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PAPER
Lookahead Search-Based Low-Complexity Multi-Type Tree
Pruning Method for Versatile Video Coding (VVC) Intra Coding

Qi TENG† ,††, Guowei TENG† ,††a), Xiang LI† ,††, Ran MA† ,††, Ping AN† ,††, Nonmembers,
and Zhenglong YANG†††, Member

SUMMARY The latest versatile video coding (VVC) introduces some
novel techniques such as quadtree with nested multi-type tree (QTMT),
multiple transform selection (MTS) and multiple reference line (MRL).
These tools improve compression efficiency compared with the previous
standard H.265/HEVC, but they suffer from very high computational com-
plexity. One of the most time-consuming parts of VVC intra coding is
the coding tree unit (CTU) structure decision. In this paper, we propose a
low-complexity multi-type tree (MT) pruningmethod for VVC intra coding.
This method consists of lookahead search and MT pruning. The lookahead
search process is performed to derive the approximate rate-distortion (RD)
cost of each MT node at depth 2 or 3. Subsequently, the improbable MT
nodes are pruned by different strategies under different cost errors. These
strategies are designed according to the priority of the node. Experimental
results show that the overall proposed algorithm can achieve 47.15% time
saving with only 0.93% Bjøntegaard delta bit rate (BDBR) increase over
natural scene sequences, and 45.39% time saving with 1.55% BDBR in-
crease over screen content sequences, compared with the VVC reference
software VTM 10.0. Such results demonstrate that our method achieves a
good trade-off between computational complexity and compression quality
compared to recent methods.
key words: versatile video coding, multi-type tree, intra coding, fast prun-
ing method, lookahead search

1. Introduction

Versatile video coding (VVC) version 1 [1], [2] has been
formally finalized at the 19th Joint Video Exploration Team
(JVET) meeting on July 1, 2020. As the latest video coding
standard, VVC achieves more than 40% bitrate savings while
maintaining the same objective quality as compared with its
predecessor, High Efficiency Video Coding (HEVC) [3], [4].
The bitrate saving can bemore than 50% if subjective quality
is used as the metric instead of peak signal-to-noise ratio
(PSNR). That means the VVC standard can provide great
user experience at half the cost of bandwidth.

The excellent coding performance of VVC is due to
its many novel techniques and tools. The maximum coding
tree unit (CTU) size of VVC is increased from 64 × 64,
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Fig. 1 Multi-type tree partition modes: (a) BV, (b) BH, (c) TV and (d)
TH.

as used in HEVC, to 128 × 128, and the partition structure
of CTU is also developed from quadtree (QT) to quadtree
with nested multi-type tree (QTMT). The multi-type tree
(MT) consists of binary trees (BT) and ternary trees (TT).
BT/TT has two partition types called horizontal splitting
(BH/TH) and vertical splitting (BV/TV), as shown in Fig. 1.
Moreover, a coding unit (CU) can be further divided into
2 or 4 partitions owing to the newly introduced intra sub-
partition (ISP). These more flexible partition structures and
novel tools make it possible to model video content more
precisely.

The intra prediction modes of VVC are extended from
35 to 67, including Planar mode, DC mode and 65 direc-
tional modes. For better precision of intra prediction, VVC
deploys multiple reference line (MRL) which uses more ref-
erence lines rather than the nearest reference line. The newly
introduced matrix weighted intra prediction (MIP), which
utilizes a trained matrix to perform matrix-vector multipli-
cation and interpolation, can also reduce the intra prediction
errors. In addition to square intra prediction (45° to −135°),
wide-angle intra prediction (WAIP) is used to re-map the
square directional modes for the directional prediction of
non-square blocks. In order to improve the residual coding
efficiency, two-pass multiple transform selection (MTS) and
low-frequency non-separable transform (LFNST) are also
adopted. These techniques and tools improve the perfor-
mance of intra prediction.

Benefiting from these new techniques, the coding per-
formance of VVC is greatly improved. However, the cod-
ing complexity has increased dramatically as well. Under
all-intra, low-delay and random-access configurations, the
average coding complexity of VVC is 31 times, 5 times and
7 times that of HEVC, respectively [5]. The very high cod-
ing complexity becomes a bottleneck in the development of
VVC encoder, and makes it a tough task to realize real-time
video coding. Several schemes, such as [6], [7], attempt to
tackle the problem by specialized hardware and they achieve
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good results. However, using a specialized hardware-based
encoder is both costly and inconvenient for individual users.
Therefore, software optimizations are a highly cost-effective
choice.

After the release of the first version of the VVC test
model (VTM 1.0), many researchers have been devoting
their efforts to reducing the complexity of VVC intra coding.
Yang et al. [8] presented a novel QTMT decision framework
based on texture features (such as gradient and local differ-
ence) and context features, but the features of classifiers are
very effective for QT and BT but less so for TT. Dong et al.
[9] analyzed the characteristics of RMD candidates, and then
utilized four maximum likelihood estimation-based estima-
tors to prune improbable candidates. These estimators can
dynamically estimate the probability that the candidate is the
best one. Tang et al. [10] utilized a block-based Canny edge
detector to extract edge features for skipping the vertical par-
tition or horizontal partition. Saldanha et al. [11] proposed
two fast decision-making strategies to determine whether to
skip the partition of BT or TT. One strategy uses the vari-
ance of CU and the optimal intra prediction mode, while
the other strategy uses the intra sub-partition mode (ISP).
Cui et al. [12] proposed an early termination strategy for CU
partition based on four directional gradients. In [13], Fu et
al. proposed a Bayesian rule-based early skip scheme that
fully explores the information contained in horizontal binary
splitting. Amestoy et al. [14] utilized random forest to deter-
mine the most probable structure of CTU. Chen et al. [15]
proposed a fast intra partition algorithm based on variance
and gradient. Wieckowski et al. [16] described 13 fast block
partitioning selection approaches for VVC. Lei et al. [17]
exploited the rate-distortion cost information of sub-CUs for
pruning redundant MT partitions. LY et al. [18] exploited
the prediction error to establish a tunable decision model for
the early skipping of BT and TT partition. Zhang et al. [19]
proposed a prediction tool based on DenseNet. This tool can
predict the partition boundaries of various blocks. Tissier
et al. [20] utilized the convolutional neural network (CNN)
and decision tree (DT) to predict the most likely split in each
block. Li et al. [21] proposed a deep learning approach to
predict the QTMT-based CU partition. The aforementioned
methods significantly reduce the complexity of VVC intra
coding. However, most of them consider that QT, BT, and
TT have the same priority (or equal weight), which leads to a
worse trade-off between encoding efficiency and complexity.
Additionally, BT and TT are actually hard to classify accu-
rately by existing texture features. One reason for this is that
the number of TT samples is insignificant in comparison to
the QT and BT samples.

In this paper, we propose a fast MT pruning method
using a lookahead search for VVC intra coding. To reduce
unnecessary CTU partition structure search processes, this
method employs low-complexity lookahead search, which
is a breath-first search (BFS) method [22]. The lookahead
search is performed before the current CU partition, because
the original search in VTM is a depth-first search (DFS)
method [23]. The improbable BT and TT nodes are pruned

according to the result of the lookahead search. Different
pruning strategies are used when the cost error is differ-
ent. Experimental results show that the proposed algorithm
significantly reduces complexity for VVC intra coding with
negligible coding performance loss and achieves a high ob-
jective quality for a variety of video sequences. The main
contributions of this paper are summarized as follows:

1) A lookahead search-based fast MT pruning method is
proposed. The lookahead search is a BFS method and
obtains the approximate rate-distortion (RD) cost ofMT
nodes. According to the result of the lookahead search,
the unpromising MT partition modes are removed by
different strategies under different cost errors. It’sworth
noting that the lookahead search does not interfere with
the original search process in VTM, which means the
lookahead search does not cause the encoder to produce
unknowable coding results.

2) We qualitatively analyze the priorities of QT, BT, and
TT by comparing their coding efficiency. In order
to achieve less coding performance loss, the partition
modes with high priority are more likely to be selected,
while the partition modes with low priority are more
likely to be removed. In view of this idea, two strate-
gies are proposed and utilized in MT pruning.

The reminder of this paper is organized as follows.
VTM intra coding is introduced in Sect. 2. Analyses of
the Partition Structures are provided in Sect. 3. Section 4
presents the proposed algorithm. The experimental results
and conclusions are given in Sect. 5 and Sect. 6, respectively.

2. VTM Intra Coding

Figure 2 illustrates the VTM intra prediction process. The
rough mode decision (RMD) process, which consists of
two steps: RMD-1 and RMD-2, uses the sum of absolute
transformed difference (SATD) costs to select N candidates
from 67 intra modes. These N modes form the RMD-list
and are sorted in ascending order according to their SATD
costs. And then, the multiple reference line (MRL), matrix
weighted intra prediction (MIP), the most probable mode
(MPM) and ISP are initialized and merged with the RMD-

Fig. 2 VTM intra prediction.
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Fig. 3 Two traversal algorithms for a tree: (a) DFS and (b) BFS.

list to form a RD-list. The final step of intra prediction is
the time-consuming rate-distortion optimization (RDO) pro-
cess, which uses RD cost to select the optimal mode from
the RD-list.

As shown in Fig. 3, two traversal algorithms can be em-
ployed for a tree. The DFS explores as far as possible along
each branch before backtracking, while the BFS explores
all nodes at the current depth level before moving on to the
nodes at the next depth level. In VTM, the DFS algorithm
is employed, and the tree consists of QT, BT, and TT. Each
tree node can be regarded as a CU, a prediction unit (PU),
and a transform unit (TU). The intra prediction processes are
performed to derive the RD cost at each leaf node. When the
leaf node splits, the RD cost of this node is the sum of the
RD costs of its child nodes. This node can be regarded as a
set of nodes, and the RD cost of this set is the RD cost of it.
Finally, the non-conflicting node set with the minimum RD
cost is the partition structure of CTU.

Theoretically, there are five partition modes for each
depth, with a total of 14 possible sub-CUs (4 sub-CUs forQT,
2 sub-CUs for each BT, and 3 sub-CUs for each TT). Thus,∑7

Depth=0 14Depth = 113,522,235 intra predictions should
be performed in a CTU. However, not all partition modes are
permitted at all depth levels in VVC. To keep things simple,
ni is defined as the number of nodes at a depth of i, and the n0
is always 1. According to the VVC specification, the nodes
at depths of 0 and 1 can only be split by QT. Considering
that MT nodes cannot be split by QT, the n1 = n0 × 4,
n2 = n1×4, while n3 = n2×14, n4 = n2×(4×14+10×10),
n5 = n2 × (4× (4× 14+ 10× 10)+ 10× 10× 10), and so on.
Therefore, VTM only performs intra prediction

∑7
i=0 ni =

2,948,405 times in a CTU. In fact, this number is lower. One
reason for this is that duplicate sub-CUs are restricted due
to the syntax elements in VTM. However, many redundant
intra predictions are still being checked. Effective algorithms
with reduced complexity and low RD performance loss are
highly desired.

Table 1 Performance of different partition structures.
Partition Structure BDBR(%) TS(%) TS/BDBR

QT 20.13 70.55 3.50
BTTT 1.51 22.06 14.61
QTBT 0.25 16.59 66.36
QTTT 0.88 25.16 28.59

3. Analyses of the Partition Structures

In order to evaluate the performance of five partition modes
(QT, BH, BV, TH, and TV) of VVC, we perform the ex-
periment at CU depth 2. Th experiment is conducted on
VTM 10.0 [2] under common test conditions (CTC) [24].
Six video sequences with different contents and resolutions
are used for statistical analyses. Campfire contains a dark
background,Cactus contains rotational motions, Basketball-
Pass has a simple background, BQMall contains global and
local motion, CatRobot1 has various motion and complex
texture, and FourPeople contains local motion. Each se-
quence is coded with all-intra (AI) configuration and four
Quantization Parameter (QP), 22, 27, 32, 37.

As shown in Table 1, the Bjøntegaard Delta Bit Rate
(BDBR) and Bjøntegaard Delta PSNR (BDPSNR) are used
to quantify the difference in RD performance between the
partition structure in question and the QTMT structure in
VTM. Higher BDBR means worse rate-distortion perfor-
mance. The time saving (TS) reflects the change in coding
complexity. To have an intuitive evaluation of the perfor-
mances of different partition structures, the TS/BDBR [25]
is introduced. Higher TS/BDBRvaluemeans better trade-off
between time reduction and encoding efficiency.

The QT structure gets an average complexity reduction
of 70.55%, while BDBR increases by 20.13%, with only 3.50
in TS/BDBR. It demonstrates that MT plays an important
role in improving the RD performance, but also introduces
complexity overhead as a result of numerous unnecessary
and redundant partition mode decisions.

With this in mind, we can further discuss the perfor-
mance of the MT structure. BTTT gets an average com-
plexity reduction of 22.06%, while BDBR increases by
1.51%, with 14.61 in TS/BDBR. The QTBT gets an average
complexity reduction of 16.59%, while BDBR increases by
0.25%, with 66.36 in TS/BDBR. The QTTT achieves an av-
erage complexity reduction of 25.16% with 0.88% BDBR
increases and 28.59 in TS/BDBR. By comparing the results
of QTBT, QTTT, and BTTT, we find that BTTT’s trade-off
is about 2 times less than that of QTTT, 5 times less than
that of QTBT. Thus, QTBT has a higher priority than QTTT,
while QTTT has a higher priority than BTTT. That is, the
fast intra algorithm can ignore the checking processes of TT
partition mode under certain conditions.

4. The Proposed Algorithm

In this section, the proposed method is introduced in detail.
To determine which MT partition modes should be adopted,
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Fig. 4 Examples leading to errors between lookahead search and original
search: green parts and red parts represent the error-free zone and the error
zone, respectively.

a lookahead search is performed to obtain the approximate
RD cost of each MT node. And then, these nodes are sorted
by the RD cost, and the fast MT pruning process utilizes the
sorted results to remove unpromising MT partition modes
at the current CU. Considering the complexity of the looka-
head search and the performance of the overall method, the
proposed method only performs at CU depths 2 and 3.

4.1 Lookahead Search

The VTM obtains the RD cost of each node by the DFS
method, which means the original search in the VTM cannot
simultaneously obtain the RD cost of nodes at the same
depth. Such a situation is harmful since pruning is difficult.
Thus, we design a BFS-based lookahead search method and
analyze its performance in this subsection. The “cost error”
is defined as the absolute difference between the RD cost of
the lookahead search and the original search.

The results of the lookahead search are the approxima-
tion results of original search due to the dependence between
intra prediction processes. As shown in Fig. 4, the buffer data
of part 2/3 need to be updated by the buffer data of part 1/2.
In view of the different partition structure of part 1/2 in the
original search and the lookahead search, the buffer data in
part 2/3 is different, which makes the results obtained by the
two search methods have cost errors.

We analyse the cost error magnitude through an exper-
iment. First, high depth values are probably chosen for CUs
whose neighboring CUs are at high CU depths [26]. This
means that the error is greater for CUs whose neighboring
CUs have high CU depths, that is, the error magnitude can
be represented by the depths of neighboring CUs. Therefore,
we introduce a depth distance d as the distance between the
depths of the current CU and the neighboring CUs, and d
can be denoted by

d = (Dle f t + Dup)/2 − Dcur (1)

where Dle f t , Dup and Dcur are the depths of the left CU,
above CU, and current CU, respectively. As shown in Fig. 5,
the normalized mean error is the normalized average of the
absolute difference between the RD costs of the lookahead
search and the original search. It dramatically increases with
the d when the d is greater than 0.0.

The lookahead search’s complexity overhead is also

Fig. 5 An illustration of the relationship between d and the lookahead
search cost errors.

Table 2 The probability distribution of the best partitionmode in different
lookahead search schemes (%).

Scheme p1 p2 p3 p4 TS(%)
LS1 59.45 22.99 11.16 6.39 baseline
LS21 52.22 27.86 13.04 6.88 60.23

1 turns off the MTS, ISP, MIP and MRL

taken into account. Two options, baseline lookahead search
(LS1) and simplified lookahead search (LS2), are evaluated
to find a lookahead search method that could achieve a better
balance between complexity and accuracy. The intra predic-
tion process in LS1 is complete, while the intra prediction
process in LS2 turns off the MTS, ISP, MIP, and MRL. As
shown in Table 2, pi is the probability that the ith candi-
date selected as the best partition mode. LS2 can achieve
60.23% time savings compared with LS1, while maintaining
a similar probability distribution.

4.2 Fast MT Pruning

In the fast MT pruning method, two strategies are utilized.
These strategies give preference to BT due to the higher pri-
ority of it compared with TT. In order to reduce the influence
of the lookahead search cost error on the overall method, the
strategy to be adopted depends on the value of d: if d < T h,
Strategy A is adopted; otherwise, Strategy B is adopted.

Strategy A: This strategy only retains the QT candidate
and two MT candidates for partition, so it is suitable for the
case of a minor error. If at least one TT candidate is in
front of all BT candidates in the sorted list derived from the
lookahead search, the first TT is selected. And then, the first
BT is selected. Otherwise, the first BT and the first candidate
behind it are selected. Unselected candidates are removed,
as shown in Fig. 6.

Strategy B: This strategy retains the QT candidate and
two or three MT candidates for partition, so it is suitable for
the case of a major error. If at least one TT candidate is in
front of all BT candidates in the sorted list derived from the
lookahead search, the first TT is selected. And then, the first
BT and the first candidate behind it are selected. Otherwise,
the first BT and the first candidate behind it are selected.
Unselected candidates are removed, as shown in Fig. 6.



610
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Fig. 6 Examples of two strategies in fast MT pruning: the numeric label
indicates the position of the candidate in the sorted list.

4.3 Trigger Condition Selection

Although the elapsed time of the LS2 is much less than that
of the LS1, the LS2 still suffers from a runtime overhead.
Therefore, the overall method cannot be employed at each
CUdepth level. Moreover, it is not necessary to be performed
at depths of 0 and 1, because VVC only allows QT partition
at these depths.

From the structure of the tree, we can see that the lower
the depth of pruning the tree, the fewer nodes may be tra-
versed, which means that fewer intra predictions are per-
formed. We can list the examples at depths of 2 and 3 to
intuitively analyze this idea. In these examples, the compu-
tational burden of the lookahead search is not considered.

Example 1: At depths of 2 and 3, only a QT and the
other two candidates are retained. When only QT and BT
are retained, n1 = n0 × 4, n2 = n1 × 4, while n3 = n2 × 8,
n4 = n2×(4×8+4×4), n5 = n2×(4×(4×14+4×10)+4×4×10),
and so on. Therefore, the minimum number of execution
times of intra prediction is

∑7
i=0 ni = 1,028,501. When

only QT and TT are retained, n1 = n0 × 4, n2 = n1 × 4,
while n3 = n2 × 10, n4 = n2 × (4 × 10 + 6 × 6), n5 =
n2×(4×(4×14+6×10)+6×6×10), and so on. Therefore,
the maximum number of execution times of intra prediction
is
∑7

i=0 ni = 1,526,261. In this example, the complexity of
intra prediction can be reduced by 48.23% to 65.12%.

Example 2: At depths of 2 and 3, only a QT and the
other three candidates are retained. The minimum number
of execution times is 1,828,469, while the maximum number
of execution times is 2,308,309. Therefore, the complexity
of intra prediction can be reduced by 21.71% to 37.98% in
this example. The calculation process is similar to that of
Example 1.

In view of this, the overall method can be executed at
depths of 2 and 3.

4.4 Framework of the Proposed Algorithm

As described before, the proposed method focuses on the

Fig. 7 The flowchart of the overall method: blue parts, red parts, and
green parts represent the proposed algorithm, and the other parts are the
original modules of VTM intra coding.

reduction of MT complexity, as shown in Fig. 7. It consists
of two stages, the lookahead search and fast MT pruning.
The proposed algorithm is only employed at depths of 2 and
3 due to the complexity of the lookahead search. This trigger
condition is determined by calculation.

In the lookahead search, the approximate RD costs of
BH, BV, TH, and TV are obtained by intra predictions. The
error between the results of the lookahead search and the
original search in VTM is inevitable, because the former is
carried out in a BFS way and the latter adopts the DFS. To
reduce the complexity, some intra tools are turned off in the
lookahead search. Finally, four MT candidates are sorted by
their costs.

In the fast MT pruning, a depth distance d is derived
from the Eq. (1). Higher d values usually mean higher cost
errors in the lookahead search. In order to avoid the influence
of error on the performance of the fastMTpruning asmuch as
possible, we use different pruning strategies when the value
of d is different. Strategy A only retains the QT candidate
and two MT candidates, while Strategy B retains the QT
candidate and two or three MT candidates. If the d is less
than or equal to the T h, Strategy A is adopted; otherwise,
Strategy B is adopted.

5. Experimental Results

In this section, the experiments are conducted to evaluate
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Table 3 The results of the proposed algorithm over Class A1, Class A2, and Class B–E.

Class Sequence LS2(Th = 0.0)* LS2(Th = 2.0) LS1(Th = 0.0) LS1(First Two)

BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%)

A1
Tango2 0.92 44.69 1.44 48.91 0.59 26.00 0.91 32.48

FoodMarket4 0.95 44.01 1.47 49.47 0.68 27.29 0.97 35.54
Campfire 0.87 46.07 1.38 51.98 0.68 34.65 1.19 45.40

A2
CatRobot1 1.13 47.85 1.72 53.62 0.81 35.12 1.34 44.28

DaylightRoad2 1.07 51.42 1.51 58.32 0.88 36.84 1.30 49.04
ParkRunning3 0.47 45.28 0.64 48.66 0.32 35.43 0.45 40.84

B

BasketballDrive 0.85 48.43 1.55 55.80 0.60 33.90 1.33 46.10
BQTerrace 0.84 48.69 1.22 53.04 0.67 36.62 1.12 48.00
Cactus 0.98 50.23 1.53 56.81 0.70 39.02 1.35 49.89

MarketPlace 0.95 50.91 1.49 57.58 0.61 36.96 1.03 47.67
RitualDance 1.51 40.90 2.32 47.75 1.08 26.75 1.96 37.74

C

BasketballDrill 1.71 47.83 2.64 51.92 1.46 36.94 2.26 48.22
BQMall 0.87 45.98 1.35 51.77 0.63 35.37 1.46 49.05

PartyScene 0.54 47.46 0.76 50.03 0.49 37.28 0.93 49.96
RaceHorsesC 0.78 48.09 1.08 53.33 0.57 37.47 1.10 49.11

D

BasketballPass 0.64 45.59 1.24 51.07 0.66 36.42 1.67 49.10
BlowingBubbles 0.53 46.18 0.82 49.53 0.59 36.45 1.13 48.95

BQSquare 0.66 46.41 0.88 48.69 0.55 34.50 1.05 47.78
RaceHorses 0.47 46.06 0.82 49.35 0.50 36.24 0.80 46.58

E
FourPeople 1.31 48.34 2.12 55.32 1.18 37.19 1.99 50.21
Johnny 1.43 49.93 2.32 55.53 1.15 37.35 1.81 48.34

KristenAndSara 1.06 46.99 1.73 53.48 0.83 34.26 1.55 46.48
Average 0.93 47.15 1.45 52.36 0.74 34.91 1.30 45.94

TS/BDBR 50.51 35.99 47.34 35.24
* indicates the main proposal in this paper

the performance of the proposed algorithm. To validate its
effectiveness and robustness, we implement the proposed
algorithm in VVC reference software VTM 10.0 [2] and
compare it to several related works. Section 5.1 presents
the setup of the experiments. Then, the performance of
the overall framework achieved on VTM 10.0 is revealed in
Sect. 5.2. Finally, the performance comparison with other
recent works is shown in Sect. 5.3.

5.1 Experimental Setup

The sequences of Class A1, Class A2 and Class B-F in
CTC [24] are utilized. Class A1 and A2 are the ultra high-
definition (UHD) sequence sets with 10-bit depth. Class B
and C-F are the high-definition (HD) and low-definition se-
quence sets with 8-bit depth, respectively. All the sequences
have different and various contents and scenes. Class A1-E
includes material mostly captured with video cameras, and
Class F contains some computer-generated material as well
as typical screen content. AI configuration is adopted. Four
QPs, 22, 27, 32 and 37, are used in our experiments.

The BDBR and BDPSNR [27] are used to evaluate
the RD performance of the algorithm. Higher BDBR or
lower BDPSNRmeans worse RD performance. Time saving
(TS) is employed to represent the coding time change in
percentage as shown in

TS =
TVTM10.0 − TProposed

TVTM10.0
× 100% (2)

where TVTM10.0 and TProposed represent the encoding time
of the proposed algorithm and original VTM 10.0 algorithm,

respectively. The experimental results are averaged over four
QPs.

To have an intuitive evaluation of the performances of
different methods, the TS/BDBR [25] is introduced. Higher
TS/BDBR value means better trade-off between time reduc-
tion and encoding efficiency.

5.2 Performance Evaluation of Overall

Table 3 provides the proposed algorithm results for Classes
A1, A2 and B-E. “LS2 (T h = 0.0)” and “LS2 (T h = 2.0)”
denote the LS2 optionwithT h = 0.0 and the LS2 optionwith
T h = 2.0, respectively. “LS1 (T h = 0.0)” represents the LS1
option with T h = 0.0, while “LS1 (First Two)” indicates
that the LS1 option retains the QT candidate and directly
selects the first two candidates in the sorted list without any
strategy. It can be observed that LS2 (T h = 0.0), LS2
(T h = 2.0), LS1 (T h = 0.0) and LS1(First Two) can greatly
reduce coding time for all natural scene sequences, and get an
average complexity reduction of 47.15%, 52.36%, 34.91%
and 45.94%, with 0.93%, 1.45%, 0.74% and 1.30% BDBR
increase, respectively. It shows that LS1 (T h = 0.0) has
the better TS/BDBR compared with LS1 (First Two), which
means that our strategies are effective. Additionally, the
TS/BDBR of LS2 (T h = 0.0) is similar to that of LS1 (T h =
0.0), while the time reduction of the former is greater than
that of the latter and the RD performance loss of the latter
is less than that of the former. Therefore, LS2 (T h = 0.0)
can be applied in scenes requiring low complexity, while
LS1 (T h = 0.0) can be applied in scenes requiring high
visual quality. It also shows LS2 (T h = 2.0) has the lower
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Table 4 The results of the proposed algorithm over Class F.

Sequence LS2 (Th = 0.0)* LS2 (Th = 2.0) LS1 (Th = 0.0) LS1 (First Two)

BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%)
BasketballDrillText 1.79 44.58 2.62 49.62 1.34 33.77 2.51 45.05

SlideEditing 1.31 45.36 2.05 52.64 1.09 36.76 1.70 47.46
SlideShow 1.54 46.23 2.01 52.18 1.11 32.80 1.84 43.70
Average 1.55 45.39 2.23 51.48 1.18 34.44 2.01 45.40

TS/BDBR 29.28 23.09 29.19 22.59
* indicates the main proposal in this paper

Table 5 Summary results of LS2 (Th = 0.0) over different classes.
Bitdepth Class BDBR(%) BDPSNR(dB) TS(%)

10 A1 0.91 -0.03 44.93
10 A2 0.89 -0.03 48.18
8 B 1.03 -0.04 47.83
8 C 0.98 -0.05 47.34
8 D 0.57 -0.04 46.06
8 E 1.27 -0.05 48.42
8 F 1.55 -0.11 45.39

TS/BDBR compared with LS2 (T h = 0.0). The reason for
this is that Strategy A is used more often in LS2 (T h = 2.0).

Table 4 provides the proposed algorithm results over
Class F. Simulation results show that the complexity of
the proposed algorithm is reduced by 45.39%, 51.48%,
34.44% and 45.40% on average when the methods are LS2
(T h = 0.0), LS2 (T h = 2.0), LS1 (T h = 0.0) and LS1
(First Two), respectively. Meanwhile, there are only 1.55%,
2.23%, 1.18% and 2.01% BDBR increases, accordingly.
This demonstrates that the proposed algorithm performs
similar complexity reduction over screen content sequences,
but performs better RD performance over natural scene se-
quences.

Specifically, in LS2 (T h = 0.0), the highest time sav-
ing is 51.42% for DaylightRoad2, and the lowest time sav-
ing is 44.01% for FoodMarket4. FoodMarket4 contains a
large number of complex textures, while the texture of Day-
lightRoad2 is relatively regular and simple. It shows that the
performance of our algorithm is related to the texture com-
plexity. Additionally, a consistent gain is achieved with a
minimum of 44.93% in Class A1 and a maximum of 48.42%
in Class E, and this method provides a 48.46% time reduc-
tion with a very low BDBR increase of 0.57% in Class D, as
shown inTable 5. The results also show that 10-bit sequences
achieve 46.56% complexity reduction with 0.90%BDBR in-
crease or 0.03 dB BDPNSR decrease on average, and 8-bit
sequences obtain 47.01% complexity reduction with 1.08%
BDBR increase or 0.06 dB BDPSNR decrease on average.
The speed gain of 8-bit sequences is similar to that of 10-bit
sequences, while the RD performance of the latter is better.

Furthermore, RD curves of our approach and the VTM
10.0 are provided to verify our algorithm’s performance un-
der different bit rates, including the low-definition sequence,
BasketballPass in Class D, and the high-definition sequence,
Tango2 in Class A1. As shown in Fig. 8, our approach ex-
hibits similar RD performance compared with VTM 10.0 for
all bit rate points. This demonstrates that the RD loss of our

Fig. 8 Performances of the overall algorithms: (a) RD curves of Basket-
ballPass(Class D) and (b) RD curves of Tango2(Class A1).

Fig. 9 Mean TS curve under different QPs.

method is negligible over different bandwidth.
Figure 9 shows the mean TS curve of our method under

different QPs. The results are averaged over all sequences.
It can be observed that our approach achieves a consistent
time saving over different QPs.

5.3 Performance Comparison with Other Works

The results of four recent works are presented in Table 6 for
objective comparisons, including Li [21], LY [18], ZQ [19],
and Tissier [20]. Li, ZQ, and Tissier are CNN-based meth-
ods, while LY uses handcrafted features. They all focus on
low-complexity QTMT structure decisions. Among them,
Li and LY are implemented on the VTM 7, while ZQ and
Tissier are implemented on the VTM 10. Because VTM 7
and VTM 10 use the same CU splitting scheme, our com-
parison with Li and LY is reasonable. Since the test results
given by Li are not complete according to CTC, we only
compare the existing data in it with ours. The data of other
algorithms is calculated from the data given in their papers.

As shown in Table 6, ZQ reduces the complexity from
20.31% in Class D to 74.97% in Class A1, 51.19% on av-
erage, and the BDBR increment is from 0.62 in Class D to
2.81 in Class E, 1.84% on average. The results also show
that the complexity reduction of ZQ in the Class F is low.
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Table 6 Performance of other works and the proposed algorithm.

Class Li [21], VTM 7.0 LY [18], VTM 7.1 ZQ [19], VTM 10.0 Tissier [20], VTM 10.2 Proposed, VTM10.0

BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%) BDBR(%) TS(%)
A1 1.60 43.9 1.90 46.6 2.24 74.97 0.60 47.5 0.91 44.93
A2 1.49 45.5 1.02 42.9 1.88 74.25 0.80 46.4 0.89 48.18
B 1.15 47.7 1.11 42.1 1.86 66.10 0.85 51.0 1.03 47.83
C 1.09 45.2 1.57 44.4 1.41 34.49 0.96 45.7 0.98 47.34
D 1.07 43.5 1.22 43.4 0.62 20.31 0.71 43.3 0.57 46.06
E 1.81 49.5 1.57 40.4 2.81 53.77 1.23 43.9 1.27 48.42

Average1 1.37 45.9 1.40 43.3 1.80 53.98 0.86 46.3 0.94 47.13
F - - 2.20 48.1 2.03 34.42 1.43 25.3 1.55 45.39

Average2 1.37 45.9 1.51 44.0 1.84 51.19 0.94 43.3 1.03 46.88
TS/BDBR 33.5 29.1 27.88 46.1 45.58
1 indicates the average over Class A1, Class A2 and Class B-E
2 indicates the average over all classes

This demonstrates that ZQ can not achieve consistent perfor-
mance over different classes, and ZQ only performs better
on high-resolution natural scene sequences. One of the rea-
sons is that the training database of ZQ only consists of 2K
sequences and does not contain screen content sequences. If
the training database contains more different sequences, the
performance can be improved.

The Tissier gets an average complexity reduction of
43.3% with 0.94% BDBR increases. Similar to ZQ, the
screen content sequences are not considered in the learning
process of Tissier. As a result, the performance of Tissier in
the Class F is not good.

In addition to ZQ and Tissier, Li also uses a CNN-
based method. Li gets an average complexity reduction of
45.9%with 1.37%BDBR increases. The average complexity
reduction of Li is similar to that of our method, while the
RD performance of Li is lower.

As discussed above, we can see that the time saving of
CNN-basedmethods is lower than that of our method inmost
instances. It demonstrates that the computational burden of
CNN affects the performance to a certain extent. There-
fore, it is necessary to optimize the structure and algorithm
of CNN. Moreover, once the video signal is disturbed, the
performance of them will decline because CNNs are gener-
ally prone to noise interruptions, i.e., small image noise can
cause drastic changes in the output [28].

LY obtains 44.0% complexity reduction with 1.51%
BDBR increases. The BDBR increment of each class is
greater than 1.00%, especially in Class F. Our algorithm
can achieve better speed gain with a better BDBR increment
compared with LY.

By using the TS/BDBR metric, the value 45.58 in our
method is higher than 33.5 in Li, 29.1 in LY and 27.88
in ZQ, showing that our method is competitive with these
algorithms. Although the TS/BDBR value 46.1 in Tissier is
similar to that of our method, our method achieves a better
performance in Class F.

In view of the above experiments and analysis, our
method achieves a good trade-off between coding efficiency
and encoding time saving compared with other recent ap-
proaches. Furthermore, our scheme achieves a consistent
time saving over different classes. This promising result is

due to our stable lookahead search processes and effective
pruning strategies.

6. Conclusion

In this paper, we propose a fast MT pruning algorithm for
VVC intra coding. This method utilizes lookahead search
and MT pruning strategies to determine the proper parti-
tion modes. Additionally, the intra prediction in lookahead
search can turn off some intra tools according to the applica-
tion scenarios. Experimental results show that the proposed
algorithm can averagely reduce the encoding time by 47.15%
on the natural scene sequences compared with the original
test model, VTM10.0, while maintaining similar coding ef-
ficiency. Furthermore, the proposed algorithm verifies the
performance of the screen content sequences and obtains
45.39% complexity reduction with 1.55% BDBR increase.
Therefore, our scheme achieves a good trade-off between
coding efficiency and coding speed with strong robustness
and stability.
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