
840
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

PAPER
BayesianPUFNet: Training Sample Efficient Modeling Attack for
Physically Unclonable Functions

Hiromitsu AWANO†a) and Makoto IKEDA††, Members

SUMMARY This paper proposes a deep neural network named
BayesianPUFNet that can achieve high prediction accuracy even with few
challenge-response pairs (CRPs) available for training. Generally, modeling
attacks are a vulnerability that could compromise the authenticity of physi-
cally unclonable functions (PUFs); thus, various machine learning methods
including deep neural networks have been proposed to assess the vulnerabil-
ity of PUFs. However, conventional modeling attacks have not considered
the cost of CRP collection and analyzed attacks based on the assumption
that sufficient CRPs were available for training; therefore, previous studies
may have underestimated the vulnerability of PUFs. Herein, we show that
the application of Bayesian deep neural networks that incorporate Bayesian
statistics can provide accurate response prediction even in situations where
sufficient CRPs are not available for learning. Numerical experiments show
that the proposed model uses only half the CRP to achieve the same re-
sponse prediction as that of the conventional methods. Our code is openly
available on https://github.com/bayesian-puf-net/bayesian-puf-net.git.
key words: Bayesian deep learning, modeling attacks, physically unclon-
able functions

1. Introduction

In recent years, the evolution of cheap devices such as
Raspberry-Pi has pioneered a new paradigm of internet
called Internet of Things (IoT), which is expected to cre-
ate new opportunities for direct integration of the physical
world with the cyber world. Because several devices are
expected to get involved in the world of open networks,
security will remain an important technological aspect in
the IoT era. Among security measures, device and/or user
authentication is the most fundamental technology because
identification is part of almost all communication protocols.
Until recently, the best method to implement device authen-
tication has been to store a secret key in non-volatile memory
(NVM). However, fabrication of CMOS logic with dedicated
NVMs requires additional processes, which increases the de-
vice cost. Moreover, the stored secret key is vulnerable to
physical attacks, and hence, the device is also required to be
designed with an active tamper protection/detection circuit,
which further increases the device cost.

Physically unclonable functions (PUFs) have attracted
increasing attention as a promising alternative to the secret-

Manuscript received May 21, 2022.
Manuscript revised September 26, 2022.
Manuscript publicized October 31, 2022.
†The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
††The author is with the Graduate School of Engineering, The

University of Tokyo, Tokyo, 113-0032 Japan.
a) E-mail: awano@i.kyoto-u.ac.jp
DOI: 10.1587/transfun.2022EAP1061

key-based device authentication, which utilizes a manufac-
turing variability of transistors as the secret key [1]. Due to
the miniaturization of transistors, variations in the number of
doping ions and/or atomic level bumps on the gate electrode
result in significant threshold voltage (VTH) variations. The
VTH variability is an inherent characteristic of the transistor
which cannot be replicated even by the manufacturer of the
PUF,making it a unique and unclonable “fingerprint” of each
chip.

Typically, a PUF instance takes an n-bit signal called
“challenge”, and outputs an m-bit signal called the “re-
sponse.” Hence, the PUF can be viewed as a Boolean
function f : {0,1}n → {0,1}m. This mapping should be
unique and stable despite the variations in the operating con-
ditions. In addition to these requirements, recent progress on
machine learning algorithms poses a new security threat on
PUFs in the form of “modeling attack tolerance.” Because a
challenge and the corresponding response are transmitted via
an open network, there is a risk of challenge-response pairs
(CRPs) being collected by an adversary, who can recover
the unique mapping f using a suitable machine learning
algorithm by collecting enough CRPs.

Among the numerous PUF implementations on silicon,
the Arbiter PUF (APUF) is one of the most popular realiza-
tion [2]. An APUF is composed of multiple delay elements
and an arbiter. The n-bit challenge activates a set of delay ele-
ments alongwhich a signal propagates. Then, the arbiter dig-
itizes the signal propagation delay to yield a 1-bit response.
Although APUFs are superior in their simplicity, design reg-
ularity, low hardware overhead, and affinity with VLSI im-
plementations, they are rarely used on their own because
of their severe vulnerability to modeling attacks. Hence,
recent studies have proposed to combine multiple APUFs
as a building block to generate secure APUF compositions:
XORPUF [3], Lightweight Secure PUF (LSPUF) [4], Mul-
tiplexer PUF (MPUF) [5], and Interpose PUF (IPUF) [6].
Although several studies have reported successful model-
ing attacks even on these secure APUF compositions, many
of them assume that the adversary has access to auxiliary
information such as the side channel [7].

Black-box attacks on APUF compositions are known
to be difficult even with the help of deep neural networks
(DNNs). [8] proposed a two-stage algorithm where de-
noising autoencoders first extract informative features from
the challenge input, and then use logistic regression (LR) to
predict the corresponding response signal. The drawback
of this method is that feature extraction and classification

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

https://github.com/bayesian-puf-net/bayesian-puf-net.git

AWANO and IKEDA: BAYESIANPUFNET: TRAINING SAMPLE EFFICIENT MODELING ATTACK FOR PHYSICALLY UNCLONABLE FUNCTIONS
841

are conducted separately; hence, the extracted features may
not be suitable for response prediction. Further, DNN-based
modeling attacks on more challenging APUF compositions
such as 5-XORAPUF or LSPUF have not been reported. Re-
cently, an end-to-end method, where both feature extraction
and classification are integrated into a single DNN and are
jointly trained via a back propagation (BP) algorithm, is ap-
plied for modeling attack on a double arbiter PUF (DAPUF),
which is a APUF composition [9], [10]. Comprehensive
analysis has been done in [11], where successful model-
ing attacks on four APUF compositions, i.e., XOR APUF,
LSPUF, MPUF, and IPUF, have been reported.

Recent intensive research has revealed the modeling at-
tack vulnerabilities of APUF compositions. However, DNNs
require a large number of CRPs to achieve high accuracy in
training, and thus existing studies may be over-estimating
the number of CRPs needed for a successful attack. For
example, achieving 98.2% prediction accuracy of 5-XOR
APUF responses requires 145k CRPs. Assuming that an
edge device makes a single authentication every hour using
the 5-XOR APUF, it would take about 16.5 years to collect
145k CRPs, so even if an attacker had intercepted all CRPs
transferred during the period, the probability of a successful
attack would be low and thus the same PUF instance could
continue to be used. However, if the same prediction accu-
racy could be achieved with half the number of CRPs, the life
span in which the same PUF instance could be safely used
would be halved, to about eight years. Therefore, in order
to accurately estimate the security of PUF, it is necessary to
devise an attack method that requires only fewer CRPs.

In this paper, we propose a training-sample efficient
DNN-based modeling attack on APUF compositions. When
the number of training examples is not enough compared
to the number of learnable parameters, the DNN can easily
learn a dictionary-like mapping between the challenge and
the corresponding response without recovering the hidden
mapping f . Hence, the trained DNN will exhibit perfect
performance only on the training samples; however, its ac-
curacy of predicting responses corresponding to previously
unseen challenges, is expected to be poor. We solve this
problem by employing a “Bayesian” neural network (BNN).
BNN is a realization of ensemble machine learning where
multiple predictors are combined to yield an accurate pre-
diction. Contrary to traditional DNNs, where model param-
eters are fixed after training, BNN treats model parameters
as “random” variables, each of which has a specific statisti-
cal distribution. Hence, the inference of BNN is performed
by “sampling” parameters from the trained distribution and
preparing multiple DNN instances whose outputs are ag-
gregated. By taking the aggregate of multiple predictions,
BNNs are known to be prone to overfitting, even in the ab-
sence of sufficient training data.

The following summarize our contributions:

• To the best of our knowledge, this is the first modeling
attack applicable in cases when the number of CRPs
is small.

• We demonstrate a successful attack on an APUF, and
on a wide variety of APUF compositions, including
5-XORPUF, MPUF, LSPUF, and IPUF for 64-bit chal-
lenge sizes.

• Unlike conventional DNN-based modeling attacks, our
method requires only a small portion of CRPs, and it
does not rely on any auxiliary information such as side-
channel information.

• We let the BNN self-learn features, and hence, our
method does not require anymanual feature engineering
for achieving high accuracy, as was done in [8].

• We have made our source code publicity available on-
line.

The structure of this paper is as follows. In Sect. 2,
the background and purpose of this study are described. In
Sects. 3 and 4, the details of BayesianPUFNet is provided,
followed by experimental results using synthetic CRPs pro-
vided in [11] for demonstrating the performance of Bayesian-
PUFNet. Then, in Sect. 5, we show the performance of
BayesianPUFNet using CRPs of a DAPUF simulated with
the SPICE simulator. Finally, concluding remarks are pro-
vided in Sect. 6.

2. Preliminaries

2.1 Physically Unclonable Function

PUFs can be categorized into two groups: strong and weak
PUFs. The strong PUFs act like mathematical functions that
take in a multi-dimensional vector called “challenge” and
output a corresponding value called “response.” To be useful
for device authentication, the response of the strong PUF
should be unpredictable; i.e., even if an adversary Eve has a
large subset of challenge and response pairs (CRPs), it cannot
construct amathematical model to predict the response of the
PUF for unseen challenge input. Further, many strong PUFs
provide exponentially large CRP space with the challenge bit
width to make it difficult for the adversary to collect CRPs
within a realistic time. On the other hand, weak PUFs have
very few or only one CRP per PUF instance, which is used
as a secret key storage, currently realized using flash or other
non-volatile memories. Because weak PUF responses are
not intended to be output outside the chip, this paper deals
with machine learning attacks on strong PUFs. We describe
typical circuit schemes for strong PUFs below.

2.1.1 Arbiter PUF

Figure 1 shows a typical circuit structure of Arbiter PUF
(APUF), which is composed of a number of multiplexers
(MUXes) and an arbiter. Each MUX allows two input sig-
nals to pass without changing the lanes when “0” is given
as the challenge bit. Otherwise, inputs at the top and bot-
tom signal lanes are steered to the bottom and top output,
respectively, to achieve lane swapping. Even thoughMUXes
are symmetrically designed, signal propagation delays of the

842
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

Fig. 1 Circuit structure of APUF.

straight and crossed paths are slightly different due to the
VTH variation. Hence, even if the same rising edge signal is
given to the input of the MUX-chain, the small differences in
signal propagation delay accumulate and result in noticeable
differences at the output, which is finally digitized by the
arbiter equipped at the end of the MUX-chain.

Because signal propagation delay in digital circuits have
a strong linear correlationwith variations of underlying phys-
ical characteristics such as VTH, the delay difference at the
end of the MUX chain can be modeled by a simple linear
regression model:

∆(c) = wTΨ, (1)

where w = (w1, w2, · · · , wN) is an N-dimensional parameter
vector which reflects the variations of transistors and should
not be disclosed. Φ = (Φ1,Φ2, · · · ,ΦN+1) is the (N + 1)-
dimensional parity vector whose i-th element is given by:

Φi =

{
1 (i = 1)∏N

j=i

(
1 − 2cj

)
otherwise,

(2)

where cj is the j-th bit of the challenge input. Hence, mod-
eling attack of APUFs essentially involves predicting the
unknown parameter w given by the CRPs. This problem
is known as a linear classification problem, which is quite
popular in machine learning (ML) domain for which several
efficient algorithms have been proposed, e.g., support vector
machine (SVM) or logistic regression (LR). For example,
[12] have demonstrated that by training only 1.39 × 10−14%
of CRPs of a 64-stage APUF, responses for unseen chal-
lenges can be predicted with an accuracy of 99%. Hence,
stand-alone APUF is rarely used in a practical device au-
thentication system.

2.1.2 XOR Arbiter PUF (XOR APUF)

To improve the machine learning attack tolerance of APUF,
applying XOR to the output of all x APUFs that take the
same challenge input was proposed in [3]. Figure 2 shows
an x-XOR APUF whose mathematical model is given by:

resXOR =

x∏
i=1

sign
(
wT
i Φi

)
= sign

(
x∏
i=1

wT
i Φi

)
. (3)

From Eq. (3), we can see that by increasing x, the number of
modeling parameters, wT

i , will increase linearly, and hence,
exponentially large number of training data and training time
will be required while using the traditional machine learn-
ing algorithms. Although [12] showed that modeling attack

Fig. 2 XOR APUF.

Fig. 3 Circuit structure of LSPUF.

on x-XOR APUF will be infeasible when x ≥ 6, [13] re-
ported that by carefully re-implementing the LR algorithm,
they could break 9-XOR APUF. However, a large training
dataset (e.g., 350 million CRPs to successfully break the 9-
XORAPUF) and computational resources to memorize such
a large training dataset were required. Another approach to
break x-XOR APUF is to exploit auxiliary information such
as power or current consumption. In this direction, [7] re-
ported that with the help of additional information, up to
16-XOR APUF can be broken. However, the adversary must
physically access the target PUF instances, which might be
impractical.

2.1.3 Lightweight Secure PUF (LSPUF)

Along with taking XOR of the output of multiple APUFs,
inserting one-way hash functions immediately before the
APUF challenge inputs to prevent attackers from controlling
the challenges directly was proposed in [4]. A PUF named
lightweight secure PUF (LSPUF) is composed of three build-
ing blocks— (i) input hashing network, (ii) output hashing
network, and (iii) APUFs. Figure 3 illustrates an LSPUF
composed of x APUFs. It first converts the challenge input
c to internal challenges ĉi using input hashing network gi for
i = 1,2, · · · , x. Then, the ĉi are directed to the correspond-
ing APUFs to yield internal response outputs ri . Finally,
r = (r1,r2, · · · ,rx) is passed to the output hashing network
to yield an m-bit response output o = (o1,o2, · · · ,om) ac-
cording to the formula:

oi =
m⊕
i=1

r((i+s+j) mod x), (4)

where s is the design parameter that controls the behavior of
the output network. Owing to the input and output networks,
LSPUF can achieve enhanced ML attack tolerance. How-
ever, the response of LSPUF still suffers from the reliability
issue of each elemental APUF; hence, x cannot be made
large in practice.

2.1.4 Multiplexer PUF

While combining multiple XOR APUFs increases ML at-
tack tolerance, the LSPUF suffers from degraded reliability

AWANO and IKEDA: BAYESIANPUFNET: TRAINING SAMPLE EFFICIENT MODELING ATTACK FOR PHYSICALLY UNCLONABLE FUNCTIONS
843

Fig. 4 Circuit structure of (n, k)-MPUF.

Fig. 5 Circuit structure of IPUF.

and increased circuit footprint. To strike a balance between
circuit footprint, ML attack tolerance, and reliability, [5]
proposed to combine multiple APUFs with a multiplexer
(Multiplexer PUF (MPUF)) [5]. Figure 4 shows an (n, k)-
MPUF composed of a 2k-to-1 multiplexer and 2k + k APUF
instances. The outputs of 2k APUF instances are selected
by the remaining k APUF instances connected to the k-bit
select signal of the multiplexer. Through extensive analysis,
the authors showed that the (64,3)-rMPUF, a variant of the
MPUF, has a comparableML attack tolerance to the 10-XOR
APUF, while its reliability is as high as a 4-XOR APUF.

2.1.5 Interpose PUF (IPUF)

Although the above-mentioned APUF compositions place
the APUFs in parallel and combine their output by using a
combinational circuit, [6] proposed another type of APUF
composition, known as Interpose PUF (IPUF),whereAPUFs
are placed in serial; i.e., the first APUF output is fed as
a challenge to the succeeding APUF. Figure 5 shows the
structure of an (x, y)-IPUF, where a response of an x-XOR
PUF (rx) is “interposed” after the i-th challenge bit (ci) to
form an N + 1-bit challenge for the succeeding y-XOR PUF
to yield the final response of the IPUF. It has been shown
in [6] that an (x, y)-IPUF has a much higher robustness to
modeling attacks with comparable hardware footprint and
reliability than an (x + y)-XOR APUF.

2.1.6 Double Arbiter PUF (DAPUF)

Although the operational principal of the APUF and its vari-
ants is simple, implementing them on silicon is difficult; i.e.,
the paired MUX chains must be designed carefully to have

Fig. 6 Circuit structure of DAPUF.

good symmetries so that signal propagation delays along ev-
ery possible path may be determined by manufacturing vari-
ations only. For the ease of implementation, a double arbiter
PUF (DAPUF) has been proposed [14], which is composed
of arbiters and multiple MUX chains placed in parallel. Let
us denote outputs of the top and bottompaths of the i-thMUX
chain as Pi,T and Pi,B, respectively, for i = {0,1, · · · ,N − 1}.
Then, the arbiters measure the race between Pj ,z and Pk ,z

for j = {0,1, · · · ,N − 2}, k = { j + 1, j + 2, · · · ,N − 1} and
z ∈ {T,B}. Finally, the response of the DAPUF is generated
by taking XOR of the arbiter outputs. Figure 6 shows the
architectural overview of a 3-1 DAPUF.

The basis for the difference between an XORAPUF and
DAPUF is the delay lines that are measured by the arbiter:
in a 2-XOR PUF, each arbiter measures the delay difference
between the top and bottom delay lines of the same MUX
chain. In a DAPUF, on the other hand, the top and bottom
of the MUX chain are divided into separate groups, and the
signal propagation delay within each group is measured. In
a DAPUF, the arbiter measures the delay difference only at
the top or bottom, which is considered an advantage as it
improves the symmetry.

2.2 Modeling Attacks on PUFs

Because an open network is used to establish the communi-
cation between PUF instances and an authentication server,
an adversary has the chance to collect CRPs with which it
can construct a mathematical model, which can predict the
response bits for unseen challenge inputs. This type of imper-
sonation attack is called a modeling attack, and is illustrated
in Fig. 7.

Several attempts at modeling attacks have revealed that
PUFs whose security is based on the linear-additive model,
such as the APUFs, are vulnerable to modeling attacks
based on simple linear classification algorithms such as sup-
port vector machine (SVM) or logistic regression method
(LR) [12]. To improve the robustness of PUFs to modeling
attacks, modern PUF architectures employ non-linearities
such as XOR operations.

Recently, inspired by the success of artificial neural net-
works (ANNs) in image classification, researchers are con-

844
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

Fig. 7 Typical situation of modeling attack for PUF-based authentication
scheme.

sidering the application of ANNs for modeling attacks on
PUFs. [8] were the first to apply ANNs to extract interme-
diate feature vectors to enhance modeling accuracy. The au-
thors reported that ANNs combined with LR to successfully
predict 68% of the CRPs of a 3-1 DAPUF having a 32-bit
challenge input. Subsequently, we proposed PUFNet [10],
which can be trained end-to-end, and showed that it can
achieve a prediction accuracy of over 80% even for 3-1 DA-
PUFs, which are said to be difficult to attack using existing
methods. An exhaustive experiment using simulated CRPs
of several PUF architectures was discussed in [11], which
demonstrated that despite extensive efforts of PUF designers
to improve machine learning attack tolerance, DNNs suc-
cessfully broke all considered APUF variants. However,
previous work overlooked the problem that training DNNs
requires a large number of CRPs to achieve acceptable clas-
sification accuracies. For example, [11] used 145k CRPs
for a successful modeling attack on a 64-bit 5-XOR APUF,
which may have overestimated the safety of PUF. In this pa-
per, we propose a BayesianPUFNet, a Bayesian extension of
PUFNet [10], and show that it can achieve high prediction
accuracy with less training data. This result contributes to a
strict estimate of the safety of PUF.

2.3 Bayesian Neural Network

Traditional ANNs have millions of trainable parameters;
hence, huge training samples are required to avoid over-
fitting. To solve this issue, the “ensemble” algorithm has
been developed, where predictions frommultiple neural net-
works are aggregated to create the final prediction [15], [16].
BNNs, an extension of ANNs, are capable of construct-
ing ensemble models with limited memory overhead. In
BNNs, every parameter is treated as a “random variable”
that is associated with a probability distribution. During
BNN inference, parameters are first sampled from the asso-
ciated probability distribution, and then a standard forward
propagation is conducted with the sampled parameter. By

Fig. 8 Comparison of a standard DNN (upper part) and BNN (lower
part).

repeating this procedure, i.e., parameter sampling and for-
ward propagation, multiple predictions with slightly differ-
ent model parameters are obtained. The final prediction is
chosen to be the one that has the highest frequency among
these predictions. By “smoothing out” predictions, BNNs
successfully combat over fitting issue.

Figure 8 shows the fundamental difference between
standard DNNs and BNNs. In the standard DNNs, only
a single set of weights involves for inference and hence a
single output is obtained. On the other hand, in BNNs, the
probability distributions of the weights are adjusted through
training; in BNN inference, the weight realizations are sam-
pled and the histogram of the output is obtained through
multiple iterations of inference. Therefore, BNNs can make
predictions considering all possible parameters and are not
prone to overfitting. Note that DNNs and BNNs cover the
same class of functions. Hence, given enough training data,
both DNN and BNN predict the same output.

The training objective of a BNN is to find the poste-
rior distribution over the weights, W = (w1,w2, · · · ,wL),
of an L-layered network for the training data X =

(x1, x2, · · · , xM), and the target label, Y = (y1, y2, · · · , yM).
Here, w l is the Nl × Nl−1 dimensional weight matrix of l-th
layer having Nl−1 input and Nl output nodes, xi is a D-
dimensional input vector, and M is the number of training
samples. By using the Bayes’ theorem, the posterior distri-
bution can be represented by a combination of the likelihood
and prior distributions:

P(W |X,Y). (5)

In practical applications, the posterior distribution is not
tractable, and hence, the variational inference technique
has been developed to approximate it, i.e., P(W |X,Y) ≈
q(W |θ), where q(·|·) is a variational posterior distribution
and θ is the variational parameter vector. The training ob-
jective is to minimize the Kullback-Leibler (KL) divergence
between q and the true posterior P:

KL (q(W |θ)| |p(W |X,Y)) . (6)

We use Monte Carlo (MC) dropout to approximate the
inference of the BNN. Dropout is a well-known technique
in the DNN community, which refers to dropout neurons in
a neural network. More specifically, at each training stage,

AWANO and IKEDA: BAYESIANPUFNET: TRAINING SAMPLE EFFICIENT MODELING ATTACK FOR PHYSICALLY UNCLONABLE FUNCTIONS
845

neurons are either dropped out with a probability of 1− p or
retained with a probability of p. Hence, the (i, j)-element of
w l can be obtained from

wl
i j = bli j · µ

l
i j, (7)

where µli j is a trainable parameter and bli j is a random sample
drawn from a Bernoulli distribution, i.e., bli j takes “1” with
probability pli j and “0” with probability 1− pli j . The dropout
probabilities, pli j , can be optimized. However, we fixed
them at 0.5, which is a typical choice [17]. With dropout,
a neural network has less memory capacity, which helps
preventing over-fitting. Unlike in conventional neural net-
works, in BNNs, dropout is applied not only during training
but also during inference, which results in stochastic predic-
tions; i.e., the network makes slightly different prediction at
each inference for the same input. Finally, we take majority
voting among the stochastic outputs to improve classification
accuracy.

The idea of dropout can be viewed as a variant of en-
semble learning, which is a meta learning algorithm to com-
bine diverse models to achieve better modeling performance.
Although combining several models leads to better perfor-
mance, model size increases linearly. Hence, a careful se-
lection of the number of models to be combined is necessary
to strike a balance between model size and performance.
On the other hand, BNN provides good efficient because
it utilizes “randomness” on inference; i.e., the dropout at
inference time introduces “divergence” at each inference.

Generally, a loss function tailored for BNN inference
must be determined. However, [17] showed that the min-
imization of cross entropy loss function is mathematically
equivalent to minimize the KL divergence. Hence, insert-
ing dropout layers between each linear layer and introducing
dropout not only during training but also during inference is
enough.

3. Bayesian Deep Neural Network for Modeling Attack

The following summarizes the essence of the proposed
BayesianPUFNet architecture.

Preprocessing: As in a previous study [11], the parity
of the challenge input was calculated using Eq. (2) and used
as the input to the neural network.

Activation function: Traditionally, the sigmoidal func-
tion defined as

σ(x) =
1

1 + exp(−x)
(8)

was commonly used. However, since its derivative,

∂σ(x)
∂x

= σ(x)(1 − σ(x)), (9)

is always smaller than “1,” gradients of neural networks
found using backpropagation may vanish when the network
has a large number of layers. To overcome this problem,

BayesianPUFNet employs Rectified linear unit (ReLU) as
the activation function defined as:

ReLU(x) =

{
x x > 0
0 x ≤ 0

(10)

the derivative of which is given by:

∂

∂x
ReLU(x) =

{
1 x > 0
0 x ≤ 0

, (11)

which helps the network learn sparse representations while
preventing gradient vanishing.

Weight initializer: The synaptic weights of the
BayesianPUFNet are initialized according to the Xavier ini-
tialization method [18], where an initial weight is sampled
from a normal distribution with the mean and standard devi-
ations set to be zero and

√
2/(Nin + Nout), respectively. Here,

Nin and Nout are the number of synaptic connections to and
from the neuron, respectively. This initialization helps the
gradients to propagate through the network with a reason-
able dynamic range. We found that weight initialization
significantly affects the BayesianPUFNet performance.

Activation normalization: We also found that batch
normalization (BN) can greatly increase the performance of
the BayesianPUFNet. It prevents the saturation of non-linear
activation functions to stabilize network optimization.

Loss function: As used in [11], we use cross entropy
as the loss function. Hence, our training objective is to
minimize

L(y, ŷ) = −
1
N

N∑
i=1
{yi log(ŷi) + (1 − yi) log(1 − ŷi)} ,

(12)

where yi and ŷi are the target label and network output,
respectively. N is the number of training samples.

MC Dropout applied only for first layer: During the
training of the BayesianPUFNet, a few synaptic weights exist
in the first layer are randomly fixed to zero, which limits the
flexibility of the model, and thus acts as regularizer to avoid
overfitting. Note again that we also apply dropout during
inference to yield slightly different model predictions for
ensembling. Although MC dropout is applied to all layers
in general BNN, in the proposed method, MC dropout is
applied only to the first layer. The reason for this is that
applying MC dropout to all layers slows down the learning
convergence. In addition, as we will verify in numerical
experiments, even if MC dropout is applied only to the first
layer, we can still enjoy the advantage of BNNs, i.e., high
prediction accuracy can be obtained even with small training
data.

4. Preliminary Experiment Using Synthetic CRPs

4.1 Experimental Setup

To compare BayesianPUFNet with conventional DNN-based

846
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

Table 1 Hyper parameters.
Hidden layer activation ReLU

Optimizer Adam
Learning rate 10−3

Loss function BCE
Initializer Glorot Normal

APUF (5,1)
XOR APUF (30,28,1)

of neurons LS-PUF (100,100,100,100,1)
MPUF (30,30,15,1)
IPUF (50,50,50,1)

ML attack, we first conducted a numerical experiment using
publicly available synthetic CRPs [11]. In the dataset, five
APUF variants (APUF, XOR APUF, LSPUF, MPUF, and
IPUF) are synthetically generated using Matlab simulation
models using the approach adopted in [5], [12]. Here, the
stage delay of each APUF is assumed to be identically dis-
tributed and follow Gaussian distribution with mean µ=0.1
and standard deviation σ=1. For simulating imperfect relia-
bility induced by noise such as random telegraph noise [19],
an additive random noise following the normal distribution
with mean µ=0 and standard deviation σ=0.01 is superim-
posed to the stage delay at each response generation. In order
to accurately compare with existing studies, the number of
neurons and other network architectures were kept the same
as in [11]. The hyper parameters are listed in Table 1.

For each PUF, the generated CRPs are split into two
parts, i.e., the training set consisting of at most 80% of the
total CRPs, and the validation set consisting of the remain-
ing 20%. The conventional DNN model and the proposed
BayesianPUFNet are implemented using TensorFlow frame-
work. Note that, BayesianPUFNet applies MC dropout not
only during the training phase but also during the inference
phase. The dropout rate is set to be 0.5 throughout our ex-
periment, which indicates that only half of the neurons were
activated during network inference. As shown in Sect. 3, the
parity of the challenge vector is used as the network input.
The initial synaptic weights are sampled randomly accord-
ing to the Xavier initialization method. To see the impact of
randomness on the final model performance, every experi-
ment is repeated 10 times and 95% confidence intervals of
the prediction accuracy are provided.

4.2 Experimental Results

4.2.1 Performance of BayesianPUFNet over Conventional
BNN

Before reporting machine learning attack results on APUF
variants, we firstly evaluated the performance of Bayesian-
PUFNet over a conventional BNN. Figure 9 shows the mod-
eling accuracy of a 64-bit 5-XOR APUF for Bayesian-
PUFNet, a conventional BNN, and non-Bayesian DNN-
based method [10] as a function of the number of training
epochs. Error bars in the figure indicate 95% confidence
intervals. Note again that the difference between Bayesian-
PUFNet and a conventional BNN is that the layers to which

Fig. 9 Comparison of (a) BayesianPUFNet, (b) conventional BNN, and
(c) DNN [11].

MC dropout is applied, i.e., BayesianPUFNet applies MC
dropout only to the first layer, while the conventional BNN
applied it to all layers. Note also that the same experiment is
repeated 10 times to see the impact of random initialization
of parameters. DNN-based method failed to exceed 60%
prediction accuracy in 5 out of 10 trials. On the other hand,
the two methods using Bayesian neural networks achieved
a prediction accuracy of over 80% in all trials. Comparing
(a) and (b), it can be seen that the proposed method achieves
higher prediction accuracy with a smaller number of epochs.
Thismay be due to the fact that the proposedmethod replaces
only the first layer with a Bayesian neural network, which im-
proves the learning ability without sacrificing convergence
speed.

We further measured the computation time required
per epoch using a computer equipped with an AMD EPYC
7702 processor, 128 GB of memory, and an NVIDIA 3090Ti
GPU. The results showed that BayesianPUFNet takes 0.682
seconds per epoch of learning, whereas conventional BNN
takes 0.985 seconds and DNN takes 0.491 seconds. Accord-
ingly, BayesianPUFNet requires 1.39 times more computa-
tion time per epoch than the DNN. However, considering
that the BayesianPUFNet achieved a prediction accuracy of
over 90% for all 10 trials, while the prediction accuracy of
the existing method was below 60% for 5 of the 10 trials, we
consider the increase in computation time per epoch to be
acceptable.

To investigate the impact of network structure on pre-
diction accuracy, we trained three networks with different
sizes of hidden layers and calculated the prediction accura-
cies. The results are shown in Fig. 10(a). The black line in
the figure shows the prediction accuracy of the network con-
sisting of 30 and 28 neurons in the hidden layer and 1 neuron
in the output layer as a function of CRPs used for training.

AWANO and IKEDA: BAYESIANPUFNET: TRAINING SAMPLE EFFICIENT MODELING ATTACK FOR PHYSICALLY UNCLONABLE FUNCTIONS
847

Fig. 10 Impact of neuron count on prediction accuracy.

Similarly, the red and blue lines show the prediction accu-
racy when the size of the hidden layer is doubled and tripled,
respectively. Similar experiments were also conducted for
non-Bayesian DNN, whose results are shown in Fig. 10(b).
The figure shows that the inference accuracy varies slightly
depending on the network structure, but generally shows the
same trend. In addition, for both BayesianPUFNet andDNN,
the smaller the hidden layer size, the more quickly the pre-
diction accuracy rises. On the other hand, comparing the
prediction accuracy when there are enough CRPs for train-
ing, we can also see that the prediction accuracy for DNN
is higher for networks with smaller hidden layers, whereas
for BayesianPUFNet, it is higher for networks with larger
hidden layers. This is attributed to the fact that the DNN is
slightly over-trained due to insufficient training data relative
to the network complexity.

4.2.2 Arbiter PUF

Although APUFs are known to be vulnerable to machine
learning attack, we first modeled a 64-bit APUF to demon-
strate the completeness of BayesianPUFNet. Fig. 11 com-
pares the modeling accuracies using conventional DNN-
based method [11], LR method [12], and the Bayesian-
PUFNet for different number of training CRPs. We ran-
domly choose a fraction of the training data to train both
the BayesianPUFNet and conventional DNN model to see
the performance of BayesianPUFNet for small training data.
It can be clearly seen that the BayesianPUFNet achieves
a higher prediction accuracy compared to the conventional
DNN especially when the number of training samples is
small. Because of the linearity of APUF, LR, which has
a simpler model, achieves higher prediction accuracy than
DNN. Also, given a sufficient number of CRPs for training,

Fig. 11 Modeling accuracy result for 64-bit APUF.

Fig. 12 Modeling accuracy result for 64-bit XOR APUF.

both DNN and BNN converge to the same prediction ac-
curacy. This suggests that DNN and BNN cover the same
problem class.

4.2.3 XOR Arbiter PUF

Figure 12 shows the modeling accuracy of a 64-bit 5-XOR
APUF. We again confirm that the BayesianPUFNet requires
much fewer training data for successful modeling attack.
Specifically, the BayesianPUFNet achieved prediction accu-
racy of 96% when 80 × 103 CRPs were used for training. In
our experiment, the conventional DNN could only achieve
93.2% prediction accuracy even when the number of training
samples was doubled.

4.2.4 Lightweight Secure PUF

Because an LSPUF outputs multiple response bits, we mod-
eled individual output bits as in [11]. The circular shift
parameter s was set to 0. Figure 13 summarizes the mod-
eling accuracy of the first response bit of a 6-5 LS-PUF.
Again, we can see that the BayesianPUFNet achieved higher
prediction accuracy even when the training dataset is small.

848
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

Fig. 13 Modeling accuracy result for 64-bit LS-PUF.

Fig. 14 Modeling accuracy result for 64-bit MPUF.

4.2.5 Multiplexer PUF

Figure 14 shows the results of a modeling attack on a 64-bit
MPUF. Comparing Figs. 12 and 14, we notice that an MPUF
can be modeled with relatively fewer number of CRPs than
XOR APUFs. Specifically, to achieve over 90% accuracy,
the BayesianPUFNet required 20k CRPs whereas the con-
ventional method required 40k CRPs.

4.2.6 Interpose PUF

Modeling attack results on a 64-bit IPUF are summarized
in Fig. 15. We confirmed that the BayesianPUFNet required
fewer training data than the conventional DNN. Specifically,
the BayesianPUFNet required only 80k CRPs to achieve over
90% prediction accuracy whereas the conventional DNN re-
quired more than 120k CRPs to achieve comparable predic-
tion accuracy.

4.3 Discussion

It can be seen that the LR model is effective for attacks on
highly linear PUFs such as APUF, but not for PUFs with
increased non-linearity such as LSPUF, MPUF, and IPUF.
Furthermore, to investigate the vulnerability of XORPUF,

Fig. 15 Modeling accuracy result for 64-bit IPUF.

Fig. 16

LSPUF, MPUF, and IPUF to machine learning attacks, we
calculated the number of CRPs required to achieve a predic-
tion accuracy of over 90% using the proposed method for
each of them, which are summarized in Fig. 16. The results
indicate that LSPUF is themost resistant to machine learning
attacks in our experiments.

5. Experiment Using CRPs Obtained via Transistor-
level Circuit Simulation

To evaluate machine learning attack tolerance on a more re-
alistic situation, we designed a 3-to-1 DAPUF using a 65 nm
Predictive Technology Model (PTM) [20] and simulated the
challenge-to-response behavior by using a SPICE simulator.

5.1 Experimental Setup

To reproduce the impact of manufacturing variability,VTH of
each transistor is sampled from a normal distribution. The
Pelgrom coefficient is set to be 4mV·µm according to the
silicon measurement on 65 nm technology [21]. From the
transistor-level simulation, the responses corresponding to
160k randomly generated challenges are obtained. Among
the 240k CRPs obtained, 216k CRPs are randomly selected
and used to train the BayesianPUFNet. Because the total
number of CRPs are 232 (about 4 billion), 100k CRPs corre-
spond to only 5.59 × 10−3% of them. Using the remaining
24k CRPs, the performance of the trained BayesianPUFNet
for predicting responses to unseen challenge inputs is vali-
dated.

5.2 Experimental Results

Figure 17 summarizes the experimental results. The

AWANO and IKEDA: BAYESIANPUFNET: TRAINING SAMPLE EFFICIENT MODELING ATTACK FOR PHYSICALLY UNCLONABLE FUNCTIONS
849

Fig. 17 Modeling accuracy result for 32-bit DA-PUF.

BayesianPUFNet achieved over 80% prediction accuracy
with only 64.8 k CRPs of the training data, while the ex-
isting method achieve only about 70% prediction accuracy
with the same number of training data. This confirms that
the BayesianPUFNet can achieve higher prediction accuracy
with less data than existing methods, even for realistic CRP
data sets.

6. Conclusion

By introducing Bayesian neural networks, BayesianPUFNet
succeeded in achieving high prediction accuracy with a
small number of CRPs. In an experiment using synthetic
CRPs simulating XOR-APUF, BayesianPUFNet achieved
over 90%prediction accuracy using approximately 80kCRPs
for training, whereas the existing methods required twice as
many training samples to achieve equivalent prediction ac-
curacy. To further examine the performance of Bayesian-
PUFNet under realistic conditions, we simulated a DAPUF
using SPICE to obtain CRPs and trained BayesianPUFNet
and the existing method. The results showed that Bayesian-
PUFNet achieved over 80% prediction accuracy with 64.8k
CRPs, while the existingmethod required an additional 21.6k
CRPs to achieve the same accuracy. Our findings highlight
a new vulnerability in PUF-based device authentication sys-
tems.

References

[1] U. Rührmair and D.E. Holcomb, “PUFs at a glance,” Design, Au-
tomation and Test in Europe, pp.1–6, March 2014.

[2] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal,
“Design and implementation of PUF-based “Unclonable” RFID ICs
for anti-counterfeiting and security applications,” Int. Conf. onRFID,
pp.58–64, April 2008.

[3] G.E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” Design Automation Conf.,
pp.9–14, 2007.

[4] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” Int. Conf. on Comput.-Aided Design, pp.670–673, 2008.

[5] D.P. Sahoo, D. Mukhopadhyay, R.S. Chakraborty, and P.H. Nguyen,
“A multiplexer-based arbiter PUF composition with enhanced relia-
bility and security,” IEEE Trans. Comput., vol.67, no.3, pp.403–417,
2018.

[6] P.H. Nguyen, D.P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and
M. van Dijk, “The interpose PUF: Secure PUF design against state-
of-the-art machine learning attacks,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol.2019, no.4, pp.243–
290, Aug. 2019.

[7] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi,
F. Koushanfar, and W. Burleson, “Efficient power and timing side
channels for physical unclonable functions,” Int. Workshop on Cryp-
tographic Hardware and Embedded Systems, pp.476–492, 2014.

[8] R. Yashiro, T. Machida, M. Iwamoto, and K. Sakiyama, “Deep-
learning-based security evaluation on authentication systems using
arbiter PUF and its variants,” Int.Workshop on Security, pp.267–285,
2016.

[9] M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced mod-
eling attacks using deep learning techniques to break the security
of double arbiter PUFs,” Design, Automation and Test in Europe,
pp.204–209, 2019.

[10] H. Awano, T. Iizuka, andM. Ikeda, “PUFNet: A deep neural network
basedmodeling attack for physically unclonable function,” Int. Symp.
on Circuits and Syst., pp.1–4, 2019.

[11] P. Santikellur, A. Bhattacharyay, and R.S. Chakraborty, “Deep
learning based model building attacks on arbiter PUF composi-
tions,” Cryptology ePrint Archive, Report 2019/566, 2019. https://
eprint.iacr.org/2019/566

[12] U.Rührmair, F. Sehnke, J. Sölter, G.Dror, S.Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” Com-
put. and Commun. Security, pp.237–249, 2010.

[13] J. Tobisch and G.T. Becker, “On the scaling of machine learning at-
tacks on pufs with application to noise bifurcation,” Radio Frequency
Identification, S. Mangard and P. Schaumont, eds., pp.17–31, 2015.

[14] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “Imple-
mentation of double arbiter PUF and its performance evaluation on
FPGA,” Asia and South Pacific Design Automation Conf., pp.6–7,
Jan 2015.

[15] T.G. Dietterich, “Ensemblemethods inmachine learning,” Int.Work-
shop on Multiple Classifier Syst., pp.1–15, 2000.

[16] Z. Ghahramani and M. Beal, “Propagation algorithms for variational
bayesian learning,” Neural Information Processing Syst., T. Leen,
T. Dietterich, and V. Tresp, eds., pp.507–513, MIT Press, 2001.

[17] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representingmodel uncertainty in deep learning,” International Con-
ference on International Conference onMachine Learning, pp.1050–
1059, 2016.

[18] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” Int. Conf. on Artificial Intelli-
gence and Statist., Proc. of Mach. Learning Res., vol.9, pp.249–256,
May 2010.

[19] K. Hung, P. Ko, C. Hu, and Y. Cheng, “Random telegraph noise
of deep-submicrometer MOSFETs,” IEEE Electron Device Lett.,
vol.11, no.2, pp.90–92, 1990.

[20] Nanoscale Integration and Modeling (NIMO) Group, “Predictive
Technology Model (PTM),” http://ptm.asu.edu/

[21] S. Saxena, C. Hess, H. Karbasi, A. Rossoni, S. Tonello, P. McNa-
mara, S. Lucherini, S. Minehane, C. Dolainsky, and M. Quarantelli,
“Variation in transistor performance and leakage in nanometer-scale
technologies,” IEEE Trans. Electron Devices, vol.55, no.1, pp.131–
144, Jan 2008.

http://dx.doi.org/10.7873/date.2014.360
http://dx.doi.org/10.7873/date.2014.360
http://dx.doi.org/10.1109/rfid.2008.4519377
http://dx.doi.org/10.1109/rfid.2008.4519377
http://dx.doi.org/10.1109/rfid.2008.4519377
http://dx.doi.org/10.1109/rfid.2008.4519377
http://dx.doi.org/10.1109/dac.2007.375043
http://dx.doi.org/10.1109/dac.2007.375043
http://dx.doi.org/10.1109/dac.2007.375043
http://dx.doi.org/10.1109/iccad.2008.4681648
http://dx.doi.org/10.1109/iccad.2008.4681648
http://dx.doi.org/10.1109/tc.2017.2749226
http://dx.doi.org/10.1109/tc.2017.2749226
http://dx.doi.org/10.1109/tc.2017.2749226
http://dx.doi.org/10.1109/tc.2017.2749226
http://dx.doi.org/10.46586/tches.v2019.i4.243-290
http://dx.doi.org/10.46586/tches.v2019.i4.243-290
http://dx.doi.org/10.46586/tches.v2019.i4.243-290
http://dx.doi.org/10.46586/tches.v2019.i4.243-290
http://dx.doi.org/10.46586/tches.v2019.i4.243-290
http://dx.doi.org/10.1007/978-3-662-44709-3_26
http://dx.doi.org/10.1007/978-3-662-44709-3_26
http://dx.doi.org/10.1007/978-3-662-44709-3_26
http://dx.doi.org/10.1007/978-3-662-44709-3_26
http://dx.doi.org/10.1007/978-3-319-44524-3_16
http://dx.doi.org/10.1007/978-3-319-44524-3_16
http://dx.doi.org/10.1007/978-3-319-44524-3_16
http://dx.doi.org/10.1007/978-3-319-44524-3_16
http://dx.doi.org/10.23919/date.2019.8714862
http://dx.doi.org/10.23919/date.2019.8714862
http://dx.doi.org/10.23919/date.2019.8714862
http://dx.doi.org/10.23919/date.2019.8714862
http://dx.doi.org/10.1109/iscas.2019.8702431
http://dx.doi.org/10.1109/iscas.2019.8702431
http://dx.doi.org/10.1109/iscas.2019.8702431
https://eprint.iacr.org/2019/566
https://eprint.iacr.org/2019/566
https://eprint.iacr.org/2019/566
https://eprint.iacr.org/2019/566
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.1007/978-3-319-24837-0_2
http://dx.doi.org/10.1007/978-3-319-24837-0_2
http://dx.doi.org/10.1007/978-3-319-24837-0_2
http://dx.doi.org/10.1109/aspdac.2015.7058919
http://dx.doi.org/10.1109/aspdac.2015.7058919
http://dx.doi.org/10.1109/aspdac.2015.7058919
http://dx.doi.org/10.1109/aspdac.2015.7058919
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1109/55.46938
http://dx.doi.org/10.1109/55.46938
http://dx.doi.org/10.1109/55.46938
http://ptm.asu.edu/
http://ptm.asu.edu/
http://dx.doi.org/10.1109/ted.2007.911351
http://dx.doi.org/10.1109/ted.2007.911351
http://dx.doi.org/10.1109/ted.2007.911351
http://dx.doi.org/10.1109/ted.2007.911351
http://dx.doi.org/10.1109/ted.2007.911351

850
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.5 MAY 2023

Hiromitsu Awano received his B.E. de-
gree in Informatics and M.Sc. and Ph.D. degrees
in Communications and Computer Engineering
from Kyoto University in 2010, 2012, and 2016,
respectively. He was with Hitachi, Ltd., Tokyo,
Japan in 2016. In 2017, he joined the VLSI
Design and Education Center, The University of
Tokyo, Japan, where he is an assistant professor.
His research interests include CAD for VLSI de-
sign and hardware accelerator for machine learn-
ing. He was a research fellow of japan society

for the promotion of science and a member of IEEE, IEICE, and IPSJ.

Makoto Ikeda received the B.S., M.S., and
Ph.D. degrees in electronic engineering from the
University of Tokyo, Tokyo, Japan, in 1991,
1993, and 1996, respectively. He joined the
Electronic Engineering Department, University
of Tokyo, as a FacultyMember in 1996, and he is
currently a full Professor with the department of
Electrical Engineering and Information Systems,
at the University of Tokyo. At the same time he
has been involving the activities of VDEC (VLSI
Design and Education Center, the University of

Tokyo), to promote VLSI design educations and researches in Japanese
academia. His interests include the hardware security, including crypto-
graphic engine design, asynchronous system design and smart image sensor
designs. He is a member of IEEE, IEICE Japan, IPSJ and ACM.

