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PAPER
GazeFollowTR: A Method of Gaze Following with Reborn
Mechanism

Jingzhao DAI†, Ming LI†, Xuejiao HU†, Yang LI†, Nonmembers, and Sidan DU†a), Member

SUMMARY Gaze following is the task of estimating where an observer
is looking inside a scene. Both the observer and scene information must be
learned to determine the gaze directions and gaze points. Recently, many
existing works have only focused on scenes or observers. In contrast, re-
vealed frameworks for gaze following are limited. In this paper, a gaze
following method using a hybrid transformer is proposed. Based on the
conventional method (GazeFollow), we conduct three developments. First,
a hybrid transformer is applied for learning head images and gaze positions.
Second, the pinball loss function is utilized to control the gaze point error.
Finally, a novel ReLU layer with the reborn mechanism (reborn ReLU)
is conducted to replace traditional ReLU layers in different network stages.
To test the performance of our developments, we train our developed frame-
work with the DL Gaze dataset and evaluate the model on our collected set.
Through our experimental results, it can be proven that our framework can
achieve outperformance over our referred methods.
key words: gaze following, transformer encoder, pinball loss function,
reborn mechanism, reborn ReLU layer

1. Introduction

Currently, analyses of the human gaze bring much con-
venience to our daily lives and have gradually become a
hotspot. In the computer vision field, some existing works
show that gaze following can be beneficial for inferring hu-
man intention, subsequent behaviors [1] and understanding
social communication. For instance, in driver security mon-
itoring [2], driver gaze is a crucial element for preventing
drivers from car accidents; additionally, gaze analysis has
great potential in health-care systems. Concretely, the intro-
duction of gaze estimation approaches efficiently minimizes
the cost of medical equipment [3] and helps a lot in monitor-
ing some persons, possibly with autism spectrum disorder
(ASD) [4].

To our knowledge, methods for analyzing gaze have
evolved over time. In the early time of evolution, gaze
directions are predicted mainly based on eyeball move-
ment [5]. Later, the focus of the methods is transferred to
estimating gaze targets. Recently, two kinds of samples
have been studied: observers-in-image and observers-out-
of-image. For samples without observers, existing methods
focus on saliency detection [6], [7] or analyses of gaze pat-
terns [8], [9]. For observers-in-image, related works were
early defined by Lian et al. [10] as “gaze following”. Usu-
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ally, a more complex framework must be designed for es-
timating the light of vision from an observer inside an im-
age. Light of vision is a sophisticated gaze cue containing
plentiful information. It is closely related to many factors,
including human perception [11], social behaviors [1], [12],
surrounding persons [13] and the environment [14], [15].
Among these factors, the surrounding scenes are essential
for the final performance. In most scenes, the saliency distri-
bution may be rough, which means that different regions in
the scene usually obtain different degrees of saliency. This
possibly affects the gaze bias of the observer. Moreover,
face information from the observer (e.g., face image, head
pose, eyeball movement) has a great impact on the field
of view (FoV) generation, which can contribute greatly to
the explicit location of the gaze target. To our knowledge,
most gaze works focus on scene saliency to achieve gaze
targets or on observers’ information to obtain gaze direc-
tions. While gaze-following works are limited, they have
great potential. First, approaches for gaze following can
decrease the investment in the lab period and equipment.
The process of mapping gaze cues directly from images can
skip the utilization of eye trackers. Other works have re-
vealed that the carry of eye trackers brings some issues of
high-in-cost, heavy-to-participants, hard-in-calibration and
so on. Additionally, gaze-following works can handle di-
verse problems, such as the social communication of multi-
ple observers and gaze behavior forecasting. In this paper,
we present a new framework for gaze following using a hy-
brid transformer encoder (GazeFollowTR). This framework
is developed based on GazeFollow [10]. Our developments
are inspired by works in [16]–[18]. The developments can
be concretely described as follows:
(1) We explore the improvement contributed by the ReLU

layers with the reborn mechanism (reborn ReLU). In
different modules of our framework, we replace the
usual ReLU layers with reborn ReLU layers in the face,
heatmap and gaze field modules;

(2) Based on GazeFollow, we develop the module for ob-
servers’ information. Different from the original mod-
ule consisting of a ResNet-18 and three fully connected
layers (FCs), we apply the hybrid transformer contain-
ing a ResNet-18 and a transformer encoder. It is intro-
duced by Cheng et al. [16];

(3) We deem that detecting gaze points is a fine-tuned prob-
lem and requires a bound to control error. Concretely,
we apply the pinball loss function for the hybrid trans-
former. In [17], the authors apply the pinball loss in the
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Gaze360 model to control the error of estimating gaze
directions. To our knowledge, this is the first work that
employs the pinball loss function to model gaze points
within constrained bounds;

(4) In this paper, we introduce works related to gaze follow-
ing in Sect. 2. For the proposed methods in our work,
we present details in Sect. 3. Then, our experimental
results, challenges in the future and conclusion for our
work are presented in Sects. 4, 5 and 6, respectively.

2. Related Work

2.1 Appearance-Based Gaze Estimation

Appearance-based gaze estimation methods can be tracked
back to early modeling approaches mapping from eye im-
ages to gaze directions. The eye-to-gaze approaches largely
depend on high-quality eye images. To ensure data clarity,
participants usually needed to wear heavy equipment (eye-
tracking glasses [19], [20]) during the data collection. Ad-
ditionally, data preparation takes a very long period. Anno-
tating on the pupil [19] or eye outline [21] is burdensome.
Moreover, wearing glasses usually shelters eyes from view
and degrades the performance of pupil detection.

To the best of our knowledge, early eye-based ap-
proaches mainly have disadvantages, including information
redundancy, independence from samples and high hardware
costs. Recently, thanks to the development of deep learn-
ing methods, more appearance-based methods have focused
on face images with simple annotations. A. Recasens et al.
[22] and P. Kellnhofer [23] annotate head pose from ob-
servers. In [3], P. A. Dias et al. adopt OpenPose to gen-
erate features of facial keypoints, including nose, eyes and
ears. In [10] and [24], the authors set a simple head position
as input information. In these works, with the supplemen-
tary of saliency detection on scenes, proposed face-based
approaches can predict not only the gaze direction but also
the gaze target.

2.2 Gaze Target Estimation

Recently, estimation of the gaze target has been a hotspot
but a challenging issue. From previous works, it can be
seen that there are mainly two types of gaze target estima-
tion tasks: gaze point estimation and gaze object estimation.
Early works [25], [26], [6] are mainly about generating fix-
ation maps. In each image, no specific observers are con-
tained. The researchers only focus on which part of the im-
age can gain the highest attention from the outside persons.
In [10], [13], [24], [14], researchers focus on estimating the
specific gaze point. For these works, analyses on both ob-
servers and scenes are needed. For gaze object estimation,
there is a typical work from Tomas et al. [27]. They propose
a new task of gaze object prediction and collect a dataset
containing synthetic and real-world images in the retail en-
vironment.

2.3 Saliency Detection

Saliency detection and gaze following (gaze estimation for
observers inside samples) are different but closely related
tasks. Traditional methods [28], [15], [6] for saliency de-
tection focus on generating fixation maps from observers
who are out of original images. However, in gaze-following
tasks, analyzing the interestingness of the scene [29] is usu-
ally applied with a heatmap module [30], [31] to express the
saliency region. In the generated heatmap, the gaze points
are regarded as the point with the maximum value. It is also
worth mentioning that the ground truth heatmaps are yielded
as [32] by

h(x, y) =
1
√

2πσ
e−

(x−gx )2+(y−gy )2

2σ2 , (1)

where (gx, gy) is the ground truth gaze point, and h(x, y) is
the ground truth heatmap generated through a Gaussian filter
around (gx, gy).

3. Methodology

3.1 Reborn ReLU

Along with the rapid development of deep learning meth-
ods, two long-term problems have been raised. First, how
can models efficiently make use of feature maps? Moreover,
how can redundant information of feature maps be reduced
as much as possible? To solve these problems, the rectified
linear unit (ReLU) is adopted in many network architectures
and reveals its advantages. First, ReLU outputs the max-
imum value between input and zero, which can be easily
computed. Different from tanh and sigmoid activation func-
tions, ReLU can efficiently alleviate problems of gradient
vanishing and explosion. Additionally, ReLU can increase
the sparsity and linearity of neurons. Within a neural net-
work, ReLU outputs zero when the input value is negative,
and the whole feature map becomes sparser after a ReLU
layer. However, how ReLU processes negative inputs fre-
quently leads to the dying ReLU problem [33]. During for-
ward propagation, negative neurons will be curtailed, and
their derivative will also become zero. Based on our expe-
rience, this property usually results in inefficient usage of
information. Some existing works proposed the improved
ReLU. For instance, leaky ReLU [34] is set with a small pos-
itive gradient (0.01) for nonpositive inputs, and in exponen-
tial linear units (ELUs) [35], negative inputs are processed
thorough the exponential formulation to achieve better con-
vergence. However, these works lose more or fewer advan-
tages of ReLU. In [18], the authors propose a ReLU with the
reborn mechanism (Reborn ReLU). Compared to the tradi-
tional ReLU layer, it is more effective in information usage,
representation ability and channel compensation. Addition-
ally, applying the reborn ReLU can prevent the death of neu-
rons. Equations (2)–(4) show the workflow of one reborn
ReLU layer.
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X1 = BN(Deconv(−ReLU(−X))), (2)
X2 = ReLU(X), (3)
Y = Compress (Contact (X1, X2)) (4)

where “Deconv”, “BN”, and “ReLU” represent the deconvo-
lution, batch normalization and ReLU layers, respectively.
In Eqs. (2)–(4), it can be known that an input map is first
fed into two parallel flows to generate X1 and X2. Subse-
quently, we concatenate X1 and X2 and then compress them
to generate the output map Y .

3.2 Transformer in Gaze Following

In the natural language processing (NLP) field, a trans-
former consists of an encoder and decoder. For com-
puter vision tasks, the widely applied module is the trans-
former encoder, which contains multilayer perceptron layers
(MLPs), multihead self-attention (MSA) and layer normal-
ization (LN). MSA is the developed self-attention module
with multiple subspaces inside it. MLP is a popular mod-
ule for nonlinear projection. LN can efficiently contribute to
fast convergence and training stability.

As introduced in [36], [37], different types of features
are embedded and passed through layers of the transformer
encoder. Concretely, each 2D image is evenly divided into
a set of flattened patches. Then, these patches are mapped
to image features for the transformer encoder through a lin-
ear projection. Subsequently, a learnable embedding, which
is similar to BERT’s [class] token, is concatenated with the
image features. Moreover, another type of feature, the po-
sition features for recording the position of each patch, is
added into the embedded features. The overall generation
of embedded features inputted to a transformer encoder can
be shown as (5).

x = Concat
(
xcls, ximg

)
+ xpos, (5)

where xcls ∈ R
1×D, ximg ∈ R

P2×D, xpos ∈ R(1+P2)×D and
x ∈ R(1+P2)×D represent the learnable embedding, image
features, position features and final embedded features, re-
spectively. P × P is the resolution of each image patch.
D is the constant value representing the latent vector size
through all layers of the transformer. Concretely, all flat-
tened patches are mapped to D dimensions in Eq. (5). The
embedded features are taken as inputs into the transformer
encoder. Equations (6)–(7) show how embedded features go
through a one-layer transformer encoder, where inputs x and
outputs Y have the same dimension.

X = MSA(LN(x)) + x, (6)
Y = MLP(LN(X)) + X. (7)

To estimate gaze information, the output of a transformer
encoder is inputted into MLPs for gaze regression. Equa-
tions (8)–(9) show the gaze regression after the one-layer
transformer encoder. In Eq. (9), G(x, y) is the gaze point po-
sition in a 2D image. MLP(Y) is the feature matrix. [0, :],

where means we choose the first row of MLP(Y) as our esti-
mated gaze position.

Y = TransformerEncoder(x), (8)
G(x, y) = MLP(Y)[0, : ]. (9)

However, the standard transformer encoder is not efficient
enough for gaze estimation. Some patches divided from a
face image may include some parts of eyes. This leads to
difficulty in gaze prediction. To prevent this, Cheng et al.
[16] develop a hybrid transformer, especially for gaze esti-
mation tasks. Different from the vision transformer, each
original image is first processed through a convolutional
neural network (CNN). Then, the feature is divided into lo-
cal patches for the transformer encoder.

3.3 Proposed Framework

Figure 1 illustrates the outline of our proposed framework.
First, head positions are taken as inputs into a mapping func-
tion to obtain the gaze field [10]. Meanwhile, head images
go through a hybrid-GazeTR (a ResNet-18 and transformer
encoder). Then, outputs from these two flows are concate-
nated together (shown as “CAT” in Fig. 1) and taken as in-
puts to the FOV generator. Finally, the generated FOV maps
are concatenated with the original image and subsequently
input into an FPN to yield a heatmap for finding the gaze
point. To concretely describe the process in the top flow for
yielding FOV maps, gaze positions and head positions are
calculated to obtain normalized gaze directions. Then, these
normalized gaze directions are resized and multiplied with
obtained the gaze fields. The multiplied maps subsequently
go through the “FOV” generator.

It is common that there are three stages in a gaze-
following framework: face stage, gaze field stage and
heatmap stage. Based on our knowledge, the face stage is
usually utilized for processing observers’ information and
estimating gaze directions. It can significantly affect the
subsequent two stages. In the face stage of GazeFollow [10],
the authors feed face images and head positions into a mod-
ule composed of a Resnet-50 and several fully connected
layers (FCs). Concretely, the authors take face images as in-
puts into ResNet-50 and one FC and then concatenate face
features with head features encoded by three FCs. From the
one-dimensional concatenated features, gaze directions are
inferred, and gaze direction fields can be mapped. In con-
trast, we develop GazeFollow in three aspects. First, we
adopt the hybrid transformer (hybrid-GazeTR) for inferring
gaze directions. In detail, we input face images and gaze
positions into the hybrid-GazeTR. Second, we applied the
pinball loss function to efficiently control the error of gaze
points. Then, we can infer gaze directions based on the es-
timated gaze points and given head positions. Finally, we
replace ReLU layers with reborn ReLU layers in different
stages in our framework.

In addition to the works mentioned above, our frame-
work is also inspired by the multi-learning strategies
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Fig. 1 Our network architecture.

(MTLs), which have been widely applied for fine-grained
classification [38], [39] and food recognition tasks [40]–
[43]. The gaze estimation task usually has complex sam-
ples. In each sample, observers stand or walk around in di-
verse scenarios (indoor or outdoor). Without depth given,
the detection of gaze points is challenging. Many exist-
ing works reveal the efficiency of MTL. Taken together,
MTLs for gaze estimation can be in the form of one learning
flow and two parallel learning flows. Among existing gaze
works, the architectures of [10], [22], [24] are designed as
the one learning flow. The authors divide the gaze follow-
ing task into three subtasks, which are respectively assigned
by three modules: the scene module, the head module and
the heatmap module. In [44], the authors assign gaze di-
rections and gaze points tasks in two learning flows. In this
paper, two subtasks, gaze position estimation and gaze field
generation, are learned in two parallel flows. Then in the
field stage, these two flows are fused together to further de-
termine the final gaze points and directions in the heatmap
stage.

3.4 Pinball Loss Function

The pinball loss function is defined based on its shape,
which is similar to the trajectory of a pinball. This func-
tion is applied to measure how accurate a quantile forecast
is. Different from classical forecasts, which aim to return
forecasts based on observed values, the quantile forecast fo-
cuses more on the given target. Usually, the lower returned
by the pinball loss means that the quantile forecast is more
accurate. The pinball loss function Lτ can be formulated as

Lτ(y, z) =

(y − z)τ if y ≥ z,
(z − y)(1 − τ) if z > y,

(10)

where τ is the given target quantile, z is the quantile forecast
and y is the real value. Recently, the pinball loss function
has been utilized for pattern classification and optimizing
networks. Meanwhile, it has been applied to model the error
bounds of gaze directions. Kellnhofer, P. et al. [23] propose

the pinball loss function for estimating gaze directions in
unconstrained scenes. In our work, we employ the pinball
loss function to control the error of gaze points. The process
can be formulated as follows.

Ĝ,∆Ĝ = GazeTR
(
iface

)
, (11)

z =

Ĝ − ∆Ĝ, τ ≤ 0.5
Ĝ + ∆Ĝ, τ > 0.5

, y = Ggt, (12)

Lτ
(
Ĝ,∆Ĝ,Ggt

)
= max (τ (y − z) , (1 − τ) (z − y)) , (13)

where iface is the face image inputted to the model GazeTR
(ResNet-18+transformer); Ĝ and ∆Ĝ are the estimated gaze
point and the error of gaze points, respectively; and Ggt is
the ground truth gaze point. In this paper, we compare the
performance brought by the pinball loss and L1Loss func-
tions through the evaluation on our collected samples, which
can be shown in Table 2.

4. Experiments

In this section, all models are trained with the DL Gaze
dataset [10] and then evaluated on our collected set. Due
to this difference between these two datasets, the existing
methods in [10], [23], [16] achieve degraded performance
on our collected set. Compared to the existing methods, our
proposed methods can achieve outperformance. In this sec-
tion, we arrange our experimental results in three aspects.
First, we emphasize the efficiency of the transformer and
pinball loss function in Table 2. Second, we present the re-
sults of different reborn ReLU replacements in three mod-
ules of our network architecture. Third, we compare our
optimal results with existing works. The evaluation proto-
cols are distance (Dist.) between the ground truth and es-
timated gaze points, and gaze angle errors (Ang.) between
the ground truth and estimated gaze directions. In each ta-
ble, the optimal results are highlighted in bold and italic.
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Fig. 2 Our sample image.

4.1 Our Dataset

We build a video dataset recorded from six types of real-
scenarios as shown in Fig. 2. Concretely, our dataset con-
tains 920 frames clipped from 8 videos (10 fps). In each
video, we recorded the activities of 8 volunteers in 8 dif-
ferent scenes. Each volunteer usually looks at a point of
the object while walking. We recorded all videos with an
iPhone X.

Additionally, we only focus on one volunteer activity
in each video and then ask them to annotate true gaze po-
sitions. Some sample images are shown in Fig. 2. In Ta-
ble 1, we show the estimated gaze positions (normalized)
achieved from our method and the referred methods. The
chosen sample image is image (a) in Fig. 2. Its true gaze
position is [0.8726562, 0.25694445].

4.2 Transformer vs LSTM

The long short-term memory network (LSTM) and the
transformer are all applied in analyzing gaze. LSTM is ef-
ficient for capturing and combining temporal and spatial in-
formation. Kellnhofer, P. et al. [23] propose a model using
bidirectional LSTM for estimating gaze directions in a dy-
namic environment. For the transformer, Cheng et al. [16]
conduct the first work of applying the transformer for pre-
dicting gaze directions. They develop a hybrid transformer
(hybrid-GazeTR) that is more suitable for gaze samples.
Different from the work in [16], we replace the originally
employed L1Loss function with the pinball loss function. To
emphasize the efficiency of the transformer and pinball loss
function, we evaluate Gaze360, Hybrid-GazeTR and our de-
veloped GazeTR on our collected samples.

As shown in Table 2, it can be seen that the transformer
can contribute more improvement than LSTM in gaze di-
rection estimation. Additionally, employing the pinball loss
function can further increase the performance. From the im-
proved performance, it can be first analyzed that the trans-
former encoder is more efficient than LSTM in gaze follow-

Table 1 Comparison of gaze positions estimated by our method and the
referred methods on our sample image (Fig. 2(a)).

Table 2 Comparison between LSTM and the transformer and between
L1Loss and PinballLoss functions.

ing. Moreover, the performance of two different functions
may be due to signatures of the pinball loss function, which
we mentioned before. The experiments also test our hypoth-
esis that gaze point estimation is a fine-tuned problem that
requires a boundary for controlling errors. Therefore, we
decide the developed GazeTR (the hybrid GazeTR with a
pinball loss function) as a module in the face stage of our
framework.

4.3 Reborn ReLU Replacement

Before the experiments, our hypothesis is that replacing
ReLU layers with reborn ReLU layers can contribute to the
performance. To test our hypothesis, we conduct the re-
born ReLU replacements in different modules of our pro-
posed framework. Concretely, the face stage, heatmap stage
and field stage are considered for the reborn ReLU replace-
ments. Taken together, eight conditions of reborn ReLU re-
placements are considered in this paper. The experimental
results are shown in Table 3.
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Table 3 Evaluation of different Reborn ReLU replacements in our
framework.

In this paragraph, we describe where all reborn ReLU
replacements are conducted in our framework. In the field
stage, we replace the ReLU layer just after the generated
FoV map. In the heatmap stage, we conduct the replace-
ment in a feature pyramid network (FPN) [45]. Concretely,
the last 4 ReLU layers in the top-down pathway of FPN
are all replaced as reborn ReLU layers. In the face stage,
the replacement is operated in a ResNet-18 module of the
hybrid-GazeTR. In ResNet-18, there are four basic blocks
before the convolutional layer (the last layer). ReLU layers
in each basic block are all replaced as reborn ReLU lay-
ers. In our implementation, the parameters can be changed
are the number of input channels and output channels. The
number of input channels relies on the input maps of a re-
born ReLU layer. The number of output channels is always
set as 5.

It can be observed from Table 3 that our framework can
achieve excellent performance under two conditions, which
are shown as the “face stage” and “face & heatmap & field
stages” in this table. Concretely, reborn ReLU replacement
is operated in ResNet-18 of the “face stage”, after upsam-
pling in the feature pyramid network (“heatmap stage”), and
in the last layer in the “field module”.

4.4 Overall Experimental Comparison

Our method is inspired by GazeFollow [10], Gaze 360 [23]
and hybrid-GazeTR [16]. In the beginning, our framework
is designed closely to GazeFollow. However, we develop
the face module part, which is inspired by hybrid-GazeTR.
In addition, thanks to the introduction of the pinball loss
function in [23], we replace the L1Loss function of hybrid-
GazeTR with the pinball loss function. Moreover, the ReLU
layer, which is popular in many networks, is replaced as
the novel reborn ReLU layer. After these developments,
our method can achieve outperformance over these referred
works on our collected dataset, which can be seen in Table 4.

Based on this table, there are several points can be an-
alyzed. For conventional methods, Gaze360 and the hybrid-
GazeTR both achieve degraded performance compared to
GazeFollow. The factor we analyzed is that the framework
of GazeFollow is more comprehensive than the two other
methods. More importantly, there is no gaze field stage in

Table 4 Comparison between our method and the referred methods on
our collected dataset.

Table 5 Comparison between our method and the referred methods on
our collected dataset.

Gaze360 and the hybrid-GazeTR. However, we still think
these two models can achieve good performance if we ap-
ply them as one module in our framework. Therefore, we
propose the pinball loss function in Gaze360 and hybrid-
GazeTR in our framework to learn face images and gaze po-
sitions. As shown in Table 4, after some developments, our
GazeFollowTR method can achieve outperformance over
our referred methods. Additionally, to keep the evaluation
consistency, we follow the same training/testing split with
GazeFollow. The results are shown in Table 5.

5. Challenges in the Future

In this section, we present some challenges in our experi-
ments and our plan in the future. First, self-occlusion and
gaze ambiguity [10], [3] are common in monocular images.
Concretely, some gaze points are sheltered by other objects
that are closer to the camera. Meanwhile, even for partici-
pants, data labeling is difficult in clearly deciding where they
ever looked. To alleviate this challenge, we learn related lit-
erature and find that some existing methods (e.g., the work
in [46]) tend to analyze gaze under varied depths and posi-
tions. These methods inspire us to think deeply about the
solution. In the future, we plan to conduct gaze-following
work in immersive videos. In the currently collected videos,
it can be observed that issues occurring in monocular images
are alleviated.

The second challenge is that datasets for gaze follow-
ing in immersive videos are not available. To our knowl-
edge, existing datasets for gaze following are predominantly
or wholly formed in two dimensions. In addition, immer-
sive datasets related to gaze analyses are almost without ob-
servers. Almost all publishers focus on saliency detection.
In the future, we plan to build immersive videos including
observers and scenes and further develop our framework.
We believe that the current challenges will be alleviated in
our future work.
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6. Conclusion

In this paper, we propose a developed framework called
GazeFollowTR. Through the experimental results yielded
from GazeFollowTR, we test our three hypotheses. First,
the transformer encoder is efficient in the gaze-following
task. Second, replacing traditional ReLU layers with a re-
born ReLU layer can contribute to performance improve-
ment. Finally, applying the pinball loss function can effi-
ciently control the error of gaze points. Through our experi-
mental results, our hypotheses are tested. We consider some
factors leading to the improvement. First, in our framework,
the improvement brought by our face stage (hybrid trans-
former applied with a pinball loss function) can efficiently
sharpen the field of view in the next stage, which is also
beneficial for the final heatmap stage. Moreover, the reborn
ReLU makes full use of the information in a feature map.
Compared to the ordinary ReLU layers, we deem the reborn
ReLU layers to be more suitable for observers’ face images
and scene images containing complex information. Finally,
to our knowledge, we deem that accurately deciding a gaze
point in a saliency region is difficult. Therefore, adopting
loss function modeling error bounds is necessary.
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