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PAPER
Faster Key Generation of Supersingular Isogeny Diffie-Hellman

Kaizhan LIN†a), Student Member, Fangguo ZHANG†† ,†††b), and Chang-An ZHAO† ,†††c), Nonmembers

SUMMARY Supersingular isogeny Diffie-Hellman (SIDH) is attractive
for its relatively small public key size, but it is still unsatisfactory due to
its efficiency, compared to other post-quantum proposals. In this paper, we
focus on the performance of SIDH when the starting curve is E6 : y2 =
x3 + 6x2 + x, which is fixed in Round-3 SIKE implementation. Inspired by
previousworks [1], [2], we present several tricks to accelerate key generation
of SIDH and each process of SIKE. Our experimental results show that the
performance of this work is at least 6.09% faster than that of the SIKE
implementation, and we can further improve the performance when large
storage is available.
key words: SIDH, SIKE, isogeny-based cryptography, post-quantum cryp-
tography, Montgomery ladder

1. Introduction

Supersingular isogeny Diffie-Hellman (SIDH) [3] has been
regarded as one of themost attractive post-quantumprotocols
during the last decade because of its small public key size
compared to the other proposals at the same security level.
Up to now, supersingular isogeny key encapsulation (SIKE),
which is based onSIDH, still remains active in theNISTpost-
quantum standardization process [4]. Nonetheless, com-
pared to other post-quantum cryptosystems, isogeny-based
protocols generally seem to be inefficient, and so do SIDH
and SIKE, for the reason why the efficient implementation
of SIDH/SIKE has become a hot spot in recent years.

SIDH consists of the key generation phase and the key
agreement phase. For each of them, the three-point ladder [3]
and isogeny computation (including isogeny construction
and isogeny evaluation at points) are dominant. In the SIDH
implementation, they take 17%∼19% and 81%∼83% of the
overall computational cost, respectively [5]. Although the
latter one requires more computational resources, the op-
timization of the three-point ladder is still meaningful to
improve the performance of SIDH and SIKE.

Jao and De Feo [3] developed the three-point ladder
when SIDH was presented in 2011. One advantage of the
three-point ladder is that the x-coordinate of the point P +
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[s]Q can be computed directly by the x-coordinates of P, Q
and P − Q, where s is a secret key. In the original SIDH
proposal, the points P,Q ∈ E0(Fp2 ), where E0 : y2 = x3 +
x. The implementation of the kernel generation in the key
generation phase was first improved by Costello et al. [1] by
choosing proper torsion bases to execute base field operations
of computing P + [s]Q as possible. Faz-Hernández et al. [2]
proposed a new three-point ladder, offering a saving of one
differential addition per iteration. Furthermore, they claimed
that the three-point ladder could be further improved, but it
requires large memory. There is no doubt that setting E0
as the starting curve brings perfect instantiation of SIDH.
Unfortunately, it was observed in [6] that the distortion map
of E0 reduces the entropy of the private and public keys. As
a consequence, the original starting curve was replaced by
E6 : y2 = x3 + 6x2 + x, while this modification restricts the
techniques mentioned above, resulting in a relatively heavy
overhead of the three-point ladder.

In this paper, we mainly consider torsion bases used in
public-key compression of SIDH [7]. Our contributions are
as follows:

• We present Method 1 for Alice to accelerate the kernel
generation in the key generation phase, requiring few
elements to be stored. When the storage is permitted,
the techniques mentioned in [2] can be adapted into
SIDH with a modification of the kernel generator, as
we present in Method 2. In each iteration of the ladder,
Methods 1 and 2 save about 17.8 and 21.4 multiplica-
tions in Fp , respectively.

• We show that the method of computing kernel genera-
tors proposed in [1] could be still employed to improve
the kernel generation in the key generation phase of Bob
by utilizing several tricks, as we present in Method 3.
Besides, we present Method 4 to further improve the
performance, with a modification of the kernel genera-
tor and a previous knowledge of a look-up table. The
performances of Methods 3 and 4 are about 2.2 and 4.7
times faster than that of the previous work, respectively.

• We adapt our methods into SIKE. The experimental
results show that the performance of our methods is
6.09% ∼ 7.13% faster than that of the previous work.
If large storage is permitted, Method 2 and Method 4
improve the performance by 8.72% ∼ 10.30%.

The remaining of this paper is organized as follows. In
Sect. 2 we review basic knowledge of isogenies, the Mont-
gomery ladder, the three-point ladder and the SIDHprotocol.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
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In Sect. 3 we show how to speed up the kernel generation of
the isogeny during the first phase of SIDH. Our implemen-
tation results are presented in Sect. 4. Section 5 concludes
our work.

2. Preliminaries

Throughout the paper, an elliptic curve in Montgomery form
y2 = x3 + Ax2 + x defined over Fp2 = Fp[i]/〈i2 + 1〉 is
denoted by EA, where p = 2e23e3 − 1 is a prime satisfying
2e2 ≈ 3e3 ≈

√
p. We denote rA = 2e2 and rB = 3e3 for

simplicity. In addition, let (xP, yP), (XP : ZP) and (XP :
YP : ZP) denote the point P in affine, Kummer and projective
coordinates, respectively.

2.1 Isogeny

Given two elliptic curves E and E ′ defined over a finite field
Fq , an isogeny φ : E → E ′ is a non-constant morphism from
E(Fq) to E ′(Fq) such that

φ(OE ) → OE′,

where OE is the unique point at infinity of E , and OE′ is
defined similarly [8]. Let deg(φ) be the degree of φ as a
rational function and ker(φ) the kernel of φ. The isogeny φ
is called separable if deg(φ) = # ker(φ) [8, Theorem 4.10].
A separable isogeny of degree ` is abbreviated as `-isogeny.

The curves E and E ′ are said to be `-isogenous over
Fq if there exists an `-isogeny φ : E → E ′ defined over Fq .
Deciding whether two curves are `-isogenous [3, Problem
5.1] is considered to be a difficult problem [9], [10], which
mainly guarantees the security of the SIDH/SIKE protocol.
See [11] for details of the structure of isogeny graphs.

2.2 Montgomery Ladder

The Montgomery ladder was first proposed by Mont-
gomery [12] in 1987, aiming to compute multiples of points
for a given point. Compared to the double-and-add algo-
rithm [13], the Montgomery ladder can avoid side-channel
attacks [14]. Furthermore, the Montgomery ladder is able to
efficiently compute the x-coordinates of multiples of points
thanks to the following equations [12]:

x[2]P =
(x2

P − 1)2

4xP(x2
P + AxP + 1)

,

xP−QxP+Q =
(xP xQ − 1)2

(xP − xQ)2
,

(1)

where P and Q are two points of EA. It is easy to see
that we can also use the Montgomery point P = (XP : ZP)

to compute the Montgomery point [k]P = (X[k]P : Z[k]P).
Typically, Kummer coordinates are preferred for efficiency.

In each iteration, the Montgomery ladder executes one
point doubling plus one differential addition, denoted by
dadd [15, Algorithm 5]. It costs six (or fivewhen ZP−Q = 1)

field multiplications and four field squarings. Pseudocode
of dadd is referred to Appendix A, and pseudocode of the
Montgomery ladder is available in Algorithm 1.

Algorithm 1: Montgomery ladder [12]
1 Input: P = (XP : ZP ) ∈ EA, s = (s`−1 · · · s1s0)2 and

A24 = (A+ 2)/4
2 Output: [s]P

1: (X1 : Z1) = [2]P, (X2 : Z2) = P, (X3 : Z3) = P
2: for j = ` − 2 down to 0 do
3: if si = 0 then
4: (X2, Z2, X1, Z1) = dadd(X2, Z2, X1, Z1, X3, Z3, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2

In the SIDH protocol, a Montgomery point of the form
S = P + [s]Q on EA is required to be computed. The Mont-
gomery ladder can be used to compute the x-coordinates
of [s]Q and [s + 1]Q (Note that the Montgomery ladder
also computes the latter). Afterwards, one can recover the
y-coordinate of [s]Q by the Okeya-Sakurai formula [16]:

y[s]Q=

(
x[s]QxQ+1

)(
x[s]Q+xQ+2A

)
−2A−

(
x[s]Q−xQ

)2x[s+1]Q

2yQ
.

(2)

Thus, we can get P + [s]Q by one differential addition.
We present Algorithm 4 in Appendix B to recover [s]Q,

while Algorithms 6 and 7 in Appendix C aim to perform
differential addition.

2.3 Three-Point Ladder Algorithm

Instead of the Montgomery ladder, Jao, De Feo and Plût [3]
proposed a three-point ladder to compute P + [s]Q. The
superiority of the three-point ladder is that one can compute
P + [s]Q directly. That is to say, there is no need recovering
the y-coordinate of any point. The three-point ladder was
later improved in [2, Algorithm 2].

As we can see in Algorithm 2, in each iteration the point
doubling does not depend on the secret key s. The authors
of [2] pointed out that a look-up table can be precomputed
to reduce the computational cost:

T(Q) =
(

x[2]Q + 1
x[2]Q − 1

,
x[4]Q + 1
x[4]Q − 1

, . . . ,
x[2` ]Q + 1
x[2` ]Q − 1

)
, (3)

where i = 1, · · · , ` = e2 − 3 or dlog rBe. In this case it
costs only three field multiplications and two squarings per
iteration, but requires relative large memory.

Remark 1 Similar to the Montgomery ladder, one can re-
cover the y-coordinate of P + [k]Q. See Algorithm 5 in
Appendix B for more details.
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Algorithm 2: Three-point ladder [2]
1 Input: P = (XP : ZP ), Q = (XQ : ZQ ),
Q − P = (XQ−P : ZQ−P ), s = (s`−1 · · · s1s0)2 and
A24 = (A+ 2)/4

2 Output: P + [k]Q
1: (X1 : Z1) = Q, (X2 : Z2) = P, (X3 : Z3) = Q − P
2: for j = 0 to ` − 1 do
3: if si = 0 then
4: (X1, Z1, X3, Z3) = dadd(X1, Z1, X3, Z3, X2, Z2, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2

2.4 SIDH Protocol

In this subsection, we introduce the classical SIDH protocol
briefly. Let E6 : y2 = x3+6x2+ x be a supersingular elliptic
curve overFp2 . For two subgroupsE[rA] andE[rB], there are
two pairs of torsion points {PA,QA} and {PB,QB} such that
〈PA,QA〉 = E6[rA] and 〈PB,QB〉 = E6[rB]. All mentioned
above are considered as public domain parameters.

Alice chooses a random integer sA ∈ [0,rA − 1] as
her secret to begin the key generation phase. To prevent
simple side-channel attacks, she adapts the three-point ladder
to compute SA = PA + [sA]QA of order rA. Thereafter,
Alice constructs the rA-isogeny with kernel 〈SA〉 by Vélu’s
formula [17] with the help of the smoothness of rA. Finally,
Alice transmits φA(PB), φA(QB) and the image curve EA to
Bob. Similarly, Bob selects his secret key sB ∈ [0,rB − 1] to
compute SB = PB+[sB]QB, and thenfinds the rB-isogeny φB
with kernel 〈SB〉 to calculate φB(PA), φB(QA). Finally, he
sends φB(PA), φB(QA) as well as the image curve EB to
Alice.

OnceAlice receives the public key fromBob, she begins
her key agreement phase. In the first place she computes
S′A = φB(PA)+[sA]φB(QA). Next, she constructs the isogeny
φ′Awith kernel 〈S

′
A〉 and finds out the image curve EBA of φ′A.

Similar to Alice, Bob evaluates S′B = φA(PB)+ [sB]φA(QB)

and constructs the corresponding isogeny φ′B with kernel
〈S′B〉. Note that only the image curve parameter is needed.
To end the key agreement phase, each of them evaluates the
j-invariant of their respective image curve as their shared
secret.

As mentioned in Sect. 2.3, Alice can make full use of
the x-coordinates of PA,QA,RA = PA − QA to compute the
x-coordinate of SA using the three-point ladder. Instead
of {φA(PB), φA(QB), A}, she could utilize xSA to evaluate
{xφA(PB ), xφA(QB ), xφA(RB )} and transmits it to Bob. The
same case is also available for Bob. Similarly, the key agree-
ment phase can be optimized in the same way as well. Be-
sides, the public keys of Alice and Bob can be further com-
pressed. For detailed techniques used in public-key com-
pression of SIDH/SIKE, we refer to [7], [15], [18]–[21].

3. Optimization of Kernel Generator Computation

In this section, we showhow to improve the kernel generation
of the isogeny in key generation of SIDH. We consider the
torsion bases selected in [7], which can be utilized to speed
up key generation of the compressed version of SIDH as
well.

When counting field operations, we use M and S to
denote the respective costs of a multiplication and a squaring
in the field Fp2 . Besides, the notations m and s are used to
represent the costs of a multiplication and a squaring in Fp ,
respectively. To measure the performance of the algorithms,
we estimateM ≈ 3m, S ≈ 2m and s ≈ 0.8m [2], [19].

3.1 Case of Alice

Naehrig and Renes [7] chose a rA-torsion basis {PA,QA}

such that

[2]PA = (x, iy), [2]QA ∈ E6(Fp), (4)

where x, y ∈ Fp , to speed up public-key compression. In
fact, the features of this basis could be used to accelerate the
three-point ladder as well.

Remark 2 Since E6(Fp)[rA] is isomorphic to Z/2e2−1Z ×
Z/2Z [1], it is impossible to find a rA-torsion basis such that
one of the torsion points belongs to E6(Fp).

When implementing the three-point ladder (Algo-
rithm 2) to compute the point SA = PA + [sA]QA, all the
operations are in Fp2 , for the reason that both PA and QA are
defined on E6(Fp2 )\E6(Fp). However, note that

[2i]QA ∈ E6(Fp), i = 1,2, · · · , e2 − 1.

Therefore, instead of the three-point ladder used to compute
PA + [sA]QA directly in Fp2 , Alice could execute the Mont-
gomery ladder to compute [sA− 1]QA or [sA]QA in the base
field if she precomputes [2]QA in affine coordinate, and then
obtain PA+ [sA]QA with several operations in Fp2 . Our idea
to accelerate the kernel generation for Alice comes mostly
from Method 1.

Method 1:
• Use theMontgomery ladder to compute the points R0 =
[b

sA
2 c]([2]QA) and R1 = [b

sA
2 c +1]([2]QA) in Kummer

coordinates;
• Utilize the Okeya-Sakurai formula (2) to recover R0 in
projective coordinate;

• If (sA mod 2) ≡ 1, compute (PA+QA)+ R0 in Kummer
coordinate, otherwise compute PA + R0 in Kummer
coordinate.

Lemma 1 One can compute the point SA = PA + [sA]QA in
Kummer coordinate by applying Method 1.

Proof. Note that
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R0 = [b
sA
2
c]([2]QA) =

{
[sA − 1]QA,when sA is odd,
[sA]QA,else.

Therefore, by performing the Montogomery ladder, we have
[sA−1]QA and [sA+1]QA in Kummer coordinates when sA
is odd, or [sA]QA and [sA + 2]QA in Kummer coordinates
when sA is even.

Now consider i = (sA mod 2). If i = 1, then the point
that we recover is [sA − 1]QA. In this case, one should
compute the point PA+ [sA]QA = (PA+QA)+ [sA−1]QA =

(PA + QA) + R0 in Kummer coordinate. When i is equal
to 0, i.e., sA is even, we directly compute PA + [sA]QA =

PA + [b
sA
2
c]([2]QA) = PA + R0 in Kummer coordinate.

Hence, in both cases Method 1 correctly computes the
point PA + [sA]QA in Kummer coordinate. �

One can precompute a lookup table to speed up the ker-
nel generation of the isogeny when the storage is available.
This technique is also adapted in [2]. Find a point P′A ∈
E(Fp) of order 3, and then precompute Q′A = [2]QA − P′A
and the lookup table

T([2]QA) =

(
x[2]QA

+ 1
x[2]QA

− 1
,

x[4]QA
+ 1

x[4]QA
− 1

, · · · ,
x[2`+1]QA

+ 1
x[2`+1]QA

− 1

)
,

where ` = e2 − 4. After that, Alice can improve the per-
formance of the three-point ladder and compute the kernel
generator of the isogeny by the following:

Method 2:
• Use the three-point ladder to compute the points R0 =

P′A + [b
sA
2 c mod 2e2−3]([2]QA) and R1 = [2e2−3 −

b
sA
2 c mod 2e2−3)]([2]QA) − P′A in Kummer coordinates

with the help of the lookup table T([2]QA) and Q′A;
• Set [2e2−1]QA = (0 : 0), then perform one differential
addition;

• Use Algorithm 5 to recover R0 in projective coordinate;
• Set

R2 =



R0, if b
sA

2e2−2 c = 0,

R0 + [2e2−2]QA, if b
sA

2e2−2 c = 1,

R0 + [2e2−1]QA, if b
sA

2e2−2 c = 2,

R0 − [2e2−2]QA, if b
sA

2e2−2 c = 3;

(5)

• If (sA mod 2) = 1, compute R3 = (PA + QA) + R2
in Kummer coordinate, otherwise R3 = PA + R2 in
Kummer coordinate;

• Compute [3]R3 in Kummer coordinate.

Lemma 2 One can compute the point [3]PA + [3sA]QA in
Kummer coordinate and regard it as the kernel generator of
a rA-isogeny by applying Method 2. This modification of the
kernel generator does not change the key space size.

Proof. Note that the t-th iteration, the three-point lad-
der computes P′A + [b

sA
2 c mod 2t ]([2]QA) and [2t −

(b
sA
2 c mod 2t )]([2]QA)−P′A. Hence, we can utilizeT([2]QA)

to efficiently compute R0 and R1.
Step 4 computes R2 = R0 + [b

sA
2e2−2 c]([2]QA), i.e.,

R2 =

{
P′A + [sA − 1]QA,when sA is odd,
P′A + [sA]QA,else.

When sA is odd, we get R2 = P′A + [sA − 1]QA. In this
case, the point R3 = PA + QA + R2 = PA + P′A + [sA]QA.
When sA is even, compute R3 = PA+R2 = PA+P′A+[sA]QA.

The last step is to eliminate P′A by tripling R3:

[3]R3 = [3]PA+ [3]P′A+ [3sA]QA = [3]PA+ [3sA]QA.

Since gcd(3,rA) = 1, the order of [3]R3 is rA. Hence, the
point [3]R3 could be regarded as the kernel generator of a
rA-isogeny. Besides, the group endomorphism

η3 : (ZrA,+) → (ZrA,+),
x 7→ 3x,

is an isomorphism. Therefore, the key space size is not
changed. This completes the proof. �

One may ask how to run in constant time when com-
puting R2 in Eq. (5). It is natural to compute three point
additions directly and output the right point with respect to
b

sA
2e2−2 c. Here we give another approach to compute R2

efficiently by utilizing the property [2e2−1]QA = (0,0).
We first compute R′2 = R0 + [2e2−2]QA. Thereafter,

according to the addition law on elliptic curves, we have

R0 + (0,0)=

(
1

xR0

,−
yR0

x2
R0

)
=

(
XR0 ZR0 : −YR0 ZR0 : X2

R0

)
,

R0−[2e2−2]QA=
©« 1

xR′2
,−
yR′2

x2
R′2

ª®¬=
(
XR′2

ZR′2
: −YR′2 ZR′2

: X2
R′2

)
.

Therefore, there is no need to compute three differential
additions. Instead, we compute two field multiplications and
one field squaring with respect to b

sA
2e2−2 c mod 2. Finally,

output the right point with respect to b
sA

2e2−1 c. Further, to
defend the attacker who performs one fault injection, we can
simply compute the above points twice and check whether
the two results are the same. This countermeasure is also
adapted in the CSIDH with dummy-operations against fault
injection attacks [22].

Remark 3 In the key agreement phase, Alice could compute
the kernel generator SA′ = φB(PA) + [sA]φB(QA) as usual,
since S′A and [3]S′A generate the same kernel.

To sum up, the estimates given in Table 1 show the
computational cost for each iteration of the ladder. The
table shows that Methods 1 and 2 can improve the three-
point ladder, and the implementation of the latter method
performs better when large storage is available.
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Table 1 Cost estimates for each iteration of the three-point ladder during
the key generation phase of Alice.

Method Cost estimates
SIDH [15] 6M+4S ≈ (6×3 + 4×2) m = 26m
Method 1 5m+4s ≈ (5 + 4×0.8) m = 8.2m
Method 2 3m+2s ≈ (3 + 2×0.8) m = 4.6m

3.2 Case of Bob

To compress public keys faster, Naehrig and Renes [7] se-
lected the rB-torsion basis {P3,Q3} on E0 such that

P3 = (x, y),Q3 = ψ(P3) = (−x, iy),

where x, y ∈ Fp . Then they set {φ2(P3), φ2(Q3)} as the rB-
torsion basis of E6, where φ2 is the 2-isogeny with kernel
〈(i,0)〉:

φ2 : E0 → E6,

(x, y) 7→
(
ix2 − x

x − i
, y

ix2 + 2x + i
(x − i)2

)
.

Instead of PB + [sB]QB, we consider [sB]PB + QB as
the kernel generator of the isogeny. Similar to the ideas
proposed in [1], Bob can use his secret key sB to compute
[sB]PB +QB as follows:

Method 3:
• Use the Montgomery ladder to compute [sB]P3 and
[sB + 1]P3 in Kummer coordinates;

• Utilize the Okeya-Sakurai formula (2) to recover [sB]P3
in projective coordinate;

• Compute [sB]P3 +Q3 in Kummer coordinate;
• Complete the evaluation of the isogeny φ2 at [sB]P3 +

Q3.

Lemma 3 One can compute the point [sB]PB +QB in Kum-
mer coordinate and regard it as the kernel generator of a
3e3 -isogeny by applying Method 3. This modification of the
kernel generator does not change the key space size.

Proof. It is easy to check that one can correctly compute
[sB]P3 +Q3. The rest is to prove SB = φ2([sB]P3 +Q3) is a
point of order rB. Note that

SB=φ2([sB]P3+Q3)= [sB]φ2(P3)+φ2(Q3)= [sB]PB+QB .

Since the order of Q3 is rB and gcd(2,rB) = 1, the order of
the point QB is rB. This implies that SB is a point of order
rB, and it could be regarded as the kernel generator of a rB-
isogeny. Obviously, this modification of the kernel generator
does not change the key space size because there are exactly
rB choices of sB to compute the kernel generators and any
two of them do not generate the same group of order rB. �

Since Q3 ∈ E0(Fp), all the operations of the Mont-
gomery ladder are implemented in the base field. Therefore,
Bob could compute the point SB much more efficient than

Table 2 Cost estimates for each iteration of the ladder during the key
generation phase of Bob.

Method Cost estimates
SIDH [15] 6M+4S ≈ (6×3 + 4×2) m = 26m
Method 3 5m+4s ≈ (5 + 4×0.8) m = 8.2m
Method 4 3m+2s ≈ (3 + 2×0.8) m = 4.6m

before. In this case, only the point P3 in affine coordinate
should be stored (Q3 could be recovered by ψ(P3)).

SetQ′3 = (1,
√

2) ∈ E0(Fp) (Note that 2 is a square in Fp
because p ≡ 7(mod 8)). It is easy to check Q′3 is a point of
order 4. Analogous to Method 2, Bob could store the table

T(P3) =

(
x[2]P3 + 1
x[2]P3 − 1

,
x[4]P3 + 1
x[4]P3 − 1

, · · · ,
x[2` ]P3 + 1
x[2` ]P3 − 1

)
,

where ` = dlog rBe and P′3 = P3 − Q′3 ∈ E0(Fp), to speed
up the implementation of the three-point ladder. The main
procedure is as follows:

Method 4:
• Use the three-point ladder to compute R0 = [sB]P3+Q′3
and R1 = [2 dlog rB e−sB]P3−Q′3 inKummer coordinates;

• Compute the points R2 = [4]R0 and R3 = [4]R1 in
Kummer coordinates;

• Utilize Algorithm 5 to recover R2 in projective coordi-
nate;

• Compute R4 = R2 +Q3;
• Complete the evaluation of the isogeny φ2 at R4.

Lemma 4 One can compute the point [4sB]PB+QB in Kum-
mer coordinate and regard it as the kernel generator of a
rB-isogeny by applying Method 4. This modification of the
kernel generator does not change the key space size.

Proof. In the t-th iteration, the three-point ladder computes
[sB mod 2t ]P3 +Q′3 and [2

t − (sB mod 2t )]P3 −Q′3. Hence,
we can utilize T(P3) to efficiently compute R0 and R1.

Step 2 aims to eliminate Q′3, which is a point of order
4. We simply quadruple R0 and R1, or, alternatively, double
them twice. Then,

R2 = [4]([sB]P3 +Q′3) = [4sB]P3,

R3 = [4]([2 dlog rB e − sB]P3 −Q′3) = [2
dlog rB e+2 − 4sB]P3.

After recovering the projective coordinates of the point
R2, we compute

R4 = R2 +Q3 = [4sB]P3 +Q3.

The rest is to evaluate φ2 to R4. Note that P3,Q3 are points
of order rB and gcd(2,rB) = 1. The point

φ2(R4) = [4sB]φ2(P3) + φ2(Q3) = [4sB]PB +QB

has order rB on E6 as well. Consequently, Bob could use
[4sB]PB +QB to determine a rB-isogeny. This modification
of the kernel generator does not reduce the key space size as
gcd(rB,4) = 1. �
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Table 3 Performance comparison of key generation of SIDH (including the ladder and isogeny
computation) by using different methods. All timings are presented in millions of clock cycles. We use
M1, M2, M3 and M4 to denote the situation when using Method 1, Method 2, Method 3 and Method 4,
respectively.

Setting
Alice’s key generation Bob’s key generation

SIDH v3.4 [15] Ours Speedup SIDH v3.4 [15] Ours Speedup
M1 M2 M1 M2 M3 M4 M3 M4

SIKEp434 3.20 2.82 2.72 11.88% 15.00% 3.55 3.15 3.07 11.27% 13.52%
SIKEp503 4.50 3.92 3.76 12.89% 16.44% 4.98 4.34 4.22 12.85% 15.26%
SIKEp610 9.00 8.05 7.85 10.56% 12.78% 8.97 8.03 7.82 10.48% 12.82%
SIKEp751 13.75 12.25 11.60 10.91% 15.64% 15.50 13.84 13.30 10.71% 14.19%

Table 4 Performance comparison of SIKE by using different methods. All timings are presented in
millions of clock cycles. We use M1, M2, M3 and M4 to denote the situation when using Method 1,
Method 2, Method 3 and Method 4, respectively.

Setting M1&M3 M2&M4 SIKE v3.4 [15] Speedup
M1&M3 M2&M4

SIKEp434

Keygen 3.21 3.11 3.56 9.83% 12.64%
Encaps 5.52 5,36 5.82 5.15% 7.90%
Decaps 5.91 5.76 6.21 4.83% 7.25%
Total 14.64 14.23 15.59 6.09% 8.72%

SIKEp503

Keygen 4.55 4.37 5.09 10.61% 14.15%
Encaps 7.81 7.62 8.34 6.35% 8.63%
Decaps 8.35 8.16 8.87 5.86% 8.12%
Total 20.71 20.15 22.30 7.13% 9.64%

SIKEp610

Keygen 8.05 7.79 9.06 11.15% 14.02%
Encaps 15.60 15.36 16.71 6.64% 8.08%
Decaps 15.81 15.40 16.72 5.44% 7.89%
Total 39.46 38.55 42.49 7.13% 9.27%

SIKEp751

Keygen 13.75 13.19 15.34 10.37% 14.02%
Encaps 23.39 22.42 24.87 5.95% 9.85%
Decaps 25.22 24.38 26.67 5.44% 8.59%
Total 62.36 59.99 66.88 6.76% 10.30%

We estimate the cost of each iteration of the ladder by
utilizing the methods mentioned above, and draw a compari-
son between the cost of the methods and that of the previous,
as shown in Table 2. We can predict that Method 3 improves
the performance obviously, and so does Method 4.

4. Implementation

In this section we present the implementation of key genera-
tion of SIDH and SIKE by utilizing our techniques, and then
give a comparison in efficiency.

In Tables 1 and 2 we give cost estimates for each itera-
tion of the ladder. Indeed, the cost of the ladder dominates
the cost of the kernel generation of isogenies, so its perfor-
mance mainly depends on the implementation of the ladder.

Our implementation makes use of the SIDH C li-
brary (version 3.4) [15]. The following experimental results
have been obtained by using an 11th Gen Intel(R) Core(TM)
i7-1185G7 @ 3.00GHz on 64-bit Linux. We benchmarked
our code and observed the performance of key generation of
SIDH and SIKE by using different methods in comparison
with SIDH/SIKE. The results are reported in Table 3.

As can be seen in Table 3, when the storage is con-
strained, the performance of ours is 10.56%∼12.89% faster
than key generation of the previous work for the case of Al-
ice, and 10.48%∼12.85% faster for the case of Bob. When
the storage is permitted, it performs better with a previous

Table 5 Additive memory requirements (in KiB) for Method 2 and
Method 4.

Setting SIKEp434 SIKEp503 SIKEp610 SIKEp751
Alice 12.2 16.1 24.5 35.6
Bob 12.2 16.1 24.2 36.0
Total 24.4 32.2 48.7 71.6

knowledge of a look-up table.
Note that in SIKE, each process (KeyGen, Encaps and

Decaps) calls the ladder in key generation of SIDH once.
Hence, we improve each process with the help of our meth-
ods. Table 4 reports the experimental results by using our
techniques and the comparison with that of SIKE.

In Table 5 we report the additive memory requirements
for Methods 2 and 4 that require to store a precomputed
table in the SIDH settings. It shows that large memory is
necessary for applying the methods. Hence, Methods 1 and
3 would be preferred for memory constrained environments.

5. Conclusion

In this paper, we proposed several tricks to utilize these
techniques to the key generation phase of SIDH. Some of
our methods change the generator form of the isogeny, but
the key space size is not reduced. When large storage is
permitted, we could improve the ladder performance further.
Our new idea may make SIDH/SIKEmore attractive in post-
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quantum cryptography.

Acknowledgements

We thank the anonymous reviewers for helpful comments
and suggestions. This work is supported by Guang-
dong Major Project of Basic and Applied Basic Research
(No. 2019B030302008), the National Natural Science Foun-
dation of China (Nos. 61972429 and 61972428).

References

[1] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman,” Advances in Cryptology –
CRYPTO 2016, M. Robshaw and J. Katz, eds., Berlin, Heidelberg,
pp.572–601, Springer Berlin Heidelberg, 2016.

[2] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodríguez-
Henríquez, “A faster software implementation of the supersingular
isogeny Diffie-Hellman key exchange protocol,” IEEE Transa. Com-
put., vol.67, no.11, pp.1622–1636, 2018.

[3] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” Post-Quantum Cryp-
tography, B.Y. Yang, ed., Berlin, Heidelberg, pp.19–34, Springer
Berlin Heidelberg, 2011.

[4] “The National Institute of Standards and Technology (NIST). Post-
quantum cryptography standardization,” 2017–2018. https://csrc.nis
t.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptog
raphy-Standardization

[5] D. Cervantes-Vázquez, E. Ochoa-Jiménez, and F. Rodríguez-
Henríquez, “Extended supersingular isogeny Diffie–Hellman key ex-
change protocol: Revenge of the SIDH,” IET Information Security,
vol.15, no.5, pp.364–374, 2021.

[6] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia, “Improved
classical cryptanalysis of SIKE in practice,” Public-Key Cryptogra-
phy – PKC 2020, A. Kiayias, M. Kohlweiss, P.Wallden, andV. Zikas,
eds., pp.505–534, Springer International Publishing, Cham, 2020.

[7] M. Naehrig and J. Renes, “Dual isogenies and their application to
public-key compression for isogeny-based cryptography,” Advances
in Cryptology - ASIACRYPT 2019, Dec. 2019.

[8] J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate
Texts in Mathematics. Springer, 2009.

[9] P. Longa, W. Wang, and J. Szefer, “The cost to break SIKE: A com-
parative hardware-based analysis with AES and SHA-3,” Advances
in Cryptology – CRYPTO 2021, T. Malkin and C. Peikert, eds.,
pp.402–431, Springer International Publishing, Cham, 2021.

[10] G. Adj, D. Cervantes-Vázquez, J.J. Chi-Domínguez, A. Menezes,
and F. Rodríguez-Henríquez, “On the cost of computing isogenies
between supersingular elliptic curves,” Selected Areas in Cryptog-
raphy – SAC 2018, C. Cid and M.J. Jacobson, Jr., eds., pp.322–343,
Springer International Publishing, Cham, 2019.

[11] H. Onuki, Y. Aikawa, and T. Takagi, “The existence of cycles in
the supersingular isogeny graphs used in SIKE,” 2020 International
Symposium on Information Theory and Its Applications (ISITA),
pp.358–362, 2020.

[12] P.L. Montgomery, “Speeding the Pollard and elliptic curve methods
of factorization,” Math. Comput., vol.48, pp.243–264, 1987.

[13] D.E. Knuth, The Art of Computer Programming, v.2. Seminumerical
algorithms. 2nd ed., Addison-Welsley, 1981.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Ad-
vances in Cryptology—CRYPTO’99, M. Wiener, ed., Berlin, Hei-
delberg, pp.388–397, Springer Berlin Heidelberg, 1999.

[15] R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Hutchinson, A. Jalali, D. Jao, K. Karabina, B. Koziel, B. LaMac-
chia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev, and
D. Urbanik, “Supersingular Isogeny Key Encapsulation,” 2020.

http://sike.org
[16] K.Okeya andK. Sakurai, “Efficient elliptic curve cryptosystems from

a scalar multiplication algorithm with recovery of the y-coordinate
on aMontgomery-form elliptic curve,” Cryptographic Hardware and
Embedded Systems—CHES 2001, Ç.K. Koç, D. Naccache, and
C. Paar, eds., Berlin, Heidelberg, pp.126–141, Springer Berlin Hei-
delberg, 2001.

[17] J. Vélu, “Isogénies entre courbes elliptiques,” C.R. Acad. Sci., Paris,
Sér. A, vol.273, pp.238–241, 1971.

[18] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Ur-
banik, “Efficient compression of SIDH public keys,” Advances in
Cryptology – EUROCRYPT 2017, J.S. Coron and J.B. Nielsen, eds.,
pp.679–706, Springer International Publishing, Cham, 2017.

[19] G.H.M. Zanon, M.A. Simplicio, G.C.C.F. Pereira, J. Doliskani, and
P.S.L.M. Barreto, “Faster key compression for isogeny-based cryp-
tosystems,” IEEE Trans. Comput., vol.68, no.5, pp.688–701, 2019.

[20] G. Pereira, J. Doliskani, and D. Jao, “x-only point addition formula
and faster compressed SIKE,” J. Cryptogr. Eng., vol.11, no.1, pp.57–
69, 2021.

[21] A. Hutchinson, K. Karabina, and G. Pereira, “Memory optimiza-
tion techniques for computing discrete logarithms in compressed
SIKE,” Post-Quantum Cryptography, J.H. Cheon and J.P. Tillich,
eds., pp.296–315, Springer International Publishing, Cham, 2021.

[22] F. Campos, M.J. Kannwischer, M. Meyer, H. Onuki, and M. Stöt-
tinger, “Trouble at the CSIDH: Protecting CSIDH with dummy-
operations against fault injection attacks,” 2020 Workshop on Fault
Detection and Tolerance in Cryptography (FDTC), pp.57–65, 2020.

Appendix A: Point Doubling and Differential Addition

Algorithm 3: dadd: doubling and differential ad-
dition [15, Algorithm 5]
1 Input:(XP : ZP ), (XQ : ZQ ), (XP−Q : ZP−Q ) and

A24 = (A+ 2)/4
2 Output: (X[2]P : Z[2]P ) and (XP+Q , ZP+Q )

1: t0 ← XP + ZP

2: t1 ← XP − ZP

3: XP ← t2
0

4: t2 ← XQ − ZQ

5: XQ ← XQ + ZQ

6: t0 ← t0 · t2
7: ZP ← t2

1
8: t1 ← t1 · XQ

9: t2 ← XP − ZP

10: XP ← XP · ZP

11: XQ ← A24 · t2
12: ZQ ← t0 − t1
13: ZP ← ZP + XQ

14: XQ ← t0 + t1
15: ZP ← t2 · ZP

16: ZQ ← Z2
Q

17: XQ ← X2
Q

18: ZQ ← XP−Q · ZQ

19: XQ ← ZP−Q · XQ

Remark 4 When ZP−Q = 1, one field multiplication can be
saved in Line 19.
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Appendix B: Recovering the Y -Coordinate

B.1 The Case of the Montgomery Ladder

Algorithm 4: Recovering the Y -coordinate after
executing the Montgomery ladder
1 Input:(xQ , yQ ), (X[s]Q : Z[s]Q ), (X[s+1]Q : Z[s+1]Q ) and A
2 Output: (X[s]Q : Y[s]Q : Z[s]Q )

1: t0 ← xQ · Z[s]Q
2: t1 ← t0 + X[s]Q
3: t2 ← X[s]Q − t0
4: t2 ← t2

2
5: t2 ← t2 · X[s+1]Q
6: t0 ← Z[s]Q + Z[s]Q
7: t0 ← A · t0
8: t1 ← t0 + t1
9: t3 ← xQ · X[s]Q
10: t3 ← t3 + Z[s]Q

11: t1 ← t1 · t3
12: t0 ← t0 · Z[s]Q
13: t1 ← t1 − t0
14: t1 ← t1 · Z[s+1]Q
15: Y[s]Q ← t1 − t2
16: t0 ← yQ + yQ
17: t0 ← t0 · Z[s]Q
18: t0 ← t0 · Z[s+1]Q
19: X[s]Q ← t0 · X[s]Q
20: Z[s]Q ← t0 · Z[s]Q

B.2 The Case of the Three-Point Ladder

Algorithm 5: Recovering the Y -coordinate after
the t-th iteration of the three-point ladder
1 Input:[2t ]Q = (X0 : Z0), P + [s]Q = (X1 : Z1),
[2t − s]Q − P = (X2 : Z2) to compute
P + [2t + s]Q = (X3 : Z3)

2 Output: P + [s]Q = (X1 : Y1 : Z1)
1: t0 ← X2 · Z3
2: t1 ← X3 · Z2
3: t0 ← t0 − t1
4: t1 ← X0 · Z1
5: t1 ← X1 − t1
6: t1 ← t2

1
7: Y1 ← t0 · t1

8: t0 ← Y0 +Y0
9: t0 ← t0 + t0
10: t0 ← t0 · Z1
11: t0 ← t0 · Z2
12: t0 ← t0 · Z3
13: X1 ← t0 · X1
14: Z1 ← t0 · Z1

Appendix C: Point Addition

Algorithm 6 is used to add a point P represented in projective
coordinate to a point Q represented in affine coordinate, and
output the result P + Q = (XP+Q : ZP+Q) on the elliptic
curve E0.

Algorithm 6: Point differential addition
1 Input:(XP : YP : ZP ) and (xQ , yQ )
2 Output: (XP+Q : ZP+Q )

1: t0 ← xQ · ZP

2: t1 ← XP − t0
3: t1 ← t2

1
4: ZP+Q ← ZP · t1
5: t0 ← XP + t0
6: t1 ← t0 · t1

7: t0 ← yQ · ZP

8: t0 ← YP − t0
9: t0 ← t2

0
10: t0 ← t0 · ZP

11: XP+Q ← t0 − t1

Algorithm 7 is used to add a point P represented in
projective coordinate to a point Q represented in affine coor-
dinate, and output the result P+Q = (XP+Q : YP+Q : ZP+Q)

on the elliptic curve E6.

Algorithm 7: Point differential addition
1 Input:(XP : YP : ZP ) and (xQ , yQ )
2 Output: (XP+Q : YP+Q : ZP+Q )

1: t0←XP + ZP

2: t0← t0 + ZP

3: t1←xQ + 2
4: t2← yQ · ZP

5: t2← t2 − yQ
6: t3← t2

2
7: t4← t1 · ZP

8: t4← t4 − t0
9: t5← t2

4
10: t6← t5 · t4
11: t7← t0 · t5
12: t8← t3 · ZP

13: t8←a − t6
14: t8←a − t7
15: t8←a − t7
16: XP+Q← t4 · t8
17: t9← t6 ·YP

18: YP+Q← t7 − t8
19: YP+Q← t2 ·YP+Q

20: YP+Q←YP+Q − t9
21: ZP+Q← t6 · ZP

22: XP+Q←XP+Q−ZP+Q

23: XP+Q←XP+Q−ZP+Q
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