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An Integrated Convolutional Neural Network with a Fusion
Attention Mechanism for Acoustic Scene Classification

Pengxu JIANG†a), Nonmember, Yue XIE†, Member, Cairong ZOU†, Li ZHAO†,
and Qingyun WANG††, Nonmembers

SUMMARY In human-computer interaction, acoustic scene classifi-
cation (ASC) is one of the relevant research domains. In real life, the
recorded audio may include a lot of noise and quiet clips, making it hard
for earlier ASC-based research to isolate the crucial scene information in
sound. Furthermore, scene information may be scattered across numerous
audio frames; hence, selecting scene-related frames is crucial for ASC. In
this context, an integrated convolutional neural network with a fusion at-
tention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented
mel-spectrograms as the input of ICNN can assist the model in learning
the short-term time-frequency correlation information. Then, the designed
ICNN model is employed to learn these segment-level features. In addi-
tion, the proposed global attention layer may gather global information by
integrating these segment features. Finally, the developed fusion attention
layer is utilized to fuse all segment-level features while the classifier clas-
sifies various situations. Experimental findings using ASC datasets from
DCASE 2018 and 2019 indicate the efficacy of the suggested method.
key words: acoustic scene classification, ICNN-FA, CNN, attention mech-
anism, Mel-spectrograms

1. Introduction

Sound offers diverse information about the surrounding en-
vironment, which can aid in machines’ comprehension and
perception of the world. Classifying a test recording into
one of the specified acoustic scene classes is the objective
of acoustic scene classification (ASC). Monitoring systems,
personal archiving, robot navigation, and hearing aids are
just a few of the numerous uses of ASC, which is a signif-
icant expanding field for identifying audio signals from an
ambient backdrop.

Recent research on deep learning has provided ASC
with deep models that outperform standard machine learn-
ing techniques. Principal deep learning models include Con-
volutional Neural Networks (CNNs) [1] and Long Short-
Term Memory (LSTM) [2]. ASC techniques often employ
CNN-based network topologies due to CNNs’ superior abil-
ity to learn the abstract feature representation from spectro-
grams.

Sound data differs from picture data in that sound is
generally sequential data of varying length, and sound often
contains many silence periods and noisy, while the scene
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information may only be associated with a few frames. In
addition, the recorded audio may comprise many segments,
including information about the target scene. Thus, it is im-
portant to select scene-relevant frames for ASC. In recent
years, several works [3], [4] have studied the effectiveness
of the attention mechanism in ASC, attention method may
score distinct frames.

In this letter, we propose an integrated convolutional
neural network with a fusion attention mechanism (ICNN-
FA) for ASC, using the network structure presented in
Fig. 1. First, mel-spectrograms are extracted from the au-
dio file. Since audio with a lengthy duration often involves
audio segments with numerous label information, we split
each Mel feature into a predetermined length as the model’s
input in order to make the constructed network more focused
on these segment-level features with entire scene informa-
tion. However, segment-level features as the network’s input
will cause the convolution network to lose global informa-
tion, since the original input features contain complete time
information, i.e. global information, whereas each segment
of features after segmentation only contains local time in-
formation. Therefore, we propose a global attention layer in
ICNN to assist the network in acquiring global auditory fea-
ture information. The fused attention layer is then utilized
to combine segment-level information based on the distribu-
tion of attention weight and send them to the softmax clas-
sifier. The global attention layer combines time-related seg-
mented data to produce the global attention parameter. The
fusion attention layer incorporates all features by comput-
ing the attention weight distribution among segment-level
features. The experiment validates the model’s viability.

2. Model Structure

The network structure designed in this study is presented in
Fig. 1. First, Mel-spectrograms are generated using sound
as input. Then, these spectra are broken down into segment-
level features of the same size as ICNN’s input. The ICNN
model captures high-level features from various segments,
and the built fusion attention layer combines all extracted
high-level features. Lastly, the SoftMax layer produces var-
ious scene probability values. Details are provided below.

2.1 Designed ICNN

CNNs are extensively used in ASC [5], [6]. In order to ac-
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Fig. 1 Illustration of the proposed ICNN-FA architecture for ASC.

Fig. 2 Illustration of ICNN.

quire information on time-frequency correlation, we use a
convolution network in our work. The CNN is shown in
Fig. 2. The planned ICNN consists of seven convolution
layers (Conv), one max pooling layer (Pooling), two global
attention layers, one Global Average Pooling (GAP) layer,
and one fully connected (FC) layer. The convolution layer is
used to gather short-term time-frequency information, while
the pooling layer is used to decrease parameter magnitude.
The global attention layer is used to acquire global informa-
tion, as detailed in the next section. 7 × 7 is the size of the
first convolution layer, and the convolution window strides
are 2. We only perform max-pooling after the first convo-
lutional layer, the pooling size of 4 × 4, and strides of 2.
In addition, the remaining convolution layers have a size of
5 × 5. Except for the convolution kernel of the first layer,
which is 128, the kernels of the other convolution layers are
256.

2.2 Global Attention Layer

Due to the input of the ICNN involves segment-level fea-
tures, the convolution layer may miss part of the crucial
time-frequency information even if it may concentrate more
on gaining short-term time-frequency information. In or-
der to collect global information between segment-level fea-
tures, we construct a global attention layer, motivated by the
Convolutional Block Attention Module (CBAM) [7]. Fig-
ure 3 depicts the structure of the global attention layer. First,
these segment-level features are joined along the frame axis
to generate a global feature. The attention calculation mod-
ule is then used to derive the parameters of attention from
the global features.

Fig. 3 Illustration of the global attention layer.

The primary components of the attention calculation
module are a channel pooling layer, a convolution layer,
and a sigmoid layer. The primary objective of the chan-
nel pooling layer is to minimize the input dimensions. The
channel pooling layer uses the maximum pooling approach
to limit the channel dimension of the input features to 1.
The function of the convolution layer is to extract long-term
time-frequency correlation information, where the move-
ment step is set to 1, and the size of the convolution layer
is 7 × 7. The sigmoid function is used to produce param-
eters for spatial attention. The global attention parameters
are used to construct global features with a long-term time-
frequency correlation. As the output of the global attention
layer, these global features are subdivided once again into
segment-level features.

2.3 Fusion Attention Layer

The ICNN model generates segment-level features that need



LETTER
1059

Fig. 4 Illustration of the fusion attention layer.

integration. Therefore, we developed a fusion attention
layer to combine these time-related segment-level features.
Figure 4 depicts the structure of the fusion attention layer.
The input of the fusion attention layer may be written as:

{segment1, segment2, · · · , segmentN} ∈ R
N×C , (1)

where N is the number of feature segments, and C is the
feature dimension of each segment. The attention layer is
then used to calculate the weight distribution an between
segment-level features:

un = vTσt(segmentnW + b), (2)
an = SoftMax(un), (3)

where σt represents the Tanh activation function, W and vT

are the weights and b denotes the bias of the attention layer.
Then, a fully connected layer is employed to match the in-
put dimensions to the number of outputs, and the SoftMax
function is applied to each segment-weighted output:

p(segmentn) = SoftMax(φ(segmentn)an), (4)

where φ represents the fully connected layer. Then, all
segment-level features are fused to obtain the classification
probability of each feature for different scenes:

v =
∑

n

p(segmentn), (5)

v is the output tensor of each audio. Finally, a softmax clas-
sifier is cascaded for ASC.

3. Experiments

3.1 Datasets and Training Setup

We utilize two datasets of DCASE 2018 Challenge Task 1a
and DCASE 2019 Challenge Task 1a [8] in the experiments
to show the performance of our proposed model. Both con-
tain 10 seconds of audio length with a sampling rate of
48 kHz from 10 classes, including airport, bus, metro, metro
station, park, public square, shopping mall, street pedes-
trian, street traffic, and tram. The DCASE 2018 has 6122
files for training and 2518 for testing, and the DCASE 2019
has 9185 files for training and 4185 for testing.

Table 1 Comparison of the recognition rate (%) of different methods.

Methods DCASE 2018 DCASE 2019
CNN(w/o sf) 74.78 75.91
CNN(w/ sf) 71.64 72.23
GA-CNN 74.78 74.95
F-CNN 76.44 76.51
ICNN-FA 77.48 77.80

Mel-spectrograms are widely used and are the most ef-
fective features for many audio deep learning tasks. There-
fore, we extracted the Mel-spectrograms of all audio sam-
ples from the above datasets. We employ 128 Mel-filter
banks for each audio file to obtain Mel-spectrum features,
using Hamming windows with a frame size of 2048 sam-
ples and 1024 hop size. The sampling frequency is set to
48 kHz.

Our experiments use a momentum optimizer and set its
initial learning rate to 0.01 and the batch size to 128. The
model’s parameters are optimized by minimizing a cross-
entropy objective function, while the maximum number of
the epochs is set to 300. Since the audio duration provided
by the DCASE dataset is 10 seconds, we divide each audio
into five segments as the input of the model, that is, two sec-
onds per segment. The proposed ICNN-FA architecture is
implemented using a Python platform with the TensorFlow
framework.

3.2 Experiment Results

The experimental strategies include CNN (w/o sf), CNN (w/

sf), GA-CNN, F-CNN, and ICNN-FA. CNN represents the
convolution network without any attention mechanism. The
input of CNN (w/ sf) is segment-level features, and the input
of CNN (w/o sf) is non-segmented Mel-spectrograms fea-
tures. GA-CNN and F-CNN are convolution networks with
only global attention or fusion attention layers, respectively.
GA-CNN and CNN (w/ sf) add all segment-level features
in the final fusion stage. ICNN-FA contains all designed
modules. The performance of each experimental strategy is
shown in Table 1.

First, the test performance of CNN (w/o sf) on two
datasets is greater than that of CNN (w/ sf): 74.78% and
75.91%, respectively. Segment-level features as input to
CNN may not increase the model’s performance. The
greater recognition rate of GA-CNN compared to CNN (w/

sf) demonstrates that the acquisition of global information
enhances the model’s performance when segment-level fea-
tures are used as input. However, the performance of GA-
CNN remains inferior than that of CNN (w/o sf). This may
be due to the fact that the global information gained in the
global attention layer is not completely exploited in the fea-
ture fusion stage. F-CNN has a more significant recogni-
tion rate than CNN and GA-CNN, indicating that the weight
computation of segment-level features in the fusion atten-
tion layer may enhance the model’s performance. Accord-
ing to the Table 1, the performance of the proposed ICNN-
FA is overwhelmingly impressive. Specifically, ICNN-FA
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Fig. 5 (a) Confusion matrices of the results on DCASE 2018. (b) Confusion matrices of the results
on DCASE 2019.

Table 2 Comparison of classification accuracy (%) of DCASE2018 and
DCASE2019 with other work.

Methods DCASE 2018 DCASE 2019
Atrous CNN [9] 72.70 /

MCTA-CNN [10] 72.40 75.71
HRAN-ASM [11] 70.50 /

scalogram-LMS [12] / 76.70
SubSpectralNet [13] 74.08 73.44
wavelet [14] 66.20 /

ICNN-FA 77.48 77.80

outperformed CNN(w/o sf) and CNN(w sf) on both datasets
by at least 2.7% and 5.84%, respectively. The approach of
merging and segmenting various segment-level features in
the model is viable, suggesting that the global attention and
fusion attention layer plays a crucial role in information in-
tegration and fusion.

We present here the experimental comparison between
the proposed model and existing approaches. Table 2
shows the performance of our proposed model and other
state-of-the-art methods, including some recent models on
the DCASE2018 and DCASE2019 datasets. Atrous Con-
volutional Neural Networks with global attention pooling
(Atrous CNN) [9], an effective convolutional neural network
structure with a multi-channel temporal attention block
(MCTA-CNN) [10], high-resolution attention network with
an acoustic segment model (HRAN-ASM) [11], a feature
decomposition method based on temporal median filtering
(scalogram-LMS) [12], an approach of using spectrograms
in Convolutional Neural Networks (SubSpectralNet) [13],
and wavelet-based audio features for acoustic scene classifi-
cation (wavelet) [14]. [14] employing the machine learning
approach, the performance of the deep learning model we
developed outperforms the machine learning method by a
wide margin. In addition, our ICNN-FA model outperforms
other CNN-based models, which implies that our model
structure based on attention mechanisms can significantly
improve the performance of the ASC system.

Figure 5 represents the confusion matrices used to eval-
uate the performance of our suggested model. According to
the data, for the proposed ICNN-FA, park and street traffic

often correlate to high levels of accuracy, but public square,
street pedestrian, and airport do not. One possible explana-
tion is that these surroundings are noisy.

4. Conclusion

This paper described an integrated convolutional neural net-
work with a fusion attention mechanism (ICNN-FA) for
ASC. This model included a convolution network capable
of splitting and combining tensors. Multiple attention meth-
ods utilizing global and fusion attention layers were pre-
sented for the ICNN-FA model. Compared to other state-
of-the-art methodologies, the experimental findings on the
two databases show that our model may effectively enhance
the performance of an ASC system.
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