω be a primitive element
in Fqk . Let γ ∈ F∗qm be a root of an irreducible polynomial of
degree m

k ≥ 3 over Fqk and ξ ∈ F∗qn be a root of an irreducible
polynomial of degree n

m ≥ 3 over Fqm . Set ρ := d m
2k e − 1,

set θ := d n
2m e − 1. We define: γi j = ω

iγ j, ξir = ω
iξr, where

0 ≤ i ≤ qk − 2, 1 ≤ j ≤ ρ, 1 ≤ r ≤ θ.
Then we construct Sidon spaces consisting of primitive

elements and the roots of irreducible polynomials over finite
fields.

Theorem 3.5 Let i, j, r be fixed integers such that 0 ≤
i ≤ qk − 2, 1 ≤ j ≤ ρ, 1 ≤ r ≤ θ and let γi j, ξir be as
in De f inition 3.4. Let t be a positive integer such that
gcd(t, k) = 1. Then

Ui, j,r = {u + uγi j + uqt
ξir | u ∈ Fqk }

is a Sidon space with dimension k.
Proof Now we check whether Ui, j,r is a Sidon space

by De f inition 2.7. Let α = u + uγi j + uqt
ξir, α′ = u′ +

u′γi j + u′q
t
ξir, β = v + vγi j + v

qt
ξir, β′ = v′ + v′γi j + v

′qt
ξir be

four nonzero elements in Ui, j,r such that αβ = α′β′, where
u, u′, v, v′ ∈ F∗qk .

Since 1 ≤ j ≤ ρ, 1 ≤ r ≤ θ, we know that {1, γ j, γ2 j,
ξr, ξ2r, γ jξr} is a linear independent set over Fqk . Comparing
their coefficients in αβ = α′β′ after expansion, we deduce
that
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

uv = u′v′

wi(uv + uv) = wi(u′v′ + u′v′)
w2iuv = w2iu′v′

wi(uvqt
+ uqt

v) = wi(u′v′q
t
+ u′q

t
v′)

w2i(uv)qt
= w2i(u′v′)qt

w2i(uvqt
+ uqt

v) = w2i(u′v′q
t
+ u′q

t
v′).

Since ω be a primitive element in Fqk , 0 ≤ i ≤ qk − 2, we
know that wi, w2i , 0. Upon simplification we have{

uv = u′v′

uvqt
+ uqt

v = u′v′q
t
+ u′q

t
v′.

(2)

By Theorem 3.1, we have u
v′
= u′

v
∈ F∗q. Hence α

β′
= α′

β
∈ F∗q.

Therefore,Ui, j,r ∈ Gq(n, k) is a Sidon space. �
Theorem 3.6 Let j, r be fixed integers such that 1 ≤ j ≤

ρ, 1 ≤ r ≤ θ and let γ, ξ be as in De f inition 3.4. Let t be a
positive integer such that gcd(t, k) = 1. Then

Uqk−1, j,r = {u
qt
+ uγ j + uξr | u ∈ Fqk }

is a Sidon space with dimension k.
Proof The proof is similar to that of Theorem 3.5, and

we omit the details. �

4. Subspace Codes via Sidon Spaces

Recall that the cyclic subspace code orb(U) has size qn−1
q−1

and minimum distance 2k − 2 if and only if U is a Sidon
space. Now we construct some new cyclic subspace codes
with size larger than qn−1

q−1 and minimum distance still remain
2k − 2.

Theorem 4.1 The conditions are the same as Theorem
3.2 and Remark 3.3. Let U = {u + uqγ + uqt

ξ | u ∈ Fqk },
V = {vqt

+ vqγ + vξ | v ∈ Fqk } and X = {wγ + wqξ | w ∈ Fqk }.
Define C1 = {λU | λ ∈ F

∗
qn }, C2 = {δV | δ ∈ F

∗
qn } and

C3 = {ηX | η ∈ F
∗
qn }. If gcd(k, t) = 1, then

C = C1 ∪C2 ∪C3

is a cyclic subspace code with size 3(qn−1)
q−1 and minimum

distance 2k − 2.
Proof It is easy to verify that U, V and X are distinct

Sidon spaces and C1,C2,C3 are cyclic subspace codes of
size qn−1

q−1 and minimum distance 2k − 2 by Proposition 2.2.
Therefore, |C| = 3(qn−1)

q−1 .
To show thatC has minimum distance 2k−2, it remains

to show that dim (U ∩ δV) ≤ 1, dim (V ∩ ηX) ≤ 1 and
dim (X ∩ λU) ≤ 1, where λ, δ, η ∈ F∗qn . By Proposition
2.3, it is equivalent to proof for nonzero elements α, α′ ∈ U,
β, β′ ∈ V and χ, χ′ ∈ X, if αβ = α′β′, βχ = β′χ′, αχ = α′χ′,
then

{αFq} = {α
′Fq} and {βFq} = {β

′Fq},

{βFq} = {β
′Fq} and {χFq} = {χ

′Fq},

{αFq} = {α
′Fq} and {χFq} = {χ

′Fq}.

From Remark 2.6, we only need to prove

α

α′
=
β′

β
∈ F∗q. (3)

β

β′
=
χ′

χ
∈ F∗q. (4)

α

α′
=
χ′

χ
∈ F∗q. (5)

Let α = u + uqγ + uqt
ξ, α′ = u′ + u′qγ + u′q

t
ξ be

nonzero elements ofU, β = vqt
+ vqγ + vξ, β′ = v′qt

+ v′qγ +
v′ξ be nonzero elements of V such that αβ = α′β′ where
u, u′, v, v′ ∈ F∗qk . Since m

k ≥ 3 and n
m ≥ 3, we know that

{1, γ, ξ, γξ, γ2, ξ2} is a linear independent set over Fqk . By
comparing and simplifying their coefficients in αβ = α′β′

after expansion, we deduce that
uvqt
= u′v′q

t

uvq + uqvqt
= u′v′q + u′qv′q

t

uv = u′v′

uqv + uqt
vq = u′qv′ + u′q

t
v′q

uqt
v = u′q

t
v′.

(6)

By Lemma 2.5 and the equation group (6), we have u
u′ =

v′

v
∈ F∗q. Suppose u

u′ =
v′

v
= τ′ ∈ F∗q. Replace the equation

α
α′
=

u+uqγ+uqt
ξ

u′+u′qγ+u′qt
ξ
by u = τ′u′, v′ = τ′v, we have α

α′
= τ′ ∈ F∗q.

Since αβ = α′β′, we have α
α′
=

β′

β
= τ′ ∈ F∗q. Hence Eq. (3)

holds.
Similar to the proof of Eq. (3), the Eqs. (4) and (5) hold.
To summarize, C is a cyclic subspace code with size

3(qn−1)
q−1 and minimum distance 2k − 2. �

Theorem 4.2 The conditions are the same as Theorem
3.5. For 0 ≤ i ≤ qk − 2, 1 ≤ j ≤ ρ, 1 ≤ r ≤ θ, set Ui, j,r =

{u + uγi j + uqt
ξir | u ∈ Fqk }. Define Ci, j,r = {λUi, j,r |λ ∈ F

∗
qn }

for each pair (i, j, r) correspondingly. Then the set

C1 = ∪
θ
r=1 ∪

ρ
j=1 ∪

qk−2
i=0 Ci, j,r ⊆ Gq(n, k)

is a cyclic subspace code of size θρ(qk−1)(qn−1)
q−1 and minimum

distance 2k − 2.
Proof Each of the Ui, j,r are Sidon spaces by

Theorem 3.5 and each Ci, j,r is a cyclic subspace code of
size qn−1

q−1 and minimum distance 2k − 2 by Proposition 2.2.
To show that C1 has minimum distance 2k − 2, it remains to
show that dim (Ui1, j1,r1 ∩ λUi2, j2,r2 ) ≤ 1, where λ ∈ F∗qn and
(i1, j1, r1) , (i2, j2, r2).

We consider two separate cases, and establish the claim
by utilizing Proposition 2.3.
Case 1: i1 , i2.

Let α = u + uγi1 j1 + uqt
ξi1r1 , α′ = u′ + u′γi1 j1 +u′q

t
ξi1r1

be nonzero elements of Ui1, j1,r1 and β = v + vγi2 j2 + v
qt
ξi2r2 ,

β′ = v′ + v′γi2 j2 + v
′qt
ξi2r2 be nonzero elements of Ui2, j2,r2

such that αβ = α′β′, where u, u′, v, v′ ∈ F∗qk .

(a) If j1 , j2, r1 , r2. Since 1 ≤ j ≤ ρ and 1 ≤ r ≤ θ,
we know that {1, γ j1 , γ j2 , γ j1+ j2 , ξr1 , ξr2 , ξr1+r2 , γ j2ξr1 , γ j1ξr2 }

is a linear independent set over Fqk . By comparing and
simplifying their coefficients in αβ = α′β′ after expansion,
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we deduce that
uv = u′v′

uvqt
= u′v′q

t

uqt
v = u′q

t
v′.

(7)

By Lemma 2.5 and the equation group (7), we have u
u′ =

v′

v
∈

F∗q. Hence α
α′
=

β′

β
∈ F∗q.

(b) If j1 = j2 = j, r1 , r2. Since 1 ≤ j ≤ ρ and 1 ≤ r ≤ θ,
we know that {1, γ j, γ2 j, ξr1 , ξr2 , ξr1+r2 , γ jξr1 , γ jξr2 } is a linear
independent set over Fqk . This case is similar to the proof of
case a and we omit it.
(c) If j1 , j2, r1 = r2 = r. Since 1 ≤ j ≤ ρ and 1 ≤ r ≤ θ,
we know that {1, γ j1 , γ j2 , γ j1+ j2 , ξr, ξ2r, γ j1ξr, γ j2ξr} is a linear
independent set over Fqk . This case is similar to the proof of
case a and we omit it.
(d) If j1 = j2 = j, r1 = r2 = r. Since 1 ≤ j ≤ ρ and
1 ≤ r ≤ θ, we know that {1, γ j, γ2 j, ξr, ξ2r, γ jξr} is a linear
independent set over Fqk . By comparing and simplifying
their coefficients in αβ = α′β′ after expansion, we deduce
that {

uv = u′v′

uvqt
+ uqt

v = u′v′q
t
+ u′q

t
v′.

(8)

By Theorem 3.1 and the equation group (8), we have u
v′
=

u′
v
∈ F∗q. Hence α

β′
= α′

β
∈ F∗q.

Case 2: i1 = i2 = i.
Let α = u + uγi j1 + uqt

ξir1 , α′ = u′ + u′γi j1 +u′q
t
ξir1

be nonzero elements of Ui, j1,r1 and β = v + vγi j2 + v
qt
ξir2 ,

β′ = v′ + v′γi j2 + v
′qt
ξir2 be nonzero elements ofUi, j2,r2 such

that αβ = α′β′, where u, u′, v, v′ ∈ F∗qk .

(e) If j1 , j2, r1 , r2, this case is similar to the proof of
case a and we omit it.
(f) If j1 = j2 = j, r1 , r2, this case is similar to the proof of
case b and we omit it.
(g) If j1 , j2, r1 = r2 = r, this case is similar to the proof of
case c and we omit it.

To summarize, we have shown that C1 has mini-
mum distance 2k − 2. In particular, we have shown that
the θρ(qk−1)(qn−1)

q−1 elements of C1 are distinct, so |C1| =

θρ(qk−1)(qn−1)
q−1 . �

Theorem 4.3 The conditions are the same as Theorem
3.6. For 1 ≤ j ≤ ρ, 1 ≤ r ≤ θ, set Uqk−1, j,r = {uqt

+ uqγ j +

uξr | u ∈ Fq}. Define Cqk−1, j,r = {λUqk−1, j,r | λ ∈ F
∗
qn } for each

pair ( j, r) correspondingly. Then the set

C2 = ∪
θ
r=1 ∪

ρ
j=1 Cqk−1, j,r ⊆ Gq(n, k)

is a cyclic subspace code of size θρ(qn−1)
q−1 and minimum dis-

tance 2k − 2.
Proof Each of the Uqk−1, j,r are Sidon spaces by

Theorem 3.6 and each Cqk−1, j,r is a cyclic subspace code of
size qn−1

q−1 and minimum distance 2k − 2 by Proposition 2.2.
To show that C2 has minimum distance 2k − 2, it remains
to show that dim (Uqk−1, j1,r1 ∩ λUqk−1, j2,r2 ) ≤ 1, where
λ ∈ F∗qn and ( j1, r1) , ( j2, r2). Let α = uqt

+ uγ j1 + uξr1 ,

α′ = u′q
t
+u′γ j1+u′ξr1 be nonzero elements ofUqk−1, j1,r1 and

β = vqt
+vγ j2+vξr2 , β′ = v′qt

+v′γ j2+v′ξr2 be nonzero elements
ofUqk−1, j2,r2 such that αβ = α′β′, where u, u′, v, v′ ∈ F∗qk .

We consider three separate cases, and establish the
claim by utilizing Proposition 2.3.
Case 1: j1 , j2, r1 , r2.

Since 1 ≤ j ≤ ρ and 1 ≤ r ≤ θ, we know that
{1, γ j1 , γ j2 , γ j1+ j2 , ξr1 , ξr2 , ξr1+r2 , γ j2ξr1 , γ j1ξr2 } is a linear in-
dependent set over Fqk . By comparing and simplifying their
coefficients in αβ = α′β′ after expansion, we deduce that

uv = u′v′

uvqt
= u′v′q

t

uqt
v = u′q

t
v′.

(9)

By Lemma 2.5 and the equation group (9), we have u
u′ =

v′

v
∈

F∗q. Hence α
α′
=

β′

β
∈ F∗q.

Case 2: j1 = j2 = j, r1 , r2. This case is similar to the proof
of case b form Theorem 4.2 and we omit it.
Case 3: j1 , j2, r1 = r2 = r. This case is similar to the proof
of case c form Theorem 4.2 and we omit it.

To summarize, we have shown that C2 has minimum
distance 2k−2. In particular, we have shown that the θρ(qn−1)

q−1

elements of C2 are distinct, so |C2| =
θρ(qn−1)

q−1 . �

Theorem 4.4 The conditions are the same as Theorem
4.2 and Theorem 4.3. Then the set

C = C1 ∪C2

is a cyclic subspace code of size θρqk(qn−1)
q−1 and minimum

distance 2k − 2.
Proof It is evident that |C| = θρqk(qn−1)

q−1 . To show that
C has minimum distance 2k − 2, it remains to show that
dim (Ui1, j1,r1 ∩ λUqk−1, j2,r2 ) ≤ 1, where λ ∈ F∗qn and 0 ≤ i1 ≤
qk − 2, 1 ≤ j1, j2 ≤ ρ, 1 ≤ r1, r2 ≤ θ. The proof is similar to
Theorem 4.3, and we omit the details. �

Example 4.5 Take q = k = 3. Let ω be a primitive
element in F33 . Let γ ∈ F∗39 be a root of an irreducible
polynomial over F33 and ξ ∈ F∗345 be a root of an irreducible
polynomial over F39 . Then ρ = d 9

2×3 e−1 = 1, θ = d 45
2×9 e−1 =

2. Theorem 4.4 thus permits us to produce a cyclic subspace
codewith size θρqk(qn−1)

q−1 = 33(345−1). The cardinality is lager
than 39−1 in Theorem 4.3 of [14] and 33(39−1)

2 in Theorem 3.1
of [10], and the minimum distance is still 2k − 2 = 4.

5. Conclusion

In this letter, we present several new Sidon spaces through
primitive elements and distinct roots of irreducible polyno-
mials over finite fields. Moreover, through the union of Sidon
spaces, cyclic subspace codes of size 3(qn−1)

q−1 and θρqk(qn−1)
q−1 are

obtained, and theminimumdistance is still 2k−2. This yields
cyclic subspace codes with new cardinalities by comparing
with the known constructions in [14] and [10].
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