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PAPER
Design and Analysis of Piecewise Nonlinear Oscillators with
Circular-Type Limit Cycles

Tatsuya KAI†a), Member and Koshi MAEHARA††, Nonmember

SUMMARY This paper develops a designmethod and theoretical analy-
sis for piecewise nonlinear oscillators that have desired circular limit cycles.
Especially, themathematical proof on existence, uniqueness, and stability of
the limit cycle is shown for the piecewise nonlinear oscillator. In addition,
the relationship between parameters in the oscillator and rotational direc-
tions and periods of the limit cycle trajectories is investigated. Then, some
numerical simulations show that the piecewise nonlinear oscillator has a
unique and stable limit cycle and the properties on rotational directions and
periods hold.
key words: nonlinear phenomena, limit cycles, piecewise nonlinear sys-
tems, nonlinear oscillators

1. Introduction

A limit cycle is one of the most important phenomena
in nonlinear systems along with chaos, fractals, and soli-
tons, and has been actively studied in various research
fields since old times. A limit cycle is defined as a 1-
dimensional closed curve that attracts other trajectories in
a phase space, and famous examples are as follows: stable
gaits of humanoid robots [1] in robotics, periodic motions
of machines [2] in mechanical engineering, oscillators [3]
in electrical engineering, catalytic hypercycles [4] and the
Belousov-Zhabotinsky reaction [5] in chemistry, circadian
rhythms [6] and firefly flashing [7] in biology, boom-bust
cycles [8] in economics. Systems that have stable limit
cycles are called “oscillators,” and various types of oscil-
lators have been proposed: Duffing equation, Van del Pol
equation, Lotka-Volterra equation, Hodgkin-Huxley equa-
tion, FitzHugh-Nagumo model, Kuramoto model, and so on
[9]–[11]. Oscillators are applied for gait generation of robots
as central pattern generators [12], [13], excitation of vibration
for mechanical and electrical systems [14], and mathemati-
cal analysis on synchronization of multiple systems such as
metronomes [15], fireflies [16], cardiocytes [17], and so on.
In general, oscillators are represented by sets of nonlinear
differential equations, and it is known that they have stable
limit cycle when their internal parameters satisfy some con-
ditions. However, shapes, rotational directions, and periods
of limit cycles for these oscillators are fixed and cannot be
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designed. The authors’ previous work [18]–[20] has devel-
oped “piecewise affine oscillators,” which are represented
by N-modal and 2-dimensional piecewise affine systems and
generate desired polygonal-type limit cycles, and analyzed
some mathematical properties for the oscillators. In the
method, we can freely design shapes, rotational directions,
and periods of limit cycles by tuning parameters of piecewise
affine oscillators.

The main purpose of this paper is to derive a new type
of piecewise nonlinear oscillators whose behaviors can be
freely designed in order to extend shapes of limit cycles
more than piecewise affine oscillators, and givemathematical
analysis for the newoscillators. The contents of this paper are
as follows. First, Sect. 2 gives a problem setting on circular-
type closed curves and piecewise nonlinear systems. Next,
Sect. 3 derives a piecewise nonlinear oscillator and proves
existence, uniqueness, and stability of its limit cycle. In
addition, some mathematical properties for the piecewise
nonlinear oscillator are investigated. Then, some numerical
simulations are illustrated in order to check the effectiveness
of the proposed new oscillator in Sect. 4.

2. Problem Settings

This section shall give the problem settings of this study.
Consider 2-dimensional Euclidean space R2 with the origin
O, and denote its coordinate by x = [x1 x2]

T ∈ R2. We
set N (≥ 2) points in R2: Pi , O (i = 1, · · · ,N), and
denote the position vector of Pi by pi = [pi,1 pi,2]T ∈ R2.
We also define the angle formed by the x1-axis and the line
segment OPi as φi ∈ [0,2π). Without loss of generality, it
is assumed that the N points Pi (i = 1, · · · ,N) are located
while surrounding O in the counterclockwise rotation from
the x1-axis in a sequential order, that is to say, 0 ≤ φ1 <
· · · < φN < 2π holds. Next, we define the semi-infinite
region Di which is sandwiched by two half lines OPi and
OPi+1, where PN+1 = P1. In addition, set a new point Qi

(its position vector: qi = [qi,1 qi,2]T ∈ R2) in Di and denote
an arc passing through three points Pi, Qi, Pi+1 by Si . Now,
we assume that Qi ∈ Di is located in the outer region of
PiPi+1 (in the region such that O does not exist), and both of
boundary lines of Di are not tangent to Si . A circular-type
closed curve S is defined as a union of Si:

S :=
N⋃
i=1

Si . (1)
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Fig. 1 Example of circular-type closed curve (N = 5).

An example for N = 5 is illustrated in Fig. 1.
Then, we consider the next nonlinear system:

Ûx = ai + Ai x + fi(x), x ∈ Di, (2)

where ai ∈ R2, Ai = R2×2 are a vector of an nonlinear term
and a matrix of a linear term, respectively, and fi(x) : R2 →
R2 is a nonlinear function containing terms greater than or
equal to squares of x. That is to say, we deal with the N-
modal and 2-dimensional piecewise nonlinear system which
is defined by N regions Di (i = 1, · · · ,N) and N nonlinear
systems (2). Based on the above settings, a problem on limit
cycles for (2) is stated as follows.

Problem 1: For the piecewise nonlinear system (2), design
ai, Ai, fi(x) (i = 1, · · · ,N) such that a given circular-type
closed curve S (1) is the unique and stable limit cycle for (2).

Problem 1 above means that we design the piecewise
nonlinear system (2) such that it has a unique and stable limit
cycle, that is to say, it behaves like an oscillator. Hence, we
call such a system a piecewise nonlinear oscillator.

3. Piecewise Nonlinear Oscillators

3.1 Design of Piecewise Nonlinear Oscillators

First, this subsection derives a piecewise nonlinear oscillator
as a solution of Problem 1. In Di , the equation of the circle
going through three points Pi, Qi, Pi+1 can be represented
by

x2
1 + x2

2 + li x1 + mi x2 + ni = 0, (3)

where the coefficients li, mi, ni are calculated by


li
mi

ni

 = −


pi,1 pi,2 1
qi,1 qi,2 1

pi+1,1 pi+1,2 1


−1 

p2
i,1 + p2

i,2

q2
i,1 + q2

i,2

p2
i+1,1 + p2

i+1,2

 .
(4)

By using (3) (4), we now define a limit cycle function as

Vi(x) = x2
1 + x2

2 + li x1 + mi x2 + ni . (5)

It must be noted that the regions such that V(x) < 0 and
V(x) > 0 hold represents the inner and outer ones of Si ,
respectively. We can see that if the value of V(x) converges
to 0 along a solution trajectory of the piecewise nonlinear
oscillator (2), the solution trajectory also converges to Si .
Hence, we have to find ai, Ai, fi(x) in (2) so that the above
property is satisfied. We shall utilize a design method of
systems such that a given function converges to 0, which
is proposed in [21]. By applying the method to V(x), we
can obtain a system such that V(x) converges to 0 along a
solution trajectory of (2) as

Ûx = Fi(x) + Gi(x), x ∈ Di,
Fi(x) :=

[
0 −ωi

ωi 0

]
∂Vi

∂x

T
,

Gi(x) := −Vi(x)
∂Vi

∂x

T
,

(6)

where ωi , 0 are parameters to be set freely. Therefore,
substituting (5) into (6) and summarizing terms, we find that
ai, Ai, fi(x) of (2) are given by

ai =
[
−ωimi − lini
ωili − mini

]
,

Ai =

[
−l2

i − 2ni −2ωi − limi

2ωi − limi −m2
i − 2ni

]
,

fi(x) =

[
−3li x2

1 − 2mi x1x2 − li x2
2 − 2x3

1 − 2x1x2
2

−mi x2
1 − 2li x1x2 − 3mi x2

2 − 2x2
1 x2 − 2x3

2

]
.

(7)

Note that the nonlinear function fi(x) contains only terms on
squares and cubes of x. However, it is only guaranteed that
solution trajectories of the piecewise nonlinear oscillator (2),
(7) from any initial states converge to S (1), and the existence
of the unique and stable limit cycle has not been proven yet.
The proof will be shown in the next subsection.

3.2 Analysis of Piecewise Nonlinear Oscillators

This subsection derives some mathematical properties of
the piecewise nonlinear oscillator obtained in the previous
subsection. First, we consider uniqueness and stability of
the limit cycle. Clockwise and counterclockwise rotations
of solution trajectories of the piecewise nonlinear oscillator
are defined as follows (see also Fig. 2).

Definition 1: For the piecewise nonlinear oscillator (2), (7),
if its solution trajectory from an initial state rotates in the
clockwise/counterclockwise direction as viewed from the
x3-axis which forms the right-handed system with the x1-
and x2-axes, it is called in the clockwise/counterclockwise
rotation.
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Fig. 2 Clockwise and counterclockwise rotations of solution trajectories
of piecewise nonlinear oscillators.

By using parameters ε−i < 0, ε+i > 0 (i = 1, · · · ,N), we
define a subset in Di as

Mi(εi) := { x ∈ Di | ε
−
i ≤ Vi ≤ ε

+
i }, (8)

and a union of (8):

M(ε) :=
N⋃
i=1

Mi(εi), (9)

where εi := (ε−i , ε
+
i ). It is assumed that parameters ε−i , ε

+
i (i =

1, · · · ,N) are determined such that two curves:

M−(ε−) =
N⋃
i=1
{ x ∈ R2 | Vi = ε

−
i },

M+(ε+) =
N⋃
i=1
{ x ∈ R2 | Vi = ε

+
i },

(10)

are closed (such an ε is said to be admissible), where
ε− := (ε−1 , · · · , ε

−
N ), ε+ := (ε+1 , · · · , ε

+
N ), ε := (ε−, ε+).

If ε is admissible, M(ε) is a bounded and closed set which
surrounds S with a width as shown in Fig. 3. Now, the next
lemma can be proven.

Lemma 1: For any admissible ε, M(ε) is a positively in-
variant, bounded and closed set for the piecewise nonlinear
oscillator (2), (7).
(Proof) Calculate time derivative of Vi(x) along a solution
trajectory of (2), (7), we have

d
dt
(V2

i ) = 2Vi
ÛVi = 2Vi

∂Vi

∂x
Ûx = 2Vi

∂Vi

∂x
(Fi + Gi)

= 2Vi
∂Vi

∂x

[
0 −ωi

ωi 0

]
∂Vi

∂x

T
− 2V2

i

∂Vi

∂x
∂Vi

∂x

T

= −2V2
i

∂Vi

∂x
∂Vi

∂x

T
< 0.

Thus, the direction of the vector of (2), (7) is always inward

Fig. 3 M(ε).

of M(ε). This fact shows that M(ε) is a positively invariant,
bounded and closed set.

Next, we consider equilibrium points of the piecewise
nonlinear oscillator (2), (7). The following lemma on equi-
librium points of (2), (7) can be obtained.

Lemma 2: The equilibrium point of the piecewise nonlinear
oscillator (2), (7) in Di is only the central point of Si:

x =


−

li
2

−
mi

2

 . (11)

(Proof) (2), (7) can be rewritten as

Ûx =
[
−ωi(2x2 + mi)

ωi(2x1 + li)

]
+

[
−(2x1 + li)(x2

1 + x2
2 + li x1 + mi x2 + ni)

−(2x2 + mi)(x2
1 + x2

2 + li x1 + mi x2 + ni)

]
.

(12)

We first consider points not on Si . In order to calculate
equilibrium points of (2), (7), we set the right-hand side of
(12) to 0, and divide the first equation by the second one:

−ωi(2x2 + mi)

ωi(2x1 + li)
=

(2x1 + li)(x2
1 + x2

2 + li x1 + mi x2 + ni)

(2x2 + mi)(x2
1 + x2

2 + li x1 + mi x2 + ni)
.

(13)

So, we have (2x1 + li)2 + (2x2 +mi)
2 = 0 from (13), and thus

the equilibrium point is given by (11). Next, consider points
on Si . Substituting (3) into (12) and calculating in the same
way, we then obtain ωi(2x2 + mi) = 0, ωi(2x1 + li) = 0.
However, there exist no equilibrium point on Si satisfying
these two equations. Therefore, the only equilibrium point
of (2), (7) is given by (11), and it is consistent with the central
point of Si from (3).

Then, we consider an important property called “traver-
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Fig. 4 Line segment Σ .

Fig. 5 Transversal line segment.

sal.” for the piecewise nonlinear oscillator (2), (7). The con-
cept of traversal is given by the following (see also Figs. 4
and 5).

Definition 2: Let Σ be a line segment in M(ε). If the value
of an inner product of the unit normal vector to Σ : eΣ and
the velocity vector of the piecewise nonlinear oscillator (2),
(7) is not equal to 0, and its sign does not change at any point
in Σ , then Σ is said to be traversal with respect to (2), (7).

Now, a lemma on traversal for solution trajectories of
the piecewise nonlinear oscillator (2), (7) can be derived.

Lemma 3: For the piecewise nonlinear oscillator (2), (7),
assume that

ωi > 0, ∀i ∈ {1, · · · ,N} (14)

or

ωi < 0, ∀i ∈ {1, · · · ,N} (15)

holds. Then, there exists a traversal line segment Σ ⊂ M(ε)

such that x ∈ Σ holds for any point x ∈ M(ε) for any
admissible ε, and it is satisfied that Σ infinitely intersects
with any solution trajectory of (2), (7).
(Proof) We rewrite (12) into a polar coordinate expression.
By using the polar coordinate (r, θ) based on the central point
of Si: (11), we set

x1 = −
li
2
+ r cos θ, x2 = −

mi

2
+ r sin θ, (16)

where r is the distance from (11) to x, and θ is the angle of x,
which is measured from x1-axis in the counterclockwise ro-
tation. Then, (12) can be rewritten into the polar coordinate
expression:

Ûr = −2r

(
r2 −

l2
i

4
−

m2
i

4
+ ni

)
, (17)

Ûθ = 2ωi . (18)

From (18), it is easily find that if (14) or (15) holds, a solution
trajectory of (2), (7) always moves in the counterclockwise
rotation or clockwise onewith a constant velocity. Therefore,
Σ is traversal and intersects with any solution trajectory of
(2), (7) infinite times.

Using Lemmas 1–3 shown above, we can prove the
main theorem as follows.

Theorem 1: For the piecewise nonlinear oscillator (2), (7),
assume that (14) or (15) holds and set an admissible ε such
that M(ε) does not contain the point (11). Then, the unique
and stable limit cycle of (2), (7) in M(ε) is equivalent to the
circular-type closed curve S (1).
(Proof) According to [22], sufficient conditions on the ex-
istence of a limit cycle in M(ε) are as follows; (i) M(ε) is a
positively invariant, bounded and closed set, (ii) there exists
no equilibrium point inside and at the boundary of M(ε),
(iii) for any point x ∈ M(ε), there exists a traversal line
segment x ∈ Σ ⊂ M(ε) such that a solution trajectory of
(2), (7) infinitely intersects with Σ . The above conditions
(i), (ii), and (iii) have been proven in Lemmas 1, 2, and 3,
respectively. In addition, as the value of ε converges to 0,
M(ε) also converges to S. Consequently, it turns out that the
unique and stable limit cycle of (2), (7) is S.

Then, the following proposition on the relationship be-
tween rotational directions of solution trajectories and pa-
rameters is shown.

Proposition 1: For a solution trajectory of the piecewise
nonlinear oscillator (2), (7) from an initial state, if (14) holds,
it moves in the counterclockwise rotation, and conversely if
(15) holds, it moves in the clockwise rotation.
(Proof) As shown in the proof of Lemma 3, if (14) / (15)
holds, the angular velocity of θ is always positive/negative.
Hence, a solution trajectory of (2), (7) from an initial state
also moves in the counterclockwise/clockwise rotation.

In addition, periods of solution trajectories for the piece-
wise nonlinear oscillator (2), (7) can be calculated by the next
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proposition.

Proposition 2: Denote the central angle of the arc Si by
ψi . When a solution trajectory of the piecewise nonlinear
oscillator (2), (7) sufficiently converges to S, the period T in
which it takes a lap around S is represented by

T =
N∑
i=1

ψi
2|ωi |

. (19)

(Proof) It can be confirmed that the magnitude of angler
velocity for a solution trajectory of (2), (7) is equal to 2|ωi |

from (18). So, the time in which it passes through Si is given
by ψi/2|ωi |, and hence we can obtain (19) by summing it for
all the modes.

FromPropositions 1 and 2 shown above, it turns out that
we can freely design behaviors such as rotational directions
and periods for limit cycle trajectories of piecewise nonlinear
oscillators (2), (7) by tuning the parameterωi (i = 1, · · · ,N).

4. Simulations

This section performs some simulations in order to check
the effectiveness of the proposed oscillator. Let us con-
sider a circular-type closed curve S with N = 4 as shown in
Fig. 6, and its data is given by P1 = (1,0), P2 = (0,2), P3 =
(−3,0), P4 = (0,−4), Q1 = (1,2), Q2 = (−4,3), Q3 =
(−5,−2), Q4 = (2,−3).

First, as Simulation I, we set the parameter of the piece-
wise nonlinear oscillator (2), (7) as ωi = 0.5 (i = 1, · · · ,4),
and the initial state is set as x(0) = [5 4]T, which is an exte-
rior point of S. The simulation results are depicted in Figs. 7
and 8. Fig. 7 illustrates the solution trajectory of (2), (7)
on the x1x2-space, and Fig. 8 shows the histories of x1 and
x2. From these figures, it can be confirmed that the solu-
tion trajectory starting from the initial state converges to S,

Fig. 6 Circular-type closed curve S in simulation.

and then it behaves as a limit cycle trajectory on S in the
counterclockwise rotation. The rotational direction (coun-
terclockwise rotation) is coincident with Proposition 1 for
the case where ωi = 0.5 > 0, i ∈ {1, · · · ,4} holds. In addi-
tion, the estimated period (19) in Proposition 2 is calculated
as T = 14.23, and we can see that the value is equivalent to
the simulation result from Fig. 8.

Next, as Simulation II, we set another value of the pa-
rameter for (2), (7) as ωi = −1 (i = 1, · · · ,4), and an-
other initial state is set as x(0) = [−2 − 3]T, which is an
interior point of S. The simulation results are shown in
Figs. 9 and 10. From these figures, it turns out that the so-
lution trajectory starting from the initial state converges to
S, and then it behaves as a limit cycle trajectory on S in
the clockwise rotation. The rotational direction (clockwise
rotation) is coincident with Proposition 1 for the case where
ωi = −1 < 0, i ∈ {1, · · · ,4} holds. Moreover, the estimated

Fig. 7 Simulation I: Solution trajectory of piecewise nonlinear oscillator.

Fig. 8 Simulation I: Time history for x1, x2 of piecewise nonlinear os-
cillator.
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Fig. 9 Simulation result II: Solution trajectory of piecewise nonlinear
oscillator.

Fig. 10 Simulation result II: Time history for x1, x2 of piecewise non-
linear oscillator.

period (19) in Proposition 2 is calculated as T = 7.11, and
we can see that the value is equivalent to the simulation result
from Fig. 10.

Consequently, through the two types of simulations, we
can see that the proposed oscillator can generate desired limit
cycles trajectories, and hence it is effective.

5. Conclusions

This paper has developed a design method of piecewise
nonlinear oscillators with desired circular-type limit cycles.
The advantage of the proposed oscillators is that existence,
uniqueness, and stability of the limit cycle is mathematically
guaranteed, and the rotational direction and the period can
be set by tuning a parameter in the system.

This paper has treated only a theoretical aspect of the
piecewise nonlinear oscillators, however, various applica-

tions of the oscillator can be expected. First, we can consider
an application to control theory for hybrid systems. For a
given hybrid system, we transform it into a same form of the
piecewise nonlinear oscillator by designing a state/output
feedback law. Then, the closed-loop hybrid system has a
unique and stable limit cycle, and a solution trajectory of
the system behaves as a periodic motion. Some results for
the case of the piecewise affine oscillators has been shown
in [23], [24]. The second example is an application to vi-
brational excitation for mechanical systems. The aim is to
excite periodic motions mechanical systems by determining
specifications and physical parameters of the systems with
the piecewise nonlinear oscillators. This method has the po-
tential for power generation by wave power and wind power.
Third, the piecewise nonlinear oscillators can be applied to
robotics as “central pattern generators (CPG) [25].” The
piecewise nonlinear oscillators installed at some joints of a
robot are synchronized with suitable differences of phases,
and then stable gaits for the robot are realized.
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