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PAPER
Network Traffic Anomaly Detection: A Revisiting to Gaussian
Process and Sparse Representation∗

Yitu WANG†a), Nonmember and Takayuki NAKACHI††, Senior Member

SUMMARY Seen from the Internet Service Provider (ISP) side, net-
work traffic monitoring is an indispensable part during network service
provisioning, which facilitates maintaining the security and reliability of
the communication networks. Among the numerous traffic conditions, we
should pay extra attention to traffic anomaly, which significantly affects the
network performance. With the advancement of Machine Learning (ML),
data-driven traffic anomaly detection algorithms have established high rep-
utation due to the high accuracy and generality. However, they are faced
with challenges on inefficient traffic feature extraction and high computa-
tional complexity, especially when taking the evolving property of traffic
process into consideration. In this paper, we proposed an online learning
framework for traffic anomaly detection by embracing Gaussian Process
(GP) and Sparse Representation (SR) in two steps: 1). To extract traffic
features from past records, and better understand these features, we adopt
GP with a special kernel, i.e., mixture of Gaussian in the spectral domain,
which makes it possible to more accurately model the network traffic for
improving the performance of traffic anomaly detection. 2). To combat
noise and modeling error, observing the inherent self-similarity and peri-
odicity properties of network traffic, we manually design a feature vector,
based on which SR is adopted to perform robust binary classification. Fi-
nally, we demonstrate the superiority of the proposed framework in terms
of detection accuracy through simulation.
key words: network traffic, anomaly detection, Gaussian process, sparse
representation

1. Introduction

Network monitoring provides a view of the current network
conditions, which is essential for further network manage-
ment to maintain secured and high quality transmission. Es-
pecially, network anomalies consume additional network re-
sources, and pose significant influence on performance of
the communication networks. According to [2], network
anomalies can be roughly classified into the following cate-
gories,
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• Alpha anomaly brings unusual high point-to-point traf-
fic, which emits on one dominant source-destination
stream, and brings a jump of traffic volume with short
duration.

• Overload indicates unusual high demand for one net-
work resource or service, which brings a jump of traffic
volume in short term.

• Network/port scanning means scanning the network for
specified open ports or scan a single host for all ports
to look for vulnerabilities, which usually brings a jump
of traffic volume in short term.

• Disconnection indicates network problems that cause
a drop in traffic between one source-destination pair,
which causes a drop in traffic volume in short/long
term.

• Flow switching means unusual switching of traffic
flows from one inbound router to another, which causes
a drop in one traffic stream and release in another.

• Worm activity is a malicious program that spreads itself
over a network and exploits Operating System (OS)
vulnerabilities, which discharges in traffic without a
dominant destination address.

• DoS-/DDoS-attack represents distributed denial-of-
service attack per victim, which emits from multiple
sources to a single destination.

• Point to Multi-point distributes contents from one
server to many users, which emits from the dominant
source to several destinations.

Based on the above network anomaly categories, it is
observed that most network anomalies cause a sudden
drop/jump of network traffic volume, which significantly af-
fects the Quality of Service (QoS) of data transmission, as
the bandwidth is constrained and network anomalies often
have higher transmission priority. Therefore, the recogni-
tion and prediction of future traffic anomaly is extremely
important, which could provide the ISP with extra degree
of freedom to reconfigure the communication network in a
proactive manner, so as to provide reliable and stable net-
work services.

1.1 Literature Survey

Due to its importance, extensive research have been done
to understand network traffic and detect traffic anomalies.
The existing approaches can be roughly partitioned into
two categories, i.e., statistics-based approaches and data-
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driven learning-based approaches. In [3], the statistic of
network traffic is fitted using the alpha-stable model, such
that it becomes possible to classify traffic patterns through
a thresholding approach. In [4], a flow-based anomaly de-
tection algorithm is proposed with cross entropy method
based on the statistical modeling of network traffic. Even
though statistics-based approaches could achieve excellent
performance, the network characteristics are actually evolv-
ing over time, making it difficult to select the best model
and set a suitable threshold, as inappropriate selections may
significantly jeopardize the detecting performance. With
the advancement of machine learning, data-driven learning-
based approaches are gaining increasing popularity. In [5],
an auto-encoder has been proposed based on Long Short
Term Memory (LSTM) to detect malicious traffic. In [6],
Deep Reinforcement Learning (DRL) is utilized to adap-
tively learn the anomaly features. However, big data is a
prerequisite for the well training of Neural Networks (NN),
and the learned features are generally packed in a black box,
which makes it difficult to understand the network traffic.
When labeled traffic data is available, classification-based
algorithms, such as Support Vector Machine (SVM) and
Bayesian network, have been adopted to learn a classifier
for anomaly detection, and achieve high classification accu-
racy [7], [8]. These classification-based approaches bring
considerable flexibility and high accuracy, but collecting la-
beled training data requires substantial efforts, especially
in the context of evolving traffic. Without labeled data,
clustering-based algorithms, such as K-means, could work,
but with limited performance, since the available informa-
tion is rather limited [9], [10].

To exploit the past traffic records and obtain insight
to facilitate traffic anomaly detection, we consider a light-
weight and non-parametric learning technique, i.e., Gaus-
sian Process (GP), which proves to be empirically effec-
tive in statistical modeling [11]. In a nutshell, with GP, it
becomes possible to encode the discovered domain/expert
knowledge into the kernel function of GP, and explicitly op-
timize the hyper-parameters based on the Bayes theorems to
generate explainable results. When handling traffic anomaly
detection problems, by encoding the discovered characteris-
tics of network traffic into the kernel function, it becomes
possible to accurately model future traffic for anomaly de-
tection. In addition, as a measure of uncertainty over the
predicted traffic, GP could analytically infer a posterior dis-
tribution of the prediction, which is of vital importance for
anomaly detection. In [12], if the predicted traffic exceeds a
likelihood threshold based on the inferred distribution, it is
assumed that traffic anomaly occurs. However, such method
is vulnerable to noise and modeling error. In [13], GP is
utilized to model the traffic time series, while the adopted
Squared Exponential (SE) kernel is not competent enough
to capture much of the variations of network traffic, and the
fixed threshold-based classification may suffer from perfor-
mance degradation with evolving traffic.

1.2 Contributions

In this work, we propose an online learning framework for
traffic anomaly detection with GP and SR. Specifically,

1. We reveal that normal and abnormal traffic are com-
posed of not only different patterns, but also more pat-
terns than intuition, which necessitates constructing a
more flexible kernel to better model the evolving traffic.
For this purpose, we utilize Spectrum Mixture (SM)
function, i.e., the mixture of Gaussian in the spectral
domain, to dynamically encode the traffic patterns into
the kernel of GP, where the mixture components are
adjusted according to the current traffic.

2. To maintain high anomaly traffic recognition accu-
racy with evolving traffic characteristics, we proceed
in three steps:
a). We utilize Wasserstein distance [14] to measure the
difference between the distributions of normal and ab-
normal traffic, such that the evolving traffic statistic is
transformed into non-evolving feature.
b). To combat the noise and modeling error, we man-
ually design a feature vector by involving more past
traffic records based on two special properties of net-
work traffic, i.e., self-similarity and periodicity.
c). To alleviate the difficulty in collecting labeled train-
ing data, an ensemble learning framework with SR and
Q-learning is adopted to perform robust traffic classifi-
cation.

3. Through the simulation based on the GÈANT dataset
[15], it is demonstrated that accurate traffic anomaly
detection can be accomplished, and the proposed
framework achieves superior performance compared
with several baselines.

The rest of this article is organized as follows. Sec-
tion 2 states the problem. In Sect. 3, we propose the traffic
anomaly detection framework. Section 4 compares the per-
formance with several baselines. Finally, Sect. 5 concludes
this article, and Sect. 6 demonstrates the future work.

2. Problem Statement

To detect traffic anomalies, we should collect the traffic vol-
umes first. In this work, the time is slotted and there are
V time slots in a day. Traffic volume at time t is denoted
as y(t), which can be measured at an interface or collected
as a flow [16], [17]. In this case, y(t) represents the aggre-
gated amount of network traffic during the length of a time
slot [18]. Note that in practice, routers and switches always
count the number of packets or bytes, sent or received at
each interface. In this regard, y(t) can be collected by peri-
odically reading the counter values [16]. If there is a sudden
jump/drop of traffic volume at time slot t, possibly caused by
Alpha anomaly, Overload, Network/port scanning, Discon-
nection and Flow switching, then y(t) is defined as anomaly
traffic, as shown in Fig. 1, which occurs at time slot 2700
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Fig. 1 An example of network traffic.

and ends by time slot 2709.
In this work, the objective is to determine whether

traffic anomaly occurs at time slot t, where the decision
should be made at the beginning of time slot t. For this
purpose, the past traffic volumes are cast into a time series
{y(t − N), y(t − N + 1), · · · , y(t − 1)}, where we try to sta-
tistically model network traffic based on the past traffic vol-
umes, and estimate the statistic of y(t), which is compared
with the past traffic statistics for anomaly detection. The
challenge of accurate anomaly detection is pronounced by
the intricate evolving characteristics. We try to address this
problem head-on by embracing GP and SR to establish an
online learning framework for dynamic traffic modeling and
classification.

3. Online Learning Framework for Traffic Anomaly
Detection

In this section, we propose the online learning framework
for traffic anomaly detection in the following steps: First,
to more accurately model the traffic based on past traffic
records, we adopt Spectral Mixture (SM) function, and en-
code up to Q patterns into the kernel of GP, such that it be-
comes possible to more accurately predict the statistic of
y(t). Second, Wasserstein distance is utilized to transform
the evolving traffic statistic into non-evolving feature, based
on which a feature vector is formulated to combat the poten-
tial modeling error. Finally, we exploit the inherent sparsity
in network traffic to alleviate the difficulty in collecting la-
beled training data, and adopt SR and ensemble learning to
perform robust binary classification.

3.1 Dynamic Traffic Modeling

1) Gaussian Process:
GP is a powerful statistical modeling tool, whose per-

formance is highly controlled by the kernel [20]. In this
work, GP models the network traffic by exploring the inter-
connection among time slots T(t) = {t − N, · · · , t − 1} and
traffic records Y(t) = {y(t−N), · · · , y(t−1)} from a Bayesian
perspective. The kernel determines the correlation between
any two points, i.e., learning the temporal correlation of net-
work traffic.

First of all, we briefly introduce GP. Given T(t) and

noisy observations Y(t)

Y(t) = f (T(t)) + ε, (1)

where ε is an i.i.d. Gaussian noise with zero mean and σ2

variance, which is caused by system errors, such as mea-
surement and modeling inaccuracy. Under the framework
of GP, the mapping function f (·) is approximated according
to a probability distribution as

f (T(t)) ∼ GP(m(T(t)),K(T(t),T(t))). (2)

It is seen that the approximation accuracy is entirely con-
trolled by the mean function m(T(t)), w.l.o.g. set to zero,
and the covariance function K(T(t),T(t)), which is called
kernel of GP.

When applying GP to predict the statistic of network
traffic, i.e., inferring the distribution of y(t∗) given a new
input t∗ < T(t), we first derive the joint prior distribution of

T(t) together with f (t∗) as
[

Y(t)
f (t∗)

]
, which follows

N

( [
0

]
,

[
K(T(t),T(t)) + σ2I K(T(t), t∗)

K(t∗,T(t)) K(t∗, t∗)

] )
, (3)

where the kernel K(T(t),T(t)) is generally chosen as a Pos-
itive and Symmetric semi-Definite (PSD) function, and the
entries of K(·) are given as Ki j = K(t − i, t − j). Then, by
conditioning the joint Gaussian prior distribution on T(t),
the posterior distribution of f (t∗) can be analytically derived
as

p( f (t∗)|(T(t),Y(t), t∗)) ∼ N( f̂ (t∗), σ2(t∗)), (4)

where the prediction mean and variance are

f̂ (t∗) = KT
∗ (K(T(t),T(t)) + σ2I)−1Y(t)

σ2(t∗) = K(t∗, t∗) −KT
∗ (K(T(t),T(t)) + σ2I)−1K(T(t), t∗).

(5)

The hyper-parameters in K and σ are trained according to

min
K,σ

YT (t)(K(T(t),T(t)) + σ2I)−1Y(t)

+ log2 |K(T(t),T(t)) + σ2I|,
(6)

which can be solved by gradient algorithms, such as Adap-
tive Moment Estimation (Adam) [20].
2) Kernel Design:

There exists several special properties of network traf-
fic. Especially, self-similarity and periodicity are two ma-
jor properties, as traffic pattern and human activity are pro-
foundly coupled [19]. In this regard, the existing GP-based
traffic modeling algorithms try to combine SE function, Ra-
tional Quadratic (RQ) function, and periodic function to
mimic these two properties [12], [13]. However, based on
the analysis of the GÈANT dataset†, we find that both nor-
mal and anomaly traffic contains more patterns than intu-
ition, which is also evolving over time. Specifically, to ob-
tain the upper figure in Fig. 2, we manually select a nor-
mal time series, i.e., y(500), y(500), · · · , y(1459), which is

†Please refer to Sect. 4 for the details of the GÈANT network.
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Fig. 2 Spectral graph.

then transformed into the spectral domain based on Fourier
transform. The x-axis represents the frequency, and the y-
axis denotes the amplitude. Similarly, to obtain the bottom
figure in Fig. 2, we manually select an anomaly time se-
ries, i.e., y(2600), y(500), · · · , y(3559), which is then trans-
formed into the spectral domain. We find that besides the
major pattern (the peak with the largest amplitude in the
spectral domain), minor patterns also exists, which are not
only related to anomalies, but also temporally evolving.
Since the conventional kernels, such as squared exponential
kernel, can only capture the major pattern located at the ori-
gin, they are faced with large modeling error when handling
such evolving traffic.

In this work, we try to improve kernel flexibility to cap-
ture the minor patterns, so as to reduce the traffic modeling
error. According to Bochner’s theorem [21], it is found that
we can formulate a viable kernel through the engineering in
spectral domain. Since a mixture of Gaussian is dense [22],
through constructing a kernel using a Gaussian mixture in
spectral domain, it becomes possible to capture much of the
variations of network traffic. Based on the above discussion,
the SM kernel is as follows,

K(t − i, t − j) =

Q∑
q=1

ωqe−2πτ2
pνq cos(2πτpµq), (7)

where τp = j − i, Q represents the number of mixture com-
ponents that controls the expressivity of the kernel, µq indi-
cates component period of the q-th component, and νq repre-
sents the length-scale of the q-th component [23]. By adjust-
ing each component to different spectral peaks, it becomes
possible to dynamically include Q different patterns into the
kernel function for more accurate traffic modeling.

3.2 Proposed Online Learning Framework

1) Feature Formulation:
Given the past M days traffic records, i.e., MV traf-

fic samples, we model the traffic based on GP using Algo-
rithm 1. Specifically, Line 1 sets the time index τ to the ear-
liest traffic sample. Line 3 specifies the training set for GP.

Algorithm 1 Traffic Modeling based on GP
1: Initialize τ = t − (MV − N).
2: repeat
3: Select N < MV consecutive traffic samples, i.e, T(τ) = {τ −

N, · · · , τ − 1} and Y(τ) = {y(τ − N), · · · , y(τ − 1)}, as the input
of GP.

4: Train the hyperparameters of GP with kernel Eq. (7) according to
Eq. (6), to dynamically incorporate Q peaks with larger amplitude.

5: Predict the mean and variance of y(τ) according to Eq. (5).
6: τ = τ + 1.
7: until τ = t.

Lines 4-5 model the involved traffic time series based on GP,
and make one-slot-ahead prediction for traffic anomaly de-
tection. Line 6 updates the time index τ for traffic modeling
for the subsequent time slot. In this way, the statistics, i.e.,
the mean and variance, of y(t − MV + N), · · · , y(t − 1) can
be obtained.

Self-similarity and periodicity are widely acknowl-
edged in traffic time series [19]. As shown in Fig. 1, the fluc-
tuation of 12 days traffic from the GÈANT dataset is demon-
strated, whose starting time is t = 1876 and the ending time
is t = 3028. Each peak (e.g., from t = 1876 to t = 1876+96)
represents the network traffic for a day. It is observed that
the traffic volume is larger in the daytime while becomes
smaller at night, and such pattern repeats everyday, which
verifies the self-similarity property of network traffic. In ad-
dition, the largest traffic volume for the first four days is
around 1.1×107 Kbps, which is much larger than that for the
5th and the 6th days, which is around 0.75×107 Kbps. In the
following 6 days, such pattern repeats, i.e., the largest traffic
volume for the 7th-10th days is similar, which is much larger
than that for the 11th-12th days. As a result, both small-
scale periodicity (a day) and large-scale periodicity (every 6
days) exist. Based on the above discussion, it is reasonable
to assume that the statistics of y(t) should be similar to those
of y(t− iV), i ∈ {1, 2, · · · ,M}, for otherwise anomaly occurs.

To measure the difference between two probability
distributions N( f̂ (t), σ2(t)) and N( f̂ (t − iV), σ2(t − iV)),
some widely utilized methods in statistical analysis and pat-
tern recognition include Kullback-Leibler (KL) divergence,
Jensen-Shanno (JS) divergence [24], and Wasserstein dis-
tance [14]. Among these three methods, KL divergence
produces a boundless and unbalanced result, and JS di-
vergence is reduced to a fixed constant if the overlap be-
tween the support sets of two distributions is small, and
thus, we adopt Wasserstein distance in this paper. Since the
involved probability distribution is Gaussian, we can cal-
culate the Wasserstein distance between N( f̂ (t), σ2(t)) and
N( f̂ (t − iV), σ2(t − iV)) in closed form as

S i(t) = W2(N( f̂ (t), σ2(t)),N( f̂ (t − iV), σ2(t − iV)))

= || f̂ (t) − f̂ (t − iV)||22 + ||σ(t) − σ(t − iV)||2Frobenius.

(8)

In this way, S i(t) should be small if both y(t) and y(t−iV) are
normal traffic, while becomes much larger if abrupt anomaly
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Fig. 3 Structure of the proposed online learning framework.

occurs. However, since the characteristics of the traffic pro-
cess is evolving, selecting a fixed threshold for anomaly de-
tection is not reliable. In addition, when judging whether
anomaly occurs using only two points, such as considering
S 1(t) only, the algorithm will be extremely sensitive to noise
and modeling error.

Alternatively, we consider to utilize classification al-
gorithms for anomaly detection, which brings considerable
flexibility and accuracy [25]. In a nutshell, classification-
based algorithms utilize labeled training data to learn a clas-
sifier, which is used to classify a new instance. Especially,
in the context of traffic anomaly detection, the problem is
further simplified to binary classification, i.e., normal and
anomaly. To this end, to better exploit the past data for
anomaly detection in a holistic manner, we formulate a fea-
ture vector based on periodicity and self-similarity of net-
work traffic as

Z(t) = (S M−1(t), S M−2(t), · · · , S 1(t))T , (9)

where the j-th column can be interpreted as the degree of
support given by y(t − jV) to y(t). Intuitively, the larger the
support, the more likely to identify y(t) to the class which
y(t − jV) belongs to. By stacking the support S i(t),∀i ∈
{1, 2, · · · ,M−1} into a vector, the influence of few modeling
error of y(t − jV) could be reduced.

To improve the robustness of classification, and fur-
ther combat noise and modeling error, we make use of the
idea of ensemble learning, whose basic concept is to cre-
ate several member classifiers with similar bias and then
combine their outputs to reduce the variance, as shown in
Fig. 3. For this purpose, we partition the support S i(t),∀i ∈
{1, 2, · · · ,M−1} into U groups, e.g., the j-th group contains
{S j(t), S j+U(t), · · · , S j+(W−1)U(t)}, where W = (M − 1)/U is
assumed to be an integer, which are further stacked into U
vectors according to Eq. (9), respectively. In this way, we
can obtain the feature vectors Z j(t),∀ j ∈ {1, 2, · · · ,U} ac-
cording to Algorithm 2.
2) Training:

Training the member classifiers requires labeled traf-
fic, which is nontrivial, especially when utilizing the feature
vectors Z j(t),∀ j ∈ {1, 2, · · · ,U}. Consider the following ex-
ample: y(t) belongs to normal traffic, and there exists a index
k∗ ∈ {1, 2, · · · ,W − 1} such that y(t− ( j + k∗U)V) belongs to

Algorithm 2 Feature Vector Formulation
1: Initialize τ = t − N.
2: repeat
3: Given f̂ (τ − iV),∀i ∈ {1, 2, · · · ,M − 1} and σ(τ − iV)),∀i ∈

{1, 2, · · · ,M − 1}, calculate S i(τ),∀i ∈ {1, 2, · · · ,M − 1} according
to Eq. (8).

4: j = 1.
5: for j ≤ U do
6: Formulate feature vector Z j(τ) by stacking

{S j(t), S j+U (t), · · · , S j+(W−1)U (t)} according to Eq. (9).
7: j = j + 1.
8: end for
9: τ = τ + 1.

10: until τ = t.

anomaly traffic. Different index k∗ results in a different class
of the feature vector Z j(t). In addition, if there exists more
than one index where the associated traffic is anomaly, then
any different combination of the positions of anomaly traffic
corresponds to a distinguished class of Z j(t), which further
pronounces the challenge of training data collection. To ad-
dress this issue, we utilize SR [26], which has been success-
ful in computer vision. The reason to adopt this technique is
two-fold,

• It is robust to a few variations of y(t − ( j + kU)V),∀k ∈
{1, 2, · · · ,W − 1} in terms of normal/anomaly due to
the sparsity consideration. In this sense, it becomes
possible to partition Z j(t) into much fewer number of
classes, which significantly alleviates the difficulty in
training data collection.

• The algorithm requires few training data, and is with
low computational complexity, which makes it possible
to frequently update the hyper-parameters in evolving
environment.

Observing that most traffic anomalies affect the traffic vol-
ume in short term, i.e., only a small number of y(t − ( j +

kU)V) is anomaly, we partition the formulated feature vec-
tors into two categories as follows,

• Normal feature vector: If y(t) belongs to normal traffic,
then Z j(t) is a normal feature vector.

• Anomaly feature vector: If y(t) belongs to anomaly
traffic, then Z j(t) is an anomaly feature vector.
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In order to train U member classifiers, it is necessary
to obtain U training sets. As for the j-th member classi-
fier, since the associated feature vector Z j is W-dimensional,
and thus, the corresponding training set is denoted as B j ∈

RW×|B j |. To generate B j, we should first manually gather
|B j| normal/anomaly traffic samples, and calculate the cor-
responding feature vectors according to Eq. (8) and Algo-
rithm 2. Then, we stack the feature vectors into a matrix
B j, and store the corresponding class labels in H j. Next,
we jointly train a dictionary with K atoms for sparse rep-
resentation, and classifier parameters for anomaly detection
by adopting Label Consistent K-Singular Value Decomposi-
tion (LC K-SVD) [28] based on the following optimization
problem,

arg min
X,D j,W j,A j

||G j − E jX||22

s.t.||xi||0 ≤ ε,∀i ∈ {1, 2, · · · , |B j|},
(10)

where

G j =

 B j√
αC j√
βH j

 , E j =

 D j√
αA j√
βW j

 , (11)

in which D j ∈ R
M×K represents the dictionary, which ex-

presses the training set B j in the most compact manner, i.e.,
we can recover any feature vector in B j using the fewest
number of atoms (or columns) in D j. It is demonstrated
that by mimicking the sparsity mechanism of human vision
system, the inherent sparsity of SR also brings significant
discriminativity [27]. To enhance such discriminativity for
improving the performance of classification, a classifier W j
can be trained jointly with D j [29]. In the above equation,
X ∈ RK×|B j | denotes the sparse representation based on D j,
α and β are the weights for the label consistent term and the
reconstruction error term, controlling the balance between
discriminativity and representability, C j is the discrimina-
tive sparse code, A j is the linear transformation matrix, and
ε is the sparsity constraint. This problem can be solved effi-
ciently using K-SVD algorithm [28].
3) Classification:

Given a testing sample Z∗(t), its sparse representation
based on D j can be calculated according to

arg min
x∗(t)
||Z∗(t) − D jxk(t)||22 s.t. ||xk(t)||0 ≤ ε, (12)

which can be solved efficiently using Orthogonal Matching
Pursuit (OMP) algorithm [29]. Then, the degree of support
given by the j-th member classifier that Z∗ belongs to each
class can be estimated according to

L j(t) = W jx∗(t), (13)

which is a two dimensional vector.
In this work, we use the Q-learning algorithm to en-

semble the outputs of the member classifiers. The agent
keeps trying all actions in all states with non-zero proba-
bility and must sometimes explore by choosing at each step

a random action with probability 1 − β. This is referred to
as β-greedy approximation [30]. The agent, state, and per-
ceived reward associated to the Q-learning framework are
defined as follows,

• Agent: The ensembler as demonstrated in Fig. 3.
• State: χ(t) = (L1(t), L2(t), · · · , LU(t)).
• Action: Member classifier selection (Ll(t)).
• Reward: fik(χ(t), Ll(t)) = 1 if arg max Ll(t) is the cor-

rect label of Z∗(t). Otherwise, fik(χ(t), Ll(t)) = 0.

Q-factors are updated according to the following dynamics,

Qt+1
ik (χ(t), Ll(t)) =

(1 − α)Qt
ik(χ(t), Ll(t)) + γ( fik(χ(t), Ll(t))),

(14)

where Qt
ik(χ(t), Ll(t)) represents the current value in the Q-

table, γ is the learning rate. If the algorithm chooses to ex-
plore, we select each member classifier with equal proba-
bility. Then, the Q-table is updated according to (14). If the
algorithm chooses to exploit, we will use the current Q-table
for classifier selection, and update the Q-table according to
the classification result.

Figure 3 demonstrates the structure of the proposed
learning framework. Given the past traffic samples, network
traffic is analyzed and modeled using GP based on Algo-
rithm 1. Then, based on self-similarity and periodicity of
network traffic, we assume that the statistics of y(t) should
be similar to those of y(t − iV), i ∈ {1, 2, · · · ,M}, for other-
wise anomaly occurs. Next, to quantify the difference be-
tween two probability distributions, Wasserstein distance is
adopted to formulate the feature vector Z(t) for anomaly de-
tection based on Algorithm 2. After that, Sparse Represen-
tation (SR) is invoked for binary classification. To promote
the robustness, we incorporate ensemble learning to SR, and
train U member classifiers based on SR. Given a new traffic
sample, each of the U member classifiers generates a classi-
fication result, which are ensembled by Q-learning and pro-
duces the class label.

Remark 1. Regarding the computational complexity of the
proposed online learning framework,

• In the dynamic traffic modeling algorithm, the most
time-consuming part lies in calculating the inverse of
K, which needs O(N log(N)) operations [31]. If K is
a positive semi-definite matrix, which generally holds,
then low-rank approximations can be applied, and the
computational complexity can be further reduced to
O(N) [32].

• In the classification algorithm, the most time-
consuming part of classification lies in jointly training
the dictionary and classifier using K-SVD, in which the
running time follows the order O(|B j|

2MK) [33]. Note
that since SR only requires few training data, |B| j can
be chosen small in practice.

4. Simulation Results

In this section, the performance is evaluated through simula-
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Fig. 4 Performance evaluation.

tion. After briefly introducing the adopted publicly available
dataset, we compare the performance with three baselines,

• Baseline 1 (GP-based approach [12]): GP is adopted to
calculate the mean and variance of the upcoming time
slot, if the actual traffic is larger than f̂ (t) + δσ2(t),
where δ controls the confidence region, then it is be-
lieved to be anomaly.

• Baseline 2 (Threshold-based approach) [13]: If
Wasserstein distance W2(N( f̂ (t), σ2(t)),N( f̂ (t − iV) is
larger than a fixed threshold, if y(t − V) is known nor-
mal, then y(t) is anomaly, and wise versa.

• Baseline 3 (Proposed without ensemble learning) [1]:
The entire (S M−1(t), S M−2(t), · · · , S 1(t))T is served as
the feature vector, based on which one classifier is
trained to perform binary classification.

4.1 Dataset Description

We adopt GÈANT [15] for performance evaluation. In this
paper, the traffic samples are collected from a link from
GÈANT . Specifically, flow duration conforms toN(60, 12),
flow arrival conforms to uniform distribution, and traffic vol-
ume conforms to Gaussian distribution [34]. Every 15 min-
utes, the accumulated amount of traffic is recorded during
a 4-month period, i.e., 10772 traffic data points from 2015-
01-01 00:00AM to 2015-04-30 00:00AM are considered.

4.2 Results and Analysis

In this simulation, regarding the parameters adopted,

• As for dynamic traffic modeling, SM function with Q =

8 mixture component is utilized as the kernel of GP,
N = 960 traffic sample points, corresponding to one
day traffic, are used for traffic modeling. Adam with
learning rate 0.5 and iteration number 150 is adopted
to train the hyper-parameters of GP.

• As for binary classification, the total number of train-
ing vectors is set to 20, half of which belongs to nor-
mal class, and the other belongs to anomaly class. We
adopt two member classifiers for ensemble learning,

where 20 training vectors are equally divided into B1
and B2 for training the member classifiers. Through
one-dimensional search, we have α = 1 and β = 1
to achieve a nice balance between discriminativity and
representability, so as to achieve the best performance.
The discriminative dictionary is with 10 atoms, and the
total number of testing vectors is 8000.

The simulation is executed on a personal computer with
GPU Nvdia GeForce 3060 Laptop (65 W), which is equiva-
lent to conventional Nvdia GeForce 2060 Super. Upon ob-
serving a new traffic sample, it approximately takes 13.8
seconds to execute the proposed algorithm, where the train-
ing of the two member classifiers is in parallel. Compared
with the slot length of the GÈANT dataset, which is 15 min-
utes, the computation can be finished in realtime. Therefore,
the proposed framework can be applied to scenarios with a
wide range of time scales.

In Fig. 4(a), the detecting results are presented. It
is demonstrated that there will be a one-slot-delay, i.e.,
anomaly can be detected right after it happened. In addi-
tion, the anomaly traffic poses an exponentially decreasing
impact on traffic modeling, as shown in Eq. (7), the weight
ωq is exponentially decreasing with τp. Therefore, in a few
subsequent time slots, traffic is still alarmed. Figure 4(b)
demonstrates the influence of sparsity on performance. It
is observed that when a small fraction of atoms in the dic-
tionary is used (less than 20 percent), the classification ac-
curacy is higher, which verifies the robustness of the pro-
posed framework to a few variations of y(t−( j+kU)V),∀k ∈
{1, 2, · · · ,W − 1} in terms of normal/anomaly when enforc-
ing a tight sparsity constraint.

Figure 5 compares the performance of the proposed
framework and those of the three baselines in a holistic man-
ner, i.e., all the anomaly points in the GÈANT dataset are
considered. To quantify the performance, we first partition
the dataset into two parts, one for training and the other for
testing, where the total number of testing vectors is 8000.
Then define accuracy as the number of correct classification,
i.e., classify a normal traffic into normal class or classify an
anomaly traffic into anomaly class, divide the total number
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Fig. 5 Performance comparison.

of testing points, i.e., 8000. The baseline 1 and baseline 2
are sensitive to noise and modeling error, as a fixed threshold
is not reliable enough. The baseline 3 relies on a single clas-
sifier, since the optimal trade-off between bias and variance
is difficult to find, the proposed framework with ensemble
learning performs better.

5. Conclusions

In this paper, we established an online learning framework
for network traffic anomaly detection. 1). We utilize the
SM kernel to more accurately model the network traffic, in
which the position of mixture components are dynamically
adjusted to follow the evolving traffic characteristics. 2).
Wasserstein distance is utilized to transform the evolving
traffic statistic into a non-evolving feature for traffic classi-
fication. 3). To alleviate the difficulty in data collection and
perform robust classification, an ensemble learning frame-
work is proposed based on SR and Q-learning. Finally, the
proposed framework performs better in terms of detection
accuracy compared with several baseline algorithms through
simulation.

6. Future Work

The growing number of anomaly traffic behaviors calls for
new technologies to detect anomaly in real-time and with
high accuracy. In cases with big data, deep learning-based
algorithms have been proven to show higher accuracy and
robustness [35], [36]. In cases with small data, although the
proposed framework works well, it encounters additional
challenge, i.e., the difficulty of collecting labeled traffic sam-
ples is alleviated by leveraging several inherent properties of
network traffic and sparsity, but not completely eliminated,
which reduces the timeliness of the proposed framework.
In the future, we are willing to address this issue by incor-
porating unsupervised machine learning, so as to facilitate
real-time detection of network traffic anomaly.
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