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PAPER
Parameterized Formal Graph Systems and Their Polynomial-Time
PAC Learnability

Takayoshi SHOUDAI†a), Satoshi MATSUMOTO††, Yusuke SUZUKI†††, Tomoyuki UCHIDA†††,
and Tetsuhiro MIYAHARA†††, Members

SUMMARY A formal graph system (FGS for short) is a logic program
consisting of definite clauses whose arguments are graph patterns instead
of first-order terms. The definite clauses are referred to as graph rewriting
rules. An FGS is shown to be a useful unifying framework for learning graph
languages. In this paper, we show the polynomial-time PAC learnability
of a subclass of FGS languages defined by parameterized hereditary FGSs
with bounded degree, from the viewpoint of computational learning theory.
That is, we consider VH-FGSLk ,∆(m, s, t , r , w, d) as the class of FGS
languages consisting of graphs of treewidth at most k and of maximum
degree at most ∆ which is defined by variable-hereditary FGSs consisting
of m graph rewriting rules having term graph patterns as arguments. The
parameters s, t , and r denote the maximum numbers of variables, atoms in
the body, and arguments of each predicate symbol of each graph rewriting
rule in an FGS, respectively. The parameters w and d denote the maxi-
mum number of vertices of each hyperedge and the maximum degree of
each vertex of term graph patterns in each graph rewriting rule in an FGS,
respectively. VH-FGSLk ,∆(m, s, t , r , w, d) has infinitely many lan-
guages even if all the parameters are bounded by constants. Then we prove
that the class VH-FGSLk ,∆(m, s, t , r , w, d) is polynomial-time PAC
learnable if all m, s, t , r , w, d, ∆ are constants except for k.
key words: formal graph system, graph pattern, PAC learning, polynomial-
time learnability

1. Introduction

Frequent subgraph mining is one of the most intensively
studied problems in graph mining. This is to extract local
similarities that frequently occur in graph data, and there
are many research results including the work of Yan et
al. [23]. However, some computational problems involving
graph data have a troublesome problem in that the number
of solutions to be searched for a general graph can explode
into a huge number due to a combinatorial explosion. Fre-
quent subgraph mining that deals with general graphs is one
such example. As an approach to avoid such combinatorial
explosion, Horváth et al. [10] focused on the graph class of
outerplanar graphs, a well-known class in graph theory, and
proposed an efficientmining algorithmof frequent connected
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subgraphs. Yamasaki et al. [21], [22] defined a term graph
pattern based on the class of outerplanar graphs and proposed
an efficient machine learning algorithm from the viewpoint
of computational learning theory. A term graph pattern is a
graph pattern that can represent the global structure, such as
how multiple frequent subgraphs are positioned.

This paper discusses the polynomial-time learnability
of graph pattern classes designed by formal graph system
(FGS for short). FGS is a kind of logic program [11] for
graphs introduced by Uchida et al. [19]. That is, FGS is
a logic program consisting of definite clauses whose argu-
ments are graph patterns instead of first-order terms. Lan-
guages generated by FGS are called FGS languages. The
class of trees (acyclic connected graphs), the class of ordered
trees, the class of outerplanar graphs, and the class of graphs
of bounded treewidth (partial k-trees for fixed k) are all FGS
languages. This suggests that FGS can be used to unify
conventional graph pattern design methods. In addition, by
using the logic programmatic features of FGS, it is expected
to reveal a polynomial-time learnable FGS language class.

Computational learning theory is a field of the math-
ematical study for investigating how much computational
time, memory, and other computational resources are in-
herently required to learn a certain concept. Valiant [20]
proposed PAC learning (Probably Approximately Correctly
Learning) as a theoretical framework for dealing with this
investigation. PAC learning model allows errors in the hy-
pothesis produced by a learning algorithm and considers it a
good hypothesis even if it does not perfectly match the target
concept, as long as an occurrence where it does not match
the target concept is rare.

One of the classes of polynomial-time PAC learnable
formal languages is a subclass of the elementary formal sys-
tem (EFS) languages [2]. The elementary formal system
is a kind of logic program that can handle strings directly,
whereas FGS handles graphs directly. Miyano et al. [12]
showed a polynomial-time PAC learnable class of parameter-
ized hereditary elementary formal systems. The elementary
formal system is very well studied in the field of computa-
tional learning theory, with results on learnability under in-
ductive inferencemodels [2] and query learningmodels [16],
in addition to results under PAC learning models. We easily
see that any string can be viewed as an edge-labeled chain
graph with distinguished start and end vertices by using an
edge label instead of a symbol on the string. Thus, research
results for EFS also hold for FGS by using chain graphs. On
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the other hand, if we have no edge label, FGS needs to focus
only on connections between vertices, i.e., graph structures.
In this paper, we mainly discuss the learnability of FGS lan-
guages when the size of the alphabet representing the edge
labels is 1. When we have only one edge label, since we can
think of it as having no edge label, we omit the edge label in
any figure.

This paper deals with a subclass of FGS languages that
can be generated by variable-hereditary formal graph sys-
tems. VH -FGSL(m, s, t,r, w, d) is the subclass of FGS
languages consisting of graphs which is defined by variable-
hereditary FGSs consisting of graph rewriting rules with the
parameters m, s, t,r, w, d of the representation of each FGS
(Definition 22). We considerVH -FGSLk ,∆(m, s, t,r, w, d)
as the subclass ofVH -FGSL(m, s, t,r, w, d) in which each
FGS language consists of graphs of treewidth at most k and
of maximum degree at most ∆ (Definition 23). In this paper,
we prove thatVH -FGSLk ,∆(m, s, t,r, w, d) is polynomial-
time PAC learnable if all m, s, t,r, w, d,∆ are constants except
for k. Here we should note that there are infinitely many
languages definable by variable-hereditary FGSs even if all
the parameters are bounded by constants.

2. Preliminaries

2.1 Term Graph Pattern

In this paper, we deal with graphs and multigraphs (please
refer to [6] for the terminology). In this and the following
sections, we give the technical definitions for formal graph
systems for graphs [19]. Because we can easily generalize
the following definitions to the case of multigraphs, we also
give an example of formal graph systems for multigraphs.

Let S be a set or a list. We denote by |S | the number
of elements included in S. Let Σ and Λ be finite alphabets.
Let X be an alphabet consisting of infinitely many symbols.
A symbol in X is called a variable. Each symbol x in X
has a positive integer called a rank. The rank of a variable
x ∈ X is expressed as rank(x) (rank(x) ≥ 1). Also, for
the alphabets Σ,Λ, and X , we assume that Σ ∩ X = ∅, and
Λ ∩ X = ∅.

Definition 1: For a triple of alphabets 〈Σ,Λ,X〉, a 7-tuple
g = (V,E, ϕ,ψ,H, λ, ports) is called a term graph pattern, or
a term graph, if it satisfies the following 4 conditions:

1. (V,E) is a graph, where V is a vertex set and E is an
edge set. ϕ is a vertex labeling function ϕ : V → Σ,
and ψ is an edge labeling function ψ : E → Λ.

2. H is a set of non-empty subsets of V , i.e., H ⊆ 2V \
{∅} (possibly H = ∅). An element in H is called a
hyperedge.

3. λ is a hyperedge labeling function λ : H → X , which
satisfies rank(λ(h)) = |h|. For a hyperedge h ∈ H,
rank(λ(h)) is called the rank of the hyperedge h. When
H = ∅, λ is the empty function. In this paper, the empty
function is denoted by ∅.

4. ports is a function ports : H → V∗ such that for each

hyperedge h = {v1, . . . , v`} ∈ H (` ≥ 1), ports(h)
is an ordered list (vj1, . . . , vj` ) where { j1, . . . , j`} =
{1, . . . , `}. A vertex in ports(h) is called a port of
the hyperedge h. When H = ∅, ports is the empty
function ∅.

A term graph which has no hyperedge, i.e., H = ∅,
is called a ground term graph. Ground term graph can be
regarded as an ordinary labeled graph. We denote the set
of all term graphs on 〈Σ,Λ,X〉 by G(Σ,Λ,X). In addition,
we denote the set of all ground term graphs on Σ and Λ by
G(Σ,Λ).

For a term graph g ∈ G(Σ,Λ,X), we use the following
notations to express the members of g:

Vg : the vertex set of g,
Eg : the edge set of g,
ϕg : the vertex labeling function Vg → Σ,
ψg : the edge labeling function Eg → Λ,
Hg : the hyperedge set of g,
λg : the hyperedge labeling function Hg → X ,
portsg : the ports function Hg → V∗g .

Let g be a term graph. The degree of a vertex v ∈ Vg is
defined as the sum of the number of edges in Eg that connect
to v and the number of hyperedges in Hg that contain v. For a
term graph g, the ranges of the labeling functions ϕg,ψg, λg
are described as ϕg(Vg),ψg(Eg), λg(Hg) respectively.

Definition 2: Let f and g be term graphs. f and g are said
to be term graph isomorphic, or isomorphic, if the following
3 conditions are satisfied:

1. (Vf ,E f ) and (Vg,Eg) are isomorphic as vertex-labeled
and edge-labeled graphs. Let π : Vf → Vg be an
isomorphism from (Vf ,E f ) to (Vg,Eg).

2. There exists a bijection ω : Hf → Hg such that
portsg(ω(h)) = π∗(ports f (h)) for any hyperedge h ∈
Hf , where π∗((v1, . . . , v`)) (` ≥ 1) is defined as
(π(v1), . . . , π(v`)).

3. For h, h′ ∈ Hf , λ f (h) = λ f (h′) if and only if λg(ω(h)) =
λg(ω(h′)).

For term graphs f and g, we describe f � g when f and g
are term graph isomorphic.

Let g be a term graph. Let V ′g,E
′
g,H

′
g be subsets of

Vg,Eg,Hg respectively. Let ϕg |V ′g , ψg |E ′g, and λg |H ′g be the
labeling functions ϕg,ψg, λg whose domains are restricted to
V ′g , E ′g, and H ′g, respectively. Similarly, let portsg |H ′g be a
function portsg whose domain is restricted to H ′g.

Definition 3: Let g and g′ be term graphs. g′ is a term
subgraph of g if g and g′ satisfy that (i) Vg′ ⊆ Vg, Eg′ ⊆ Eg,
Hg′ ⊆ Hg, and (ii) ϕg′ = ϕg |Vg′ , ψg′ = ψg |Eg′ , λg′ = λg |Hg′ ,
portsg′ = portsg |Hg′ .

Definition 4: Let f and g be term graphs. f is term sub-
graph isomorphic to g if there exists a term subgraph g′ of
g such that f and g′ are term graph isomorphic.

Definition 5: Let g be a term graph. g is called a star
term graph of a variable x if |Vg | = rank(x), Eg = ∅, and
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Fig. 1 Star term graph: Vg = {u1, u2, u3 }, Eg = ∅, Hg = {h} where
h = Vg , λg (h) = x with rank(x) = 3, and portsg (h) = (u1, u2, u3). The
hyperedge h is represented by its variable in the square and its ports are
represented by the vertices connected by the lines, on which the numbers
describe the port ordering.

Hg = {h} where h = Vg and λg(h) = x. That is, a star term
graph of a variable x is a term graph consisting of only one
hyperedge which have all vertices in g and is labeled with a
variable x.

Figure 1 shows an example of star term graphs of a
variable. In this paper, the hyperedges of a term graph
are represented by squares surrounding the variables of the
hyperedges.

Definition 6: A term graph g is connected if for any 2
vertices u, v ∈ Vg, there exists a vertex sequence u =
u0,u1, . . . ,u` = v (u0,u1, . . . ,u` ∈ Vg, ` ≥ 0) such that any
pair of vertices ui−1,ui (1 ≤ i ≤ `) is either connected by an
edge in Eg or contained in a hyperedge in Hg.

2.2 Formal Graph System

Let f1, . . . , fr , g1, . . . , gr (r ≥ 1) be term graphs in
G(Σ,Λ,X). For a predicate symbol p of r arguments,
p( f1, . . . , fr ) is called an atom. Let A,B1, . . . ,Bt be atoms
(t ≥ 0). A graph rewriting rule, or a rule, is a definite
clause of the form A ← B1, . . . ,Bt . For a graph rewriting
rule A ← B1, . . . ,Bt , the atom A is called the head of the
rule, and the atoms B1, . . . ,Bt are called the body of the rule.
For two atoms p( f1, . . . , fr ) and p(g1, . . . , gr ), if fi � gi for
all i = 1, . . . ,r , then we write p( f1, . . . , fr ) � p(g1, . . . , gr ).
For two graph rewriting rules A ← B1, . . . ,Bt and A′ ←
B′1, . . . ,B

′
t , if A � A′ and Bi � B′i for all i = 1, . . . , t then we

write (A← B1, . . . ,Bt ) � (A′← B′1, . . . ,B
′
t ).

Definition 7: A formal graph system (FGS) is a finite set
of graph rewriting rules.

Definition 8: For a term graph f and an ordered list σ of
vertices of f , the form [ f , σ] is called a term graph pattern
fragment, or term graph fragment shortly.

Definition 9: Let f and g be term graphs which are vertex-
disjoint, i.e., Vf ∩ Vg = ∅. Let h = {u1, . . . ,u`} (` ≥ 1) be a
hyperedge in Hg. Without loss of generality, we assume that
portsg(h) = (u1, . . . ,u`). Let [ f , σ] be a term graph frag-
ment where σ = (v1, . . . , v`) is an ordered list of ` vertices in
Vf (1 ≤ ` ≤ |Vf |). The hyperedge replacement h ← [ f , σ]
on g is the following procedure: Let f ′ be a vertex-disjoint
copy of f (Vf ∩ Vf ′ = ∅) such that f and f ′ are term graph
isomorphic with an isomorphism π : Vf → Vf ′ . First we
remove the hyperedge h from Hg, and then identify the ports
u1, . . . ,u` of h with the vertices π(v1), . . . , π(v`) of f ′ in this

Fig. 2 Substitution: A graph G is obtained by applying the substitution
θ = {x1 := [ f1, (u1, u4)], x2 := [ f2, (w1, w3)]} to the term graph g. That
is, G � gθ.

order. In this way, we attach f ′ to g. The new vertex label
of ui is ϕg(ui).

Let Υ be a non-empty finite set of hyperedge replace-
ments on f . We denote by f (Υ) the term graph obtained by
applying all the hyperedge replacements inΥ simultaneously.

Definition 10: Let x be a variable in X and [ f , σ] a term
graph fragment, where rank(x) = |σ |. The form x := [ f , σ]
is called the binding of x by f and σ.

Definition 11: A non-empty finite set of bindings θ =
{x1 := [ f1, σ1], . . . , x` := [ f`, σ`]} is called a substitution
if x1, . . . , x` are mutually distinct variables in X and each fi
has no hyperedge labeled by a variable in {x1, . . . , x`}. Let g
be a term graph. For xi (1 ≤ i ≤ `), let Hg(xi) = {h ∈ Hg |

λg(h) = xi} and Υi = {h ← [ fi, σi] | h ∈ Hg(xi)}. Then let
Υθ =

⋃`
i=1 Υi . The term graph gθ is defined as g(Υθ ).

For a substitution θ and an atom p(g1, . . . , gr ), an atom
p(g1, . . . , gr )θ is defined as p(g1θ, . . . , grθ). For a graph
rewriting rule A← B1, . . . ,Bt , (A← B1, . . . ,Bt )θ is defined
as Aθ ← B1θ, . . . ,Btθ. Figure 2 gives an example of term
graphs and substitutions. Figure 3 shows an example of
FGSs.

Let f and g be term graphs which are vertex-disjoint.
When a substitution θ satisfies that f θ � gθ, the substitution
θ is called a unifier of f and g. If there exist substitutions
θ and θ ′ such that both f � gθ and f θ ′ � g hold, f (resp.
g) is called a variant of g (resp. f ). For atoms and graph
rewriting rules, a unifier and a variant are similarly defined.
A goal is a graph rewriting rule of the form ← B1, . . . ,Bt

(t ≥ 0). If t = 1, the goal “← B1” is called a single goal.
Also, if t = 0, it is called the empty goal.

For a graph rewriting rule C, let var(C) be the set of all
variables of term graphs appearing in C.

Definition 12: Let Γ be an FGS and D a goal. A derivation
from D on Γ is a sequence of triples (Di, θi,Ci) (i = 0,1, . . .)
satisfying the following 4 conditions:

1. Di is a goal, θi is a substitution, and Ci is a variant of a
graph rewriting rule in Γ.

2. D0 is D.
3. var(Ci) ∩ var(Cj) = ∅ for any j (i , j).
4. We assume that there exists a procedure Q that selects

one atom from the body of the goal. Let Di be the
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Fig. 3 Formal graph system and its FGS language: ΓSP contains two unary predicate symbols p and q.
The FGS languageGL(ΓSP, q) is the set of all two-terminal series-parallel (TTSP) graphs. GL(ΓSP, p)
consists of all series-parallel graphs.

goal← A1, . . . , A` (` ≥ 1) and Ci the graph rewriting
rule A ← B1, . . . ,Bt (t ≥ 0). Let A`′ (1 ≤ `′ ≤ `)
be an atom of the body of Di chosen by Q. In this
case, θi is a unifier of A and A`′ , and Di+1 is the goal
← A1θi, . . . , A`′−1θi,B1θi, . . . ,Btθi, A`′+1θi, . . . , A`θi .

A refutation is a finite derivation that ends with the empty
goal.

Definition 13: Let Γ be an FGS and D a single goal. Let
F = {(Di, θi,Ci)}0≤i≤γ be a refutation from D on Γ. The
refutation tree of F is the rooted tree Tγ+1 defined as follows:

1. Each vertex is labeled with a single or the empty goal.
2. The root label is a single goal D0 = D.
3. Each leaf is labeled with the empty goal.
4. T0 is the rooted tree consisting of one vertex labeled

with D. For any i = 0, . . . , γ, Ti+1 is the rooted tree
obtained by applying (Di, θi,Ci) to Ti as follows: Let
Di be the goal← Ai

1, . . . , A
i
`i
(`i ≥ 1). We assume that

Ti has a leaf labeled by← Ai
j (1 ≤ j ≤ `i). Let Ci be a

graph rewriting rule Ai ← Bi
1, . . . ,B

i
ti
(ti ≥ 0) and θi a

unifier of Ai and Ai
j . In this case, Ti+1 is a rooted tree in

which the vertex labeled by← Ai
j has new ti children

which are labeled by← Bi
jθi (1 ≤ j ≤ ti) respectively.

Hence, the ti children are leaves.

Figure 4 shows an example of refutation trees, which
represents a refutation from a single goal.

Definition 14: Let Γ be an FGS. The relation Γ ` C for a
graph rewriting rule C is defined as follows:

1. If C ∈ Γ, then Γ ` C holds.
2. If Γ ` C, then for any substitution θ, Γ ` Cθ holds.
3. If Γ ` A ← B1, . . . ,B`′, . . . ,B` (1 ≤ `′ ≤ `) and
Γ ` B`′ ← C1, . . . ,Ct (t ≥ 0), then Γ ` A ←
B1, . . . ,B`′−1,C1, . . . ,Ct,B`′+1, . . . ,B` holds.

A graph rewriting rule C is said to be provable from Γ if
Γ ` C holds.

Hereafter, a predicate symbol with one argument is
called a unary predicate symbol. For an FGS Γ and a unary
predicate symbol p, the FGS language is defined as follows:

GL(Γ, p) = {G ∈ G(Σ,Λ) | Γ ` p(G) ←}.

Fig. 4 Refutation tree: This is obtained by ΓSP in Fig. 3 from the single
goal of the root. The squares “�” in this figure represent the empty goal.

Figure 3 shows GL(ΓSP, p) as an example of the FGS lan-
guages. Moreover, the class of all FGS languages is defined
as follows:

FGSL = {GL(Γ, p) | Γ is an FGS and p is a unary
predicate symbol}.

2.3 Boundary Representation of a Subgraph

Let G be a connected ground term graph in G(Σ,Λ).
Let α be a connected term subgraph of G, i.e., we can
write α = (Vα,Eα, ϕG |Vα,ψG |Eα,∅,∅,∅), where the sym-
bol ∅ represents either the empty set or a function whose
domain is empty. We denote by G \ α the term sub-
graph of G which is induced by EG \ Eα, i.e., G \
α = (VG\α,EG \ Eα, ϕG |VG\α,ψG |(EG \ Eα),∅,∅,∅), where
VG\α =

⋃
{u,v }∈EG\Eα {u, v}.

Definition 15: Let G be a connected ground term graph in
G(Σ,Λ) and α a connected term subgraph of G. A boundary
vertex of α is a vertex of α that is one of the endpoints of an
edge of G \ α. A boundary edge of α is an edge of α at least
one of whose endpoints is a boundary vertex. A boundary
representation of α is a 4-tuple (bv(α), be(α), v, isin(v,α)).
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Fig. 5 The term graphs G \ α and G � α for a term graph G and a
connected term subgraph α of G: One of the boundary representations
of α is (bv(α), be(α), v6, f alse), where bv(α) = {v1, v4 } and be(α) =
{(v1, v2), (v1, v3), (v2, v4), (v3, v4)}.

Each component is as follows:

1. bv(α) is the set of all boundary vertices of α.
2. be(α) is the set of all boundary edges of α.
3. Let v be an arbitrary vertex of G. This vertex is called

the marker of α.
4. isin(v,α) is a predicate that indicates whether the

marker v is a vertex of α or not. That is, if v ∈ Vα,
then isin(v,α) = true, otherwise isin(v,α) = f alse.

Let G be a connected ground term graph and α a con-
nected term subgraph ofG. Let bv(α) = {v1, . . . , v`} (` ≥ 1).
For a variable x ∈ X with rank(x) = |bv(α)| and an ordered
list σ = (v1, . . . , v`) of vertices in bv(α), we denote by G �
α a term graph (VG\α,EG\α, ϕG\α,ψG\α, {bv(α)}, λ, ports)
where λ(bv(α)) = x, and ports(bv(α)) = σ. Figure 5 shows
an example of G, α, G \ α, and G � α. A boundary rep-
resentation of a subgraph α is a sufficient representation to
show α concisely. Let α and α′ be connected subgraphs of
G. Chiang et al. [5] show that if α and α′ have the same
boundary representation, then α � α′ holds.

2.4 Concept Learning

This paper deals with the FGS language class FGSL as a
concept class. The set of all pairs (Γ, p) of an FGS Γ and
a unary predicate symbol p is used to represent the concept
class FGSL. We use standard terminology in learning
theory. Please see [13], [17] for detailed descriptions of the
PAC learning model and formalizations of concept classes,
representation classes, examples, and so on.

Let Ω be a finite alphabet. The set of all strings over
alphabetΩ is denoted byΩ∗. For a string w ∈ Ω∗, we denote
by |w | the length of string w. For an integer n ≥ 0, let
Ωn = {w ∈ Ω∗ | |w | = n} and Ω[n] = {w ∈ Ω∗ | |w | ≤ n}.
A subset c ofΩ∗ is called a concept. A concept c is regarded
as a binary function on Ω∗. That is, for any w ∈ Ω∗, the
characteristic function χc : Ω∗ → {0,1} returns 1 if w ∈ c,
otherwise 0. A concept class is a set C ⊆ 2Ω∗ of non-empty
concepts.

A pair 〈w, ρ〉 of w ∈ Ω∗ and ρ ∈ {0,1} is called an
example. For a set of examples S ⊆ Ω∗ × {0,1}, let S+ =
{w | 〈w,1〉 ∈ S} and S− = {w | 〈w,0〉 ∈ S}. A concept
c ∈ C is said to be consistent with a set S of examples if

χc(w) = 1 for all w ∈ S+ and χc(w) = 0 for all w ∈ S−.
LetΘ be a finite alphabet. A hypothesis representation,

or a representation simply, of a concept class C is a function
R : C → 2Θ∗ such that for any concept c, R(c) is a non-
empty subset of Θ∗, such that for any two different concepts
c1 and c2, R(c1) ∩ R(c2) = ∅ holds. Let c be a concept in
C. R(c) denotes the set of names for c. Let `min(c,R) be the
minimum length of the names for the concept c.

Definition 16: A representation R of a concept class C is
polynomial-time computable if there exists a deterministic
algorithm B and a polynomial poly(·) such that (a) and (b)
below are satisfied:

(a) B receives w ∈ Ω∗ and ν ∈ Θ∗ as inputs.
(b) If ν ∈ R(c) for some c ∈ C, B outputs χc(w) in

poly(|w | + |ν |) time and terminates.

For any set S of examples, let `min(S,R) be theminimum
length of the names for the concepts that are consistent with
S.

Definition 17: Let C be a concept class, R the represen-
tation of C, and S ⊆ Ω∗ × {0,1} a finite set of examples.
A deterministic algorithm A with S as input is fitting if it
outputs a representation ν ∈ R(c) whenever there exists a
concept c ∈ C that is consistent with S. A is polynomial-
time fitting if A runs in a polynomial time with respect to
`min(S,R) and

∑
〈w,ρ〉∈S |w |.

Definition 18: Let C be a concept class and S a subset of
Ω∗. C is said to shatter S if {c∩ S | c ∈ C} = 2S holds. The
Vapnik-Chervonenkis dimension, orVCdimension simply, of
C is the maximum cardinality of the set S shattered by C. C
has a polynomial dimension if there exists some polynomial
poly(·) such that the VC dimension of C[n] = {c∩Ω[n] | c ∈
C} is less than poly(n). When the VC dimension of C is not
a polynomial dimension, the VC dimension of C is called to
be an exponential dimension.

Lemma 1 ([3], [9], [14], [15]): Let C be a concept class
and R a polynomial-time computable representation of C. A
concept class C is polynomial-time PAC learnable with R if
C has a polynomial dimension and a polynomial-time fitting
algorithm with R.

Lemma 2 ([14]): A concept class C has a polynomial di-
mension if and only if there exists a polynomial poly(·) such
that log2

��C[n]�� ≤ poly(n) holds (n ≥ 0).

3. Polynomial-Time Learnable Hereditary Formal
Graph System

3.1 Variable-Hereditary FGS of Bounded Degree

Definition 19: A graph rewriting rule

q0(g
0
1, . . . , g

0
r0 ) ← q1(g

1
1, . . . , g

1
r1 ), . . . ,qt (g

t
1, . . . , g

t
rt
)

is hereditary if each term graph gij (1 ≤ i ≤ t,1 ≤ j ≤ ri)
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in the body is a connected term subgraph of some g0
j (1 ≤

j ≤ r0) in the head when the vertex labels of ports of the
variables are ignored. An FGS Γ is a hereditary FGS if all
graph rewriting rules in Γ are hereditary.

Definition 20: A hereditary graph rewriting rule

q0(g
0
1, . . . , g

0
r0 ) ← q1(g

1
1, . . . , g

1
r1 ), . . . ,qt (g

t
1, . . . , g

t
rt
)

is variable-hereditary if each term graph gij (1 ≤ i ≤ t,1 ≤
j ≤ ri) in the body is a star term graph of a variable appearing
in some term graph g0

j (1 ≤ j ≤ r0) in the head. An FGS Γ
is a variable-hereditary FGS if all graph rewriting rules in Γ
are variable-hereditary.

Definition 21: For nonnegative integers m, s, t,r, w, and d,
let H -FGSL(m, s, t,r, w, d) be the class of all FGS lan-
guages GL(Γ, p) such that p is a unary predicate symbol and
Γ is a hereditary FGS that satisfies the following 6 conditions:

(1) The FGS Γ consists of at most m graph rewriting rules
(m ≥ 1).

(2) The number of occurrences of variables in the head of
a graph rewriting rule in Γ is at most s (s ≥ 0).

(3) The number of atoms in the body of a graph rewriting
rule in Γ is at most t (t ≥ 0).

(4) The number of arguments for each predicate symbol
appearing in Γ is at most r (r ≥ 1).

(5) The rank of each variable of term graphs appearing in
Γ is at most w (w ≥ 1).

(6) The degree of each vertex of term graphs appearing in
Γ is at most d (d ≥ 0).

The parameters m, s, t,r, w, d are related to the representation
of an FGS when it is written.

Definition 22: LetVH -FGSL(m, s, t,r, w, d) be the class
of all FGS languagesGL(Γ, p) such that p is a unary predicate
symbol and Γ is a variable-hereditary FGS that satisfies (1)–
(6) of Definition 21.

Let k be a positive integer. A k-tree is an undirected
graph which is defined inductively as follows: The complete
graph on k + 1 vertices is a k-tree. A k-tree G with n + 1
vertices (n ≥ k+1) can be constructed from a k-tree H with n
vertices by adding a new vertex and k new edges connecting
the new vertex to the vertices of a clique of size k of H. A
partial k-tree is a subgraph of a k-tree. The treewidth of an
undirected graph G is the minimum k such that G is a partial
k-tree.

Definition 23: Let VH -FGSLk ,∆(m, s, t,r, w, d) be the
subclass of VH -FGSL(m, s, t,r, w, d) in which all FGS
languages GL(Γ, p) satisfy the following 2 conditions:

(7) The treewidth of each graph in the FGS language
GL(Γ, p) is at most k.

(8) The maximum degree of each graph in the FGS lan-
guage GL(Γ, p) is at most ∆.

We note that unlike the parameters m, s, t,r, w, d, the param-
eters k,∆ are related to the FGS language obtained from an

Fig. 6 The FGSs Γ2-tr ee and Γpar t ial_2-tr ee : These FGS lan-
guages are the sets of all 2-trees and all partial 2-trees, respec-
tively. We see that GL(Γ2-tr ee , p) ∈ VH-FGSL(3, 2, 2, 1, 3, 2) and
GL(Γpar t ial_2-tr ee , p) ∈ VH-FGSL(9, 2, 2, 1, 3, 2).

FGS.
We give two FGSs Γ2-tree and Γpartial_2-tree in Fig. 6,

where GL(Γ2-tree, p) and GL(Γpartial_2-tree, p) are the set
of all 2-trees and the set of all partial 2-trees (including dis-
connected graphs), respectively. The 2nd graph rewriting
rule in Γ2-tree represents the operation of creating one new
smooth tree decomposition [4] by identifying two vertices in
the specified nodes of two different smooth tree decomposi-
tions. We omit the details of the proof. We can generalize
this idea to construct variable-hereditary FGSs for k-trees
and partial k-trees.

Let G(Σ,Λ)n be the set of all ground term graphs with
n vertices in G(Σ,Λ), and let G(Σ,Λ)[n] be the set of all
ground term graphs with at most n vertices in G(Σ,Λ). Also,
hereditary FGS language classes are defined as follows:

H -FGSL(m,∗, t,∗, w, d)

=
⋃

s≥0, r≥1
H -FGSL(m, s, t,r, w, d),

VH -FGSL(m,∗,∗,r, w, d)

=
⋃

s≥0, t≥0
VH -FGSL(m, s, t,r, w, d),

VH -FGSL∗,∆(m, s, t,r, w, d)
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Fig. 7 Variable-hereditary FGS language: The FGS language GL(Γpseudo-SP, p) is in
VH-FGSL2,3(4, 2, 2, 1, 2, 2). The treewidth of any graph in GL(Γpseudo-SP, p) is at most 2 be-
cause each graph in it is a series-parallel graph.

=
⋃
k≥1
VH -FGSLk ,∆(m, s, t,r, w, d).

Figure 3 shows an example ΓSP of variable-hereditary
FGSs. From the graph rewriting rules of ΓSP, we have
GL(ΓSP, p) ∈ VH -FGSL(4,2,2,1,2,2). In ΓSP, the term
graph appearing at the head of the 2nd and 3rd graph rewrit-
ing rules have 2 variables that share a vertex as a port. From
this, the degree of a graph in GL(ΓSP, p) is not bounded.
We divide each shared vertex into at least 2 vertices and
connect the vertices by edges. In this way, we have the FGS
Γpseudo-SP in Fig. 7, whose languageGL(Γpseudo-SP, p) con-
sists of graphs of degree at most 3. Since the treewidth of
any series-parallel graphs is at most 2, it is easy to see that
the treewidth of graphs that are generated by Γpseudo-SP is
at most 2.

3.2 VC Dimension of Variable-Hereditary FGS

Theorem 1: H -FGSL(m,∗, t,∗, w, d) has an exponential
dimension when m ≥ 10, t ≥ 1, w ≥ 2, and d ≥ 2.

Proof . It follows obviously from the proof of Theorem 4.2
in [12]. We translate any string w over {0,1} appearing on
the proof into a ground term graph gwhich is a chain graph of
the same length |w | with edge labels in {0,1}. Two vertices
of degree 1 of g are specified by special vertex labels which
express the start and end points of the string, respectively. �

Figure 8 shows an example of FGSs with no edge la-
bel, which also realizes an idea of the proof of Theorem 4.2
in [12]. It shows thatH -FGSL(m,∗, t,∗, w, d) has an expo-
nential dimension when m ≥ 10, t ≥ 1, w ≥ 2, and d ≥ 5,
unless any term graph and ground term graph have more
than one edge label.

Theorem 2: If m,r, w, d are constants (m ≥ 1,r ≥ 1, w ≥
1, d ≥ 0), VH -FGSL(m,∗,∗,r, w, d) has a polynomial di-
mension.

Proof . For any n ≥ 0, letVH -FGSL(m,∗,∗,r, w, d)n be

{L ∩ G(Σ,Λ)n | L ∈ VH -FGSL(m,∗,∗,r, w, d)},

and letVH -FGSL(m,∗,∗,r, w, d)[n] be

{L ∩ G(Σ,Λ)[n] | L ∈ VH -FGSL(m,∗,∗,r, w, d)}.

Thereafter, the number of variable-hereditary FGS languages
in VH -FGSL(m,∗,∗,r, w, d)n is evaluated. Let Γ be a
variable-hereditary FGS. Since the number of graph rewrit-
ing rules does not exceed m, only m predicate symbols
with at most r arguments need to be considered. Let
C = q0(g

0
1, . . . , g

0
r0 ) ← q1(g

1
1, . . . , g

1
r1 ), . . . ,qt (g

t
1, . . . , g

t
rt
) be

a graph rewriting rule in Γ. We only need to consider a
sufficient amount of variable-hereditary FGSs to generate a
non-empty set inG(Σ,Λ)n. Hence, we consider graph rewrit-
ing rules whose heads contain term graphs with at most n
vertices.

For a term graph of at most n vertices, considering the
ordering of the ports of size at most w, the maximum number
of hyperedges is

w∑̀
=1
`!

(
n
`

)
≤ wnw .

Since the number of arguments of the predicate symbol q0
of the rule C is at most r , i.e., r0 ≤ r , the number of possible
distinct variables in C is at most rwnw . Let K = rwnw . K is
the maximum number of distinct variables which appear in
C.
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Fig. 8 Hereditary FGS language: GL(Γ, p) is in H-FGSL(10, ∗, 1, ∗, 2, 5). The FGS language
GL(Γ, p) contains three graphs that express 010, 011 and 101. In a similar way, we construct a hereditary
FGS which generates a finite set of graphs which express strings in {0, 1}∗. H-FGSL(10, ∗, 1, ∗, 2, 5)
has an exponential dimension, even if any term graph and ground term graph have no edge label.

For a term graph of at most n vertices and maximum
degree d, the number of edges is at most dn and the number
of possible combinations of edges is(

d∑̀
=1

(
n − 1
`

))n
≤ ndn.

Since the head has at most r arguments and at most m
predicate symbols is sufficient for Γ, the number of possible
heads for C is at most

S1 = m ·
(
(|Σ | + 1)n · (|Λ| + 1)dn · ndn · (K + 1)wn

w
)r

≤ m
(
(2|Σ |)n · (2|Λ|)dn · ndn · (2K)wn

w
)r

= m
(
2n+dn+wn

w

|Σ |n |Λ|dnndnKwnw
)r
.

A term graph of the body of a variable-hereditary graph
rewriting rule is the star term graph of a variable of the head
of the graph rewriting rule. The number of star term graphs
obtained from the head of C is at most K . Thus, the number
of possible atoms appearing in the body of C is at most
m(K + 1)r . Since the order of atoms in a body is negligible,

the number of possible bodies for the head of C is at most
2m(K+1)r . From the above, the number of possible graph
rewriting rules for C is at most

S2 = S1 · 2m(K+1)r

≤ m
(
2n+dn+wn

w

|Σ |n |Λ|dnndnKwnw
)r

2m(K+1)r .

Therefore, since the number of variable-hereditary FGS of
m graph rewriting rules is at most (S2 + 1)m, we have
log2 |VH -FGSL(m,∗,∗,r, w, d)n | ≤ m log2(S2 + 1) ≤
m + m log2 S2. Since

log2 S2≤ log2 m + rn(1 + d + log2 |Σ | + d log2 |Λ|)

+ rdn log2 n + rwnw

+ rwnw log2 K + m(K + 1)r ,

and K = rwnw , if m,r, w, d are constants,
log2 |VH -FGSL(m,∗,∗,r, w, d)n | = O(nw log2 n + nrw).
Thus, we have log2

��VH -FGSL(m,∗,∗,r, w, d)[n]
�� =

O(nw log2 n + nrw) if m,r, w, d are constants. There-
fore, from Lemma 2, if all m,r, w, d are constants,
VH -FGSL(m,∗,∗,r, w, d) has a polynomial dimension. �
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Corollary 1: Let ∆ be any positive integer (∆ ≥ 1). If
m,r, w, d are constants (m ≥ 1,r ≥ 1, w ≥ 1, d ≥ 0),
VH -FGSL∗,∆(m,∗,∗,r, w, d) has a polynomial dimension.

3.3 Polynomial-Time Fitting for Variable-Hereditary FGS
of Bounded Degree

Miyano et al. showed in [12] that a class of elementary
formal systems is polynomial-time PAC learnable. In this
section, we prove that a class of variable-hereditary FGSs is
polynomial-time PAC learnable. The result of this section
follows the result of the paper [12].

Lemma 3: Given an FGS Γ, a unary predicate symbol p,
and a ground term graph G with n vertices, if Γ is a variable-
hereditary FGS that satisfies the conditions (1)–(6) of Def-
inition 21 and GL(Γ, p) satisfies the conditions (7)–(8) of
Definition 23, the problem of determining whether or not
G ∈ GL(Γ, p) is computable in

O(ξ(m, s, t,r, w,∆) n2s(w+1) · ISO(n)) time,

where ξ(m, s, t,r, w,∆) is an exponential function of s, w,∆
and ISO(n) is the computation time required to decide the
isomorphism between two ground term graphs with n ver-
tices.

Proof . Since G is a ground term graph and Γ is variable-
hereditary, whenever we use C ∈ Γ to show that p(G) is
provable from Γ, i.e., Γ ` p(G) ←, we can obtain the graph
rewriting rule Cθ consisting of ground term graphs by a
substitution θ before applying the modus ponens. More-
over, since Γ is hereditary, the substitution only needs to
consider all variables that correspond to the connected sub-
graph (ground term subgraph) of G with at most w boundary
vertices.

Let Sub(G) be the set of all connected subgraphs α
of G such that |bv(α)| ≤ w holds. Since any subgraph in
Sub(G) is intended to be replaced with variables, the or-
der of boundary vertices corresponding to the ports of each
variable is also considered. First we evaluate |Sub(G)| by
using the boundary representations of the subgraphs (Def-
inition 15) and the condition (8) of Definition 23. Let u
be a boundary vertex of a subgraph of G. The number of
possible combinations of boundary edges connecting to u
is at most 2∆. The maximum number of hyperedges is at
most wnw from the proof of Theorem 2. Then, we have
|Sub(G)| ≤ 2 · n · wnw · (2∆)w = 2w∆+1wnw+1.

Let G(G) be the set of all graph rewriting rules ob-
tained by replacing each variable of the term graphs of each
graph rewriting rule in Γ with any connected subgraph in
Sub(G). The set G(G) contains sufficiently many graph
rewriting rules in order to construct a derivation showing
that Γ ` p(G) ← holds. For each graph rewriting rule in Γ,
the number of substitutions that replace all variables of the
term graphs with connected subgraphs in Sub(G) is at most
|Sub(G)|s , since every head has at most s variables. There-
fore, |G(G)| ≤ m|Sub(G)|s holds. The length of a graph

rewriting rule C, denoted by |C |, is defined as the sum of
the representation sizes of the graphs appearing in C. For a
graph rewriting rule C and an atom A, the graph rewriting
rule obtained by applying modus ponens can be computed in
O(|C |+ |A|) time. The length of each graph rewriting rule in
G(G) is at most |G |r(1 + t), where |G | is the representation
size of the graph G.

IfG(G) contains a graph rewriting rule A←, we remove
all occurrences of A from the body of each graph rewriting
rule in G(G). This step can be computed in O(tr |G(G)| ·
ISO(n)) time. This step is repeated until an atom p(G) is
obtained or no new atom is obtained anymore. Since at most
|G(G)| steps are sufficient for this task, the total computation
is completed in

O(tr |G(G)|2 · ISO(n))
= O(tr(m|Sub(G)|s)2 · ISO(n))
= O(tr(m(2w∆+1wnw+1)s)2 · ISO(n))

= O(ξ(m, s, t,r, w,∆) n2s(w+1) · ISO(n)) time,

where ξ(m, s, t,r, w,∆) is an exponential function of s, w,∆.
�

Lemma 4 ([7]): Given two graphs G1 and G2 with n ver-
tices ofmaximumdegree atmost∆, the problemof determin-
ing whether or not G1 and G2 are isomorphic is computable
in nO((log∆)c ) time for an absolute constant c.

Lemma 5: Given a ground term graph G with n vertices
and an FGS Γ ∈ VH -FGSLk ,∆(m, s, t,r, w, d), the prob-
lem of determining whether G ∈ GL(Γ, p) is computable in
polynomial time with respect to m, t,r and n, if s, w and ∆
are constants.

Proof . This is proved from Lemmas 3 and 4. �

Lemma 6: If m, s, t,r, w, d,∆ are constants (m ≥ 1, s ≥
0, t ≥ 0, r ≥ 1, w ≥ 1, d ≥ 0, ∆ ≥ 1),
VH -FGSL∗,∆(m, s, t,r, w, d) has a polynomial-time fitting.

Proof . Let S be a finite set of examples of a concept in
VH -FGSL∗,∆(m, s, t,r, w, d). We note that S is a subset of
G(Σ,Λ) × {0,1}. If S+ is empty, we choose one ground term
graph G ∈ G(Σ,Λ) of treewidth at most w that is not isomor-
phic to any element of S−, and then we set Γ = {p(G) ←}.
Clearly, Γ is a variable-hereditary FGS consisting of term
graphs of treewidth at most w, and GL(Γ, p) is consistent
with S. Hence, we assume that S+ is non-empty.

Let G(m, s, t,r, w, d,S+) be the set of all pairs (Γ, p) of
an FGS Γ and a unary predicate symbol p that satisfy the
following 2 conditions:

(1) Γ is a variable-hereditary FGS which satisfies condi-
tions (1)–(8) of Definitions 21 and 23.

(2) For each term graph g of the heads of graph rewriting
rules in Γ, there exist a substitution θ and a ground term
graph G ∈ S+ such that gθ is term subgraph isomorphic
to G.

Claim 1. There exists a pair (Γ, p) ∈ G(m, s, t,r, w, d,S+)
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such that GL(Γ, p) and S are consistent.

Proof of Claim 1. Since S is a set of examples of a concept
c in VH -FGSL∗,∆(m, s, t,r, w, d), there is a pair (Γ0, p) of
an FGS Γ0 and a unary predicate symbol p that satisfy con-
dition (1) and GL(Γ0, p) = c. Without loss of generality, we
assume that Γ0 contains only graph rewriting rules neces-
sary to generate the examples in S+. Therefore, Γ0 satisfies
condition (2). (End of Proof of Claim 1)

Claim 2. |G(m, s, t,r, w, d,S+)| is a polynomial with respect
to |S+ | and n = max{|VG | | G ∈ S+}.

Proof of Claim 2. Let Π(s,S+) be the set of term graphs g
satisfying the following 2 conditions:

(1) g is a term graphwith at most s occurrences of variables
in X . We note that g may have a variable that occurs
more than once.

(2) There exists a substitution θ such that gθ is a term
subgraph isomorphic to at least one example G ∈ S+.

Let Sub(G) be the set of all connected subgraphs α of G
such that |bv(α)| ≤ w holds. From the proof of Lemma
3, we have Sub(G) ≤ 2w∆+1wnw+1. We note that a term
subgraph gθ that satisfies the condition (2) is a subgraph in
Sub(G) since any graph rewriting rule is variable-hereditary.
Since at most s variables appear in g and the rank of each
variable is between 1 and w, and moreover since the scope of
each variable is limited to the graph rewriting rule in which
the variable appears, without loss of generality, the number
of distinct variables which are used in Γ is assumed to be at
most sw. Thus, the number of possible bindings obtained
from G is at most sw |Sub(G)|. Since the number of possible
substitutions θ is at most (sw |Sub(G)|)` for a term graph g
having ` occurrences of variables (0 ≤ ` ≤ s) and the vertex
labels of ports of the variables are ignored, the following
inequality holds:

|Π(s,S+)| ≤
∑
G∈S+

(
s∑̀
=0
|Sub(G)| |Σ |`w(sw |Sub(G)|)`

)
≤

∑
G∈S+

(sw |Σ |w)s+1
|Sub(G)|s+2

≤ |S+ | (sw |Σ |w)
s+1

(
2w∆+1wnw+1

)s+2

= ξ1(s,r, w,∆) |S+ | n(s+2)(w+1),

where ξ1(s,r, w,∆) is an exponential function of s, w,∆. The
number of possible heads is at most m|Π(s,S+)|r . Also, the
number of possible body atoms is at most m(s |Σ |w)r . This is
because each term graph of the body is a star term graph of a
variable appearing in the term graph of the head. Therefore,
the following equation holds:

|G(m, s, t,r, w, d,S+)|

≤
(
m|Π(s,S+)|r (m(s |Σ |w)r )t

)m
≤

(
m

(
ξ1(s,r, w,∆) |S+ | n(s+2)(w+1)

)r
(m(s |Σ |w)r )t

)m

= ξ2(m, s, t,r, w,∆) |S+ |mr nmr(s+2)(w+1),

where ξ2(m, s, t,r, w,∆) is an exponential function of
m, s, t,r, w,∆. Therefore, |G(m, s, t,r, w, d,S+)| is a polyno-
mialwith respect to |S+ | and n if all the parametersm, s, t,r, w,
and ∆ are constants. (End of Proof of Claim 2)

From the above, the following algorithm finds a de-
sired variable-hereditary FGS in polynomial time: Firstly
we enumerate the pairs (Γ, p) in G(m, s, t,r, w, d,S+). For
each pair, we check whether or not G ∈ GL(Γ, p) holds for
all G ∈ S+ and G < GL(Γ, p) holds for all G ∈ S−. This
check is polynomial-time computable from Lemma 5. If a
pair is found for which all of these checks hold, the algorithm
outputs the pair as a hypothesis. �

3.4 Main Theorem

Theorem 3: If m, s, t,r, w, d, and ∆ are constants (m ≥

1, s ≥ 0, t ≥ 0, r ≥ 1, w ≥ 1, d ≥

0, ∆ ≥ 1), VH -FGSL∗,∆(m, s, t,r, w, d) is polynomial-
time PAC learnable.
Proof . It follows from Lemma 1, Corollary 1, and Lemma 6.

�

4. Conclusion

In this paper, we defined VH -FGSLk ,∆(m, s, t,r, w, d)
as the class of variable-hereditary FGS languages un-
der some parameters, which is a subclass of the
class FGSL of FGS languages, and proved that the
classVH -FGSL∗,∆(m, s, t,r, w, d) is polynomial-time PAC
learnable if the parameters m, s, t,r, w, d,∆ are constants.
In future work, we will discuss the learnability of the
classVH -FGSLk ,∆(m, s, t,r, w, d) under theminimally ad-
equate teacher (MAT) learning model. The MAT learning
model is a computational learning model that learns a con-
cept in a specified concept class using only membership and
equivalence queries as oracles, which was introduced by
Angluin [1].

In addition to the PAC learning model discussed in this
paper, other known learning models in computational learn-
ing theory include the query learning model, which is an
extension of MAT learning model, and the polynomial-time
inductive inference model from positive examples. Shibata
et al. [18] showed that a subclass of the context-deterministic
context-free languages is polynomial-time learnable. Hara
et al. [8] showed that the class of graph languages defined by
the context-deterministic regular FGSs is polynomial-time
MAT learnable. Based on these results, we are studying the
polynomial-time learnability of context-deterministic regu-
lar FGS language classes and the polynomial-time learn-
ability of concept classes based on the size restricted FGSs
introduced by Uchida et al. [19].
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