IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.8 AUGUST 2023

1043

[PAPER

LFWS: Long-Operation First Warp Scheduling Algorithm to
Effectively Hide the Latency for GPUs

Song LIU", Member, Jie MAT, Chenyu ZHAO', Xinhe WAN', and Weiguo WU'®, Nonmembers

SUMMARY GPUs have become the dominant computing units to meet
the need of high performance in various computational fields. But the
long operation latency causes the underutilization of on-chip computing
resources, resulting in performance degradation when running parallel tasks
on GPUs. A good warp scheduling strategy is an effective solution to hide
latency and improve resource utilization. However, most current warp
scheduling algorithms on GPUs ignore the ability of long operations to hide
latency. In this paper, we propose a long-operation-first warp scheduling
algorithm, LFWS, for GPU platforms. The LFWS filters warps in the ready
state to a ready queue and updates the queue in time according to changes
in the status of the warp. The LFWS divides the warps in the ready queue
into long and short operation groups based on the type of operations in their
instruction buffers, and it gives higher priority to the long-operating warp
in the ready queue. This can effectively use the long operations to hide
some of the latency from each other and enhance the system’s ability to
hide the latency. To verify the effectiveness of the LFWS, we implement
the LFWS algorithm on a simulation platform GPGPU-Sim. Experiments
are conducted over various CUDA applications to evaluate the performance
of LFWS algorithm, compared with other five warp scheduling algorithms.
The results show that the LFWS algorithm achieves an average performance
improvement of 8.01% and 5.09%, respectively, over three traditional and
two novel warp scheduling algorithms, effectively improving computational
resource utilization on GPU.

key words: GPU, warp scheduling, long operation latency, utilization

1. Introduction

GPU is composed of thousands of simple SPs (Streaming
Processors) and a few control units. Earlier GPUs were
mainly used to accelerate graphics processing until NVIDIA
introduced the general purpose parallel computing architec-
ture called CUDA (Compute Unified Device Architecture)
which expanded the scope of GPU applications and made
GPU dominate in areas such as high performance comput-
ing, artificial intelligence computing, and parallel comput-
ing. For most parallel applications, GPUs are able to provide
better performance than CPUs [1]. Modern GPU architec-
tures are based on the Single Instruction Multiple Thread
(SIMT) computing model, where 32 threads form a warp
that executes the same instructions and processes different
data at the same time. Warp is the smallest unit in the GPU
that can be scheduled and executed in parallel. There will be
pipeline stalls when executing long-latency operations. The
GPU does not have a complex chaotic pipeline and branch

Manuscript received July 29, 2022.
Manuscript revised January 1, 2023.
Manuscript publicized February 10, 2023.
"The authors are with the School of Computer Science and
Technology, Xi’an Jiaotong University, Xi’an, 710049 China.
a) E-mail: wgwu@xjtu.edu.cn
DOI: 10.1587/transfun.2022EAP1084

predictor like the CPU, and therefore relies on fast switching
of warps to hide pipeline stalls. The ability to hide long-
latency operations affects the utilization of computational
resources on the GPU [2]. The key issues affecting compu-
tational resource utilization on the GPU are shared resource
contention, long operation latency, and branching operations
[3].

Hardware control of warp scheduling is required in
GPU. A warp scheduler selects a warp from the list of can-
didate warps and executes its instructions every cycle [4].
The scheduler determines the execution order and switching
policy of warps, which determines the ability of the GPU to
hide long latency operations and also affects access mem-
ory locality, and has a critical impact on the utilization of
computational resources on the GPU [5].

Effective utilization of intra- and inter-warp data lo-
cality can improve on-chip cache hit rate, mitigate cache
interference [6], reduce the number of costly off-chip ac-
cesses, and improve GPU performance [7]. The traditional
LRR (Loose Round Robin) and GTO (Greedy Then Oldest)
scheduling algorithms preserve inter-warp locality and intra-
warp locality, respectively. In the literature [8], the authors
dynamically choose a LRR or GTO scheduling policy suit-
able for a task based on the locality of task load. Oh et al.
[9] proposed the adaptive anticipation and scheduling pol-
icy ARPES (Adaptive Prefetching and Scheduling), which
divides the warps executing the same memory operation in-
structions into a group and prioritizes the execution of the
group. Rogers et al. [10] prioritized the warps based on the
degree of data locality within the warp and proposed a cache-
aware warp scheduling algorithm CCWS (Cache-Conscious
Wavefront Scheduling) which tracks the invalidation of the
L1 data cache, adjusts the number of active warp in time,
and reduces cache contention to preserve access locality.
All these approaches reduce the numbers of long operations
as much as possible but do not directly address the pipeline
stalling problem caused by long operation delays [11]. In
literatures [12]—[14], a series of studies have been conducted
on how to better hide the latency of long operations on GPUs.
The literatures [15]-[19] have tried to dynamically choose
the best warp scheduling strategy for different applications.

In this paper, we propose a Long-Operation First Warp
Scheduling (LFWS) algorithm for general-purpose GPU ar-
chitectures, which enables long operations to hide part of
the latency from each other and then uses short operations
to hide the latency. This algorithm filters the ready warps
to the ready queue, and then prioritizes the execution of the

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

1044

long operation warps in the ready queue to improve GPU’s
ability to hide latency. The LFWS scheduler is simulated
and implemented in GPGPU-Sim [20] to test the execution
performance of various GPU applications. The LFWS algo-
rithm is compared with polling scheduling algorithm, greedy
scheduling algorithm, two-level scheduling algorithm and
two warp scheduling algorithms for hiding long latency prob-
lem. The experimental results show that LFWS can improve
the ability of hiding long latency, especially in long operation
intensive applications, LFWS exhibits much more significant
performance improvement than other algorithms.

2. Long Operation First Warp Scheduling Algorithm

The warp scheduler determines the execution order of warps
and the strategy of warp replacement, which has a critical
impact on GPU performance. This section designs and im-
plements the long-operation-first warp scheduling algorithm
to improve the GPU’s ability to hide latency and improve
application runtime performance by using long operations
to hide a portion of latency from each other.

2.1 Typical Warp Scheduling Algorithms

The warp scheduling algorithms commonly used on GPUs
are polling scheduling algorithms and greedy scheduling al-
gorithms. The polling algorithm is divided into SRR (Strict
Round Robin) and LRR, while the greedy scheduling algo-
rithm is divided into GTO and GTRR (Greedy Then Round
Robin).

SRR scheduling algorithm strictly follows the princi-
ple that all warps have the same priority. If the currently
scheduled warp is blocked and hung, the pipeline will wait
idle until the warp can be executed. In the LRR scheduling
algorithm, all warps have the same priority, but if the current
warp is hung, it switches to the next warp in time. In the GTO
algorithm, a warp switching occurs only when the current
warp is blocked, and it is to switch to the earliest arriving
warp, i.e., the warp with the smallest unique identifier (ID).
The difference between the GTRR and the GTO is that the
GTRR selects the warp to switch to according to the rules of
the polling method when a warp switch occurs.

Two-level warp scheduling algorithm (2-level) divides
all warps in the warp pool into two groups, i.e., the active
group and the pending group. The warps in the active group
are in the ready state, while the warps in the pending group
are in the blocking state. The active group is dynamically
changing, and the scheduler will promptly call out the inel-
igible warps to the pending group, and when the number of
warps in the active group is less than the set value, it will
promptly call in the warps in the pending group to replenish
them. The warps in the active group are scheduled accord-
ing to the LRR algorithm. To a certain extent, the two-level
scheduling algorithm embodies a better ability to hide the
delay.

Besides, some scheduling algorithms are specifically
designed for the long operation latency problem on GPUs,

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.8 AUGUST 2023

such as the LPI [13] and the Long-Latency Operation-Based
Scheduling (LLOS) [14] algorithms.

The LPI scheduling algorithm inserts waiting warps
into active warps to form the queue of warps traversed by the
scheduler, and the insertion is done in a time-ordered manner
as much as possible. The main procedure of the LPI algo-
rithm is as follows. The warps are first divided into active
and blocking warp groups. The active and blocking warp
groups are arranged according to the IDs of the warps from
small to large. Then, the ordered blocking warps are inserted
into the active warps at intervals, and each blocking warp is
inserted into two active warps adjacent to its ID as much
as possible. Finally, the scheduler traverses the active warp
groups after the above process. This scheduling algorithm
uses interval execution between active and blocking warps to
hide the blocking warp latency, and thus improving applica-
tion runtime performance. However, the LPI algorithm does
not schedule the long operations within warps, and a small
number of active warps are difficult to fully hide the latency
of the blocking warps, so the performance improvement of
this algorithm is very limited.

LLOS scheduling algorithm uses the core idea of
scheduling long operation warp first. The main procedure of
LLOS algorithm is as follows. First, the warp that will per-
form the read operation and the scoreboard gives an invalid
signal is put into the guiding queue, and the rest warps are
put into the filling queue. Then, the scheduler first traverses
the guiding queue, and if there is no warp in the guiding
queue that successfully executes, it schedules the warp in the
filling queue. Both the filling queue and the guiding queue
are scheduled according to the polling method. Although
the LLOS algorithm adopts the idea of scheduling long op-
eration warp first, but it does not consider whether the warp
is in the ready state, and only the warp that scoreboard gives
an invalid signal can be determined as a long operation warp,
therefore, the long operation warp cannot be executed in the
current clock cycle, leading to insufficient utilization of GPU
resources.

2.2 Design of LFWS

There are two main types of instruction operations in GPU,
i.e., long-latency operations and short-latency operations.
Long-latency operations mainly refer to the access opera-
tions to global memory, local memory or texture memory.
Short latency operations are mainly some arithmetic logic
operations, integer and floating point operations. Usually,
short operations can be used to hide the latency of long oper-
ations and avoid pipeline stalls. However, when there are few
short operations, it is difficult to hide the latency sufficiently.
This section designs a long-operation-first warp scheduling
algorithm LFWS to improve the GPU’s ability to hide the
latency of long operations.

The LFWS algorithm is mainly divided into two steps,
firstly, filtering the ready warps into the ready queue and
adjusting the priority of the warps in the ready queue, and
secondly, iteratively scheduling the warps in the ready queue.

LIU et al.: LFWS: LONG-OPERATION FIRST WARP SCHEDULING ALGORITHM TO EFFECTIVELY HIDE THE LATENCY FOR GPUS

The filtering process selects the ready warps from the pool of
warps and puts them into the ready queue, and then adjusts
the priority of the ready queue according to the type of
instruction operation to be performed by the threads in the
ready warps and the warp ID. The core idea of this algorithm
is to prioritize the warps in the ready warp queue, which are
about to perform long operations, i.e., long-operation warps.
In this way, long operations can be used to hide some of the
latency from each other.

The advantage of the LFWS algorithm in hiding the
latency is analyzed in the following example. Suppose there
are 6 warps, numbered 1 to 6, where the order of instructions
to be executed in warps 1, 3, 5, and 6 is long — long —
short — long, and the order of instructions to be executed
in warps 2 and 4 is short — short — long — long, where
long means long operation which is assumed to take 10
clock cycles to complete, and short means short operation
which is assumed to take 1 cycle to complete. In fact, the
execution time of long and short operations on the GPU can
differ by tens of times. The scheduler needs to schedule the
6 warps for execution, and assumes that only one instruction
is fired per clock cycle per warp. The execution of the warps
using different scheduling strategies is shown in Fig. 1. The
horizontal axis represents the execution time in cycles, wl,
w2, ..., and w6 respectively represent the execution process
of each warp, the L block represents the long operation, the
S block represents the short operation, and the solid black
line segment represents the delay of the long operation.

The cost of warp switching on the GPU is very low, so
when a warp is blocked, the scheduler immediately switches
to the next warp. Different scheduling algorithms take ad-
vantage of this feature to different degrees. By looking at
Fig. 1(a), using the SRR scheduling strategy, it takes a to-
tal of 45 clock cycles to complete the execution of the 6
warps, generating 21 pipeline stops. The SRR scheduling
algorithm is the least effective because it keeps idle waiting
for the blocking warp. The LRR algorithm, on the other
hand, is able to switch to other ready warps in a timely man-
ner, basically solving the SRR problem. Figure 1(b) shows
the execution with the LRR scheduling strategy, consuming
a total of 39 clock cycles, of which the pipeline is idle for
15 cycles. In summary, the polling scheduling algorithms
ensure the fairness of scheduling as much as possible, but
tend to cause a larger number of warps to fall into a blocking
state at similar clock cycles. Figure 1(c) shows the process
of executing the 6 warps using the GTO scheduling strat-
egy, which takes a total of 41 clock cycles and generates 17
pauses. The greedy scheduling algorithm spreads out the
time when the warps fall into blocking compared to the SRR
scheduling algorithm, but destroys the inter-warp locality.
All these three algorithms, with a limited number of short
operations, show unmaskable delays.

To solve all above mentioned problems, we introduce
the LFWS algorithm. The LFWS algorithm reduces pipeline
stalls by using long operations to hide some of the latency
from each other. The core idea of the LFWS algorithm is to
prioritize the scheduling of warps that are to perform long

1045

warp: wl. w3, w5. w6: long—long—short—~long shgrt:

long:

warp: w2+ w4: short—>short—long—~long

exe_time/cycles g
(d) LFWS

Fig.1 The ability of different warp scheduling algorithms to hide long
operation latencies.

operations. As shown in Fig. 1(d), in the first clock cycle,
warps 1, 3, 5, and 6 will perform long operations, so these 4
warps are executed sequentially to hide some of the latency
from each other, and then the short operations of warps 2
and 4 are used to hide the latency. At each cycle, the priority
of the warps is adjusted according to the operations to be
performed by each warp. When there are no long operation
warps available for execution, the short operation warps are
executed. Besides, LFWS will filter out the ready warp
according to the state of the warp, therefore, the operations
in the ready warp can be executed continuously. In this
way, the GPU’s ability to hide the latency of long operations
is improved, while reducing the application completion time
and improving the system computational resource utilization.

To execute all instructions of the 6 warps, the LFWS
algorithm requires a total of 37 clock cycles and generates
only 13 pipeline pauses. Compared to SRR, LRR and GTO,
the completion time with LFWS is reduced by 8, 2 and 4
clock cycles, respectively, in this illustrated example.

2.3 Implementation of LFWS

This subsection specifies the implementation of the LFWS
algorithm described in Algorithm 1. The LFWS algorithm
first divides the warps into ready warps and pending warps
based on the current state of warp and whether the instruction
buffer is empty. Warps have two states, pending or ready.
There are four situations when a warp is in a pending state,
waiting to be initialized, waiting for another synchronized

1046

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.8 AUGUST 2023

Algorithm 1: Determine whether a warp is in the pending state

Algorithm 2: Determine the ready warp group

Input: warp

Output: True or False

1 if waiting to be initialized then
return True;

end if

if waiting for other warps within a block then
return True ;

end if

if waiting for memory barrier then
return True ;

9 end if

10 if waiting for atomic operation then

11 return True ;

12 end if

13 return False ;

0NN AW

warp, waiting for the current memory operation to complete,
and waiting for an atomic operation in the warp to complete.
If a warp is in a pending state or the instruction buffer of the
warp is empty, the warp is classified into the pending group,
otherwise it is classified into the ready group. Algorithm 1
describes the isPending() function, determining whether a
warp is in the pending state.

At each clock cycle, the warp adjusts its group accord-
ing to its current state. After determining the ready group,
the warps in the ready group are prioritized, with long opera-
tions taking precedence over short operations, and the warps
containing the same operation type are then scheduled ac-
cording to the GTO. In other words, if there is a warp in the
long operation group that has been executed in the previous
cycle, the warp is put in the first place, and the rest of the
warps are arranged according to the warp ID from small to
large. And the same is ture for the short operation group.
The specific determination process of long and short oper-
ations is to take an instruction from the instruction buffer
corresponding to a warp, and if the instruction meets the
long operation determination condition, i.e., the operation is
an access operation to the off-chip memory, then the warp
is added to the long operation warp group, otherwise it is
put into the short operation warp group. Algorithm 2 de-
scribes the getReadyWarps(pending warps) function to
determine the ready warp group. The time complexity of
Algorithm 2 is O(n log, n), where n is number of warps. Al-
though the warp classification process is executed throughout
the whole scheduling process, the time cost of this process
is trival compared with the warp execution time, and the
classification process will bring significant performance im-
provement to the scheduling algorithm.

After obtaining the queue of ready warps, the LFWS
algorithm iterates through the warps in the ready queue at
each clock cycle. If the instruction of the current warp
meets the execution conditions, the instruction is sent to the
corresponding pipeline unit for execution. And if it does not
meet the execution conditions, it switches to the next warp.
At the same time, if a program branch occurs, the instruction
in the instruction cache of current warp is updated according
to the branch stack to handle the branch.

Input: pending_warps

Output: ready_warps

1 for warp in pending_warps do
2 if isPending(warp)&&ibuffer is not empty then

3 ready_warps.push_back(warp);

4 pending_warps.erase(warp);

5 end if

6 end for

7 initialize long_warps, short_warps, update_warpsto null;
8 for warp in ready_warps do

9 inst < inst.ibuffer_next_inst();

10 mem_type « inst.space_type();

11 if instis load or store && mem_type is global, local
or tex

12 space then long_warps.push_back(warp);
13 else

14 short_warps.push_back(warp);

15 end if

16 end for

17 if ! long_warps.empty()

18 sort_by_greedy_then_warplID_asc(long_warps);
19 update_warps._insert(long_warps);

20 end if

21 if ! short_warps.empty()

22 sort_by_greedy_then_warplID_asc(short_warps);
23 update_warps._insert(short_warps);

24 end if

25 ready_warps «— update_warps;

26 return ready_warps;

ID Active mask PC R

Fig.2 The structure of warp.

2.4 Microarchitecture of SM

The SM microarchitecture based on LFWS scheduler differs
from the traditional SM architecture. The traditional warp
scheduler directly iterates through all warps in turn from the
pool of warps, detects the scoreboard of a warp, and executes
the warp if it is given a valid signal, otherwise, it hangs the
warp to select next warp. The scheduler designed in this
paper requires an additional flag bit R for each warp to store
whether the current warp is in the ready state, R=1 means
ready and R=0 means waiting, as shown in Fig.2. Active
mask has 32 bits and each bit indicates whether a thread in
that warp is active or not. The PC (Program Counter) is a
program counter that stores the address of the next instruc-
tion.

Warps flow through the ready and pending queues based
on flag bits. The warps in the ready queue are sorted accord-
ing to the types of operations to be executed in the instruc-
tion cache, based on the principle of long operations first.
If both the branch stack and the scoreboard give valid sig-
nals, the instructions in the warp are fired to the execution
unit, otherwise, the next warp in the ready queue is switched.
The SM microarchitecture based on the LFWS scheduler is
shown in Fig. 3. The warp scheduler is the core optimization

LIU et al.: LFWS: LONG-OPERATION FIRST WARP SCHEDULING ALGORITHM TO EFFECTIVELY HIDE THE LATENCY FOR GPUS

‘ Warp scheduler ‘ Scoreboard

Ready warps

Long Instruction buffer Rei:usler

Ay [Warpid [inst.| Reg:

Unready warps

Instruction |_
cache

. Instruction
Fetch unit = |
decoder

Reg

Execution unit
L1 data
LD/ST| | sFU = cache

Fig.3 SM microarchitecture with LFWS scheduler.

component to implement the proposed scheduling algorithm
in this paper, which selects a warp from the ready warp
queue for execution every clock cycle. The queue of ready
and non-ready warps dynamically changes according to the
warp flag bits. The hollow arrows in Fig. 3 indicate the log-
ical flow of instructions executed on the SM. First, the fetch
unit fetches the instructions from the instruction cache and
decodes them. Then, the warp scheduler selects a warp to
emit from the ready queue. Finally, the instructions of the
warp to be launched and the data in the register unit or data
cache are fetched from the instruction cache and transferred
to the corresponding functional unit for execution.

In a GPU with LFWS scheduler, each warp takes one
more bit to store the current warp state. The total hardware
overhead is the number of warps multiplied by 1 bit. If
there are 2 SMs with 24 warps on each SM, the additional
storage space required is 48 bits. The filtering and sorting
process of warps has one more access to the instruction cache
compared to the original scheduler. However, each warp is
independent and the parallel execution is fast. The warp
scheduling can be done directly based on the current ready
queue, and the scheduling process does not conflict with the
filtering process. Therefore, the overhead of this scheduler
is fully acceptable. In addition, several comparators and
logical AND gates are needed to complete the determination
of long and short operations.

3. Experiments
3.1 Experimental Environment and Data Set

The LFWS warp scheduler was implemented on the simu-
lation platform GPGPU-Sim 3.2.2, and several CUDA ap-
plications were tested to evaluate the execution performance
of the proposed LFWS algorithm. The experiments were
conducted using the default architecture of the simulator,
namely the NVIDIA Fermi GTX480 architecture. Table 1
shows the specific configuration information.

In this paper, 20 CUDA applications from Rodinia [21],
ISPASS [22], and NVIDIA SDK [23] are selected for exper-
imental evaluation. The names of the selected applications,
the input data sets, the total number of CUDA instructions

1047
Table1 GPU configurations on GPGPU-Sim.
Configuration parameter Value
Number of SM 15
Number of threads in SM 1536
Maximum number of concurrent 3
thread blocks per SM
Number of registers per SM 32768
Size of warp 32
Size of shared memory 48 KB
Size of L1 data cache 16 KB
Size of L1 inst cache 2KB
Size of L2 cache 768 KB
DRAM FR-FCFS, 6 channels,48B/cycle

at runtime, and the percentage of long operation instructions
are given in Table 2. For each set of validation experiments,
the performance statistics output from each application after
execution on the simulator are recorded.

3.2 Experimental Results

We compared with LRR, GTO, 2-level, 2-level opt, LPI, and
LLOS to evaluate the performance of LFWS. LRR, GTO, and
2-level are the classical scheduling algorithms. The “2-level
opt” is the optimized 2-level algorithm that we applied the
core idea of LFWS to the 2-level algorithm, and the “2-level
opt” sorts the warps in the active warp group and prioritizes
the long operation warp for scheduling. LPI and LLOS are
the state-of-the-art algorithms for the long operation latency
problem, which share the same goal with LFWS. All these
algortihms are seperately implemented in GPGPU-Sim.

We use the instructions per cycle, IPC, to evaluate the
performance of scheduling algorithms. All applications
from Table 2 are executed with different algorithms. The
number of instructions executed by the application and the
total cycles of the application completion time were recorded
to calculate the IPC of applications with each algorithm. The
larger the IPC, the higher the application runtime comput-
ing resource utilization, and the better the corresponding
scheduling algorithm performance. There are four kernels
in application NN, and the thread block size of two kernels
is 1. This will lead to a low utilization of GPU computing
resources and affect the performance of the warp scheduling
algorithm. Therefore, only the IPC values measured after the
execution of the first two kernels are recorded for application
NN.

Since the LRR is one of the most classical scheduling
algorithms, we use the LRR as the baseline algorithm. The
IPC of tested applications with each algorithm is normal-
ized to that of the LRR to better show the performance of
all comparison scheduling algorithms. Figure 4 shows the
normalized IPC values of seven scheduling algorithms. The
IPC value of LRR algorithm for each application is 1.0. To
show the results more clearly, the normalized IPC value of
the ordinate in Fig. 4 starts from 0.80.

Compared to the traditional scheduling algorithms,
LRR, GTO, and 2-level, LFWS algorithm improves the av-
erage execution performance. As shown in Fig. 4, the LFWS

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.8 AUGUST 2023

1048
Table 2 CUDA applications.
Nafne f)f Abbreviation Input data .Numbe.r of Numbe.r of long operation . Perce.ntagc'e of lqng oper.ation
Applications instructions instructions instructions in all instructions(%)
AES Cryptography AES 128 bit, 256 KB 22M 131584 0.59
Breadth First Search BFS_1 65536 nodes 4M 3722864 9.09
Breadth First Search BFS_2 1 M nodes 724 M 60791985 8.38
Back Propgation BP 65536 nodes 181M 15471724 8.50
Coulombic Potential CP 200 atoms 125M 131072 0.10
EstimatePInlineP EPP 100000, float 806 M 160251896 19.88
hotspot HSP 512*%512 142M 1186944 0.83
LIBOR Monte Carlo LIB 4096 900 M 94453160 10.49
3D Laplace Solver LPS 100*100*100 82M 2568800 3.10
MUMmerGPU MUM NC_003997.20k. 87TM 1731984 1.97
Neural Network Digit NN 28 101M 19108544 18.75
Recognition
nearestNeighbor NNEI 10691 1M 128292 10.31
N-Queens Solver NQU 10 1M 319 0.02
Needleman-Wunsch NwW 1024*1024 169 M 8929280 5.27
PathFinder PF 100000*100%*20 649 M 11850200 1.82
Ray Tracing RAY 32%32 744K 19935 2.67
SingleAsianOptionP SAOP 100000, float 1G 177851576 10.72
StreamCluster SC 2048 6G 1324130304 19.76
ScalarProduct SP 256*4096 22M 2097408 9.49
StoreGPU STO 192KB 128M 835584 0.64
18 ¢ BLRR EGTO m2-level m2-levelopt WLPI =LLOS ®LFWS
L7t
16t
15
sl e
&
-s 125 -
ERRENt
§ 115
“ 1

1.05 -

0.95
0.9
0.85

0.8
AES BFS_1 BFS_2 BP cp EPP HSP LIB LPS MUM NN

NNEI NQU NwW PF RAY SAOP sc SP STO AVG.

Application name

Fig.4 TheIPC of LRR, GTO, 2-level, 2-level opt, LPI, LLOS, and LFWS, normalized to that of LRR.

achieves an averge IPC improvement of 10.60% over the
baseline algorithm for all applications. For the applications
BFS_1, BFS_2, BP, EPP, NN, NNEI, SAOP and SP, which
have a relatively high proportion of long operations, the
LFWS algorithm achieves an average IPC improvement of
18.17% compared to the LRR runtime. But for the appli-
cation LIB and SC, which also have more long operations,
the execution performance has almost no improvement using
the LFWS algorithm. This is because these two applications
have a small number of warps and different warp scheduling
algorithms do not have a significant impact on the perfor-
mance of these applications. In addition, the application
HSP has only 0.84% long operations, but it achieves a per-
formance improvement of 17.40% using the LFWS algo-
rithm compared to LRR. This is because the long and short
operation warp groups of the ready queue are scheduled ac-
cording to GTO when with very few long operation warps.

In this case, LFWS scheduling algorithm is equivalent to
GTO, so this application shows almost no difference in per-
formance under LFWS and GTO. Since the 2-level algorithm
is designed to reduce the number of warps traversed by the
scheduler per clock cycle and it performs warp scheduling
based on LRR, the performance of applications using the 2-
level algorithm has no improvement compared to that using
LRR, and some applications have performance degradation.

When we applied the LFWS to the 2-level algorithm,
the 2-level opt algorithm shows an average performance im-
provement of 1.88% over the orginal 2-level algorithm for
all applications, as shown in Fig.4. For the applications
with a relatively high percentage of long operations, BFS_1,
BFS_2, BP, EPP, NN, NNEI, SAOP, and SP, the 2-level opt
achieves an average performance improvement of 4.27%.
For the applications LIB and SC, the 2-level opt does not
obtain performance improvement over the 2-level due to the

LIU et al.: LFWS: LONG-OPERATION FIRST WARP SCHEDULING ALGORITHM TO EFFECTIVELY HIDE THE LATENCY FOR GPUS

small number of warps. Based on the results and analysis,
it can be concluded that the scheduling rule of long opera-
tion priority for active warps can improve the runtime IPC
performance of applications and increase the utilization of
computational resources on GPUs. As mentioned before,
the original 2-level algorithm is designed to save hardware
resources, its performance has almost no improvement com-
pared with the LRR algorithm. Therefore, the performance
improvement of the 2-level opt is moderate.

LPI and LLOS are state-of-the-art warp scheduling al-
gorithms for solving the long operation latency problem on
GPUs. According to Fig. 4, the average performance im-
provements of LPI and LLOS over LRR are 5.34% and
5.05%, respectively. And the LFWS algorithm achieves
an average performance improvement of 5.11% and 5.06%
compared to LPI and LLOS, respectively, for all test appli-
cations. As described in section 2, the LPI algorithm uses
interval execution between active and blocking warps to hide
the blocking warp latency. However, a small number of ac-
tive warps are not enough to hide the latency of blocking
warps, so the performance improvement of the algorithm is
limited, especially for the warps with more long operands,
such as BP, EPP, SAOP, etc. For the LLOS algorithm, it
does not determine whether the warp is in the ready state
and cannot execute the determined long operation warp in
current clock cycle, as explained in section 2. But the LFWS
algorithm can schedule the long operation warp in time to
improve the resource utilization on GPUs. For applications
with more long operations, such as BFS_1, BFS_2, BP, EPP,
NN, NNEI, SAOP, and SP, the LFWS algorithm achieves
an average performance improvement of 8.72% compared to
LLOS.

4. Conclusion

In this paper, we propose a long-operation-first warp schedul-
ing algorithm LFWS for general-purpose GPU architectures.
LFWS uses long operations to effectively hide part of the la-
tency to each other, and thus improving the GPU’s ability to
hide latency. The algorithm filters the ready warps to a ready
queue, then adjusts the order of warps in the ready queue.
Warps in the ready queue are divided into long and short
operation warp groups, and the long operation warp groups
are prioritized for execution while warps within the long and
short operation groups are schedules according to the GTO
strategy. The long operation priority warp scheduler is sim-
ulated and implemented in GPGPU-Sim. Experiments show
that LFWS achieves average performance improvements of
over 8% and 5%, compared with three classic warp schedul-
ing algorithms and two state-of-the-art algorithms, respec-
tively. Results demonstrate that LFWS effectively hides la-
tency to enhance the resource utilization of GPUs, especially
for long-operation intensive applications.

Acknowledgments

This paper was supported by National Natural Science Foun-

1049

dation of China (Grant No. 62002279) and Key Basic Re-
search Projects of the Foundation Plan of China (Grant No.
2020-JCJQ-ZD-087).

References

[1] N. Melab, J. Gmys, M. Mezmaz, and D. Tuyttens, “Many-core
branch-and-bound for GPU accelerators and MIC coprocessors,”
High-Performance Simulation-Based Optimization, pp.275-291,
2020.

[2] C. Yu, Y. Bai, and R. Wang, “MIPSGPU: Minimizing pipeline
stalls for GPUs with non-blocking execution,” IEEE Trans. Com-
put., vol.70, no.11, pp.1804-1816, 2020.

[3] C.Fan, “Research on GPU warp scheduling algorithm optimization,”
Master’s thesis, Nanjing University, 2018.

[4] J. Chen, X. Tao, Z. Yang, J.K. Peir, X. Li, and S.L. Lu, “Guided
region-based GPU scheduling: Utilizing multi-thread parallelism to
hide memory latency,” 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pp.441-451, May 2013.

[5] V. Narasiman, M. Shebanow, C.J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y.N. Patt, “Improving GPU performance via large warps and
two-level warp scheduling,” 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pp.308-317, 2011.

[6] J.Zhang, S.Gao, N.S. Kim, and M. Jung, “CIAO: Cache interference-
aware throughput-oriented architecture and scheduling for GPUs,”
2018 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp.149-159, 2018.

[7] T.G.Rogers, “Locality and scheduling in the massively multithreaded
era,” Ph.D. thesis, University of British Columbia, 2015.

[8] G.B. Kim, JM. Kim, and C.H. Kim, “Dynamic selective warp
scheduling for GPUs using L1 data cache locality information,”
International Conference on Parallel and Distributed Computing:
Applications and Technologies, pp.230-239, 2018.

[9] Y. Oh, K. Kim, M.K. Yoon, J.H. Park, Y. Park, M. Annavaram, and
W.W. Ro, “Adaptive cooperation of prefetching and warp scheduling
on GPUs,” IEEE Trans. Comput., vol.68, no.4, pp.609-616, 2019.

[10] T.G. Rogers, M. O’Connor, and T.M. Aamodt, “Cache-conscious
wavefront scheduling,” 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pp.72—83, 2012.

[11] A. Jog, O. Kayiran, N.N. Chidambaram, A.K. Mishra, M.T. Kan-
demir, O. Mutlu, R. Iyer, and C.R. Das, “OWL: Cooperative thread
array aware scheduling techniques for improving GPGPU perfor-
mance,” ACM SIGPLAN Notices, vol.48, no.4, pp.395-406, 2013.

[12] M. Gebhart, G.R. Johnson, D. Tarjan, S.W. Keckler, W.J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for
managing thread context in throughput processors,” 2011 38th An-
nual International Symposium on Computer Architecture (ISCA),
pp.235-246, 2011.

[13] Y. Zhang, Z. Xing, C. Liu, C. Tang, and Q. Wang, “Locality based
warp scheduling in GPGPUSs,” Future Generation Computer Systems,
vol.82, pp.520-527, 2018.

[14] C.T. Do, H.J. Choi, S.W. Chung, and C.H. Kim, “A novel warp
scheduling scheme considering long-latency operations for high-
performance GPUs,” The Journal of Supercomputing, vol.76, no.4,
pp.3043-3062, 2020.

[15] M. Lee, G. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “iPAWS:
Instruction-issue pattern-based adaptive warp scheduling for GPG-
PUs,” 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp.370-381, 2016.

[16] J.P. Anantpur, “Enhancing GPGPU performance through warp
scheduling, divergence taming and runtime parallelizing transfor-
mations,” Ph.D. thesis, Indian Institute of Science Bangalore, 2017.

[17] S.Y. Lee, A. Arunkumar, and C.J. Wu, “CAWA: Coordinated warp
scheduling and cache prioritization for critical warp acceleration of
GPGPU workloads,” ACM SIGARCH Computer Architecture News,
vol.43, no.3S, pp.515-527, 2015.

http://dx.doi.org/10.1007/978-3-030-18764-4_12
http://dx.doi.org/10.1007/978-3-030-18764-4_12
http://dx.doi.org/10.1007/978-3-030-18764-4_12
http://dx.doi.org/10.1007/978-3-030-18764-4_12
http://dx.doi.org/10.1109/tc.2020.3026043
http://dx.doi.org/10.1109/tc.2020.3026043
http://dx.doi.org/10.1109/tc.2020.3026043
http://dx.doi.org/10.1109/ipdps.2013.95
http://dx.doi.org/10.1109/ipdps.2013.95
http://dx.doi.org/10.1109/ipdps.2013.95
http://dx.doi.org/10.1109/ipdps.2013.95
http://dx.doi.org/10.1145/2155620.2155656
http://dx.doi.org/10.1145/2155620.2155656
http://dx.doi.org/10.1145/2155620.2155656
http://dx.doi.org/10.1145/2155620.2155656
http://dx.doi.org/10.1109/ipdps.2018.00025
http://dx.doi.org/10.1109/ipdps.2018.00025
http://dx.doi.org/10.1109/ipdps.2018.00025
http://dx.doi.org/10.1109/ipdps.2018.00025
http://dx.doi.org/10.1007/978-981-13-5907-1_24
http://dx.doi.org/10.1007/978-981-13-5907-1_24
http://dx.doi.org/10.1007/978-981-13-5907-1_24
http://dx.doi.org/10.1007/978-981-13-5907-1_24
http://dx.doi.org/10.1109/tc.2018.2878671
http://dx.doi.org/10.1109/tc.2018.2878671
http://dx.doi.org/10.1109/tc.2018.2878671
http://dx.doi.org/10.1109/micro.2012.16
http://dx.doi.org/10.1109/micro.2012.16
http://dx.doi.org/10.1109/micro.2012.16
http://dx.doi.org/10.1145/2499368.2451158
http://dx.doi.org/10.1145/2499368.2451158
http://dx.doi.org/10.1145/2499368.2451158
http://dx.doi.org/10.1145/2499368.2451158
http://dx.doi.org/10.1145/2000064.2000093
http://dx.doi.org/10.1145/2000064.2000093
http://dx.doi.org/10.1145/2000064.2000093
http://dx.doi.org/10.1145/2000064.2000093
http://dx.doi.org/10.1145/2000064.2000093
http://dx.doi.org/10.1016/j.future.2017.02.036
http://dx.doi.org/10.1016/j.future.2017.02.036
http://dx.doi.org/10.1016/j.future.2017.02.036
http://dx.doi.org/10.1007/s11227-019-03091-2
http://dx.doi.org/10.1007/s11227-019-03091-2
http://dx.doi.org/10.1007/s11227-019-03091-2
http://dx.doi.org/10.1007/s11227-019-03091-2
http://dx.doi.org/10.1109/hpca.2016.7446079
http://dx.doi.org/10.1109/hpca.2016.7446079
http://dx.doi.org/10.1109/hpca.2016.7446079
http://dx.doi.org/10.1109/hpca.2016.7446079
http://dx.doi.org/10.1145/2872887.2750418
http://dx.doi.org/10.1145/2872887.2750418
http://dx.doi.org/10.1145/2872887.2750418
http://dx.doi.org/10.1145/2872887.2750418

1050

[18]

[19]

[20]

[21]

[22]

(23]

V.T. Vo and C.H. Kim, “KAWS: Coordinate kernel-aware warp
scheduling and warp sharing mechanism for advanced GPUs,” Jour-
nal of Information Processing Systems, vol.17, no.6, pp.1157-1169,
2021.

J. Fang, Z. Wei, and H. Yang, “Locality-based cache management
and warp scheduling for reducing cache contention in GPU,” Micro-
machines, vol.12, no.10, p.1262, 2021.

M. Khairy, Z. Shen, T.M. Aamodt, and T.G. Rogers, “Accel-Sim: An
extensible simulation framework for validated GPU modeling,” 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA), pp.473-486, 2020.

S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.H. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” IEEE International Symposium on Workload Characterization,
pp.44-54, 2009.

A. Bakhoda, G.L. Yuan, W.W. Fung, H. Wong, and T.M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” 2009
IEEE International Symposium on Performance Analysis of Systems
and Software, pp.163—174, 2009.

NVIDA, CUDA SDK: http://developer.nvidia.com/gpu-computing-
sdk

Song Liu received the B.S. degree in com-
puter science and technology from the North-
western Polytechnical University, China, in
2009. And he received Ph.D. degree in computer
science and technology from the Xi’an Jiaotong
University, China, in 2018. He is currently with
the School of Computer Science and Technol-
ogy at Xi’an Jiaotong University as an assistant
professor. He is a member of the CCF. His re-
search interests include parallel computing and
code optimization.

JieMa received the M.E. degree in computer
science and technology from the Xi’an Jiaotong
University, China, in 2022.

Chenyu Zhao is currently pursuing the M.E.
degree in computer science and technology in
Xi’an Jiaotong University.

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.8 AUGUST 2023

Xinhe Wan is currently pursuing the M.E.
degree in computer science and technology in
Xi’an Jiaotong University.

Weiguo Wu received the B.S., M.S. and
Ph.D. degrees in computer science from the
Xi’an Jiaotong University, China, in 1986, 1993
and 2006. He is currently with the School of
Electronic Information and Engineering at Xi’an
Jiaotong University as a professor. He is a se-
nior member of the CCF. His research interests
include high performance computer architecture,
storage system, cloud computing, and embedded
system.

https://doi.org/10.3745/JIPS.01.0084
https://doi.org/10.3745/JIPS.01.0084
https://doi.org/10.3745/JIPS.01.0084
https://doi.org/10.3745/JIPS.01.0084
http://dx.doi.org/10.3390/mi12101262
http://dx.doi.org/10.3390/mi12101262
http://dx.doi.org/10.3390/mi12101262
http://dx.doi.org/10.1109/isca45697.2020.00047
http://dx.doi.org/10.1109/isca45697.2020.00047
http://dx.doi.org/10.1109/isca45697.2020.00047
http://dx.doi.org/10.1109/isca45697.2020.00047
http://dx.doi.org/10.1109/iiswc.2009.5306797
http://dx.doi.org/10.1109/iiswc.2009.5306797
http://dx.doi.org/10.1109/iiswc.2009.5306797
http://dx.doi.org/10.1109/iiswc.2009.5306797
http://dx.doi.org/10.1109/ispass.2009.4919648
http://dx.doi.org/10.1109/ispass.2009.4919648
http://dx.doi.org/10.1109/ispass.2009.4919648
http://dx.doi.org/10.1109/ispass.2009.4919648
http://developer.nvidia.com/gpu-computing-sdk
http://developer.nvidia.com/gpu-computing-sdk

