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Bayesian Learning-Assisted Joint Frequency Tracking and Channel

Estimation for OFDM Systems

SUMMARY  Orthogonal frequency division multiplexing (OFDM) is
very sensitive to the carrier frequency offset (CFO). The CFO estimation
precision heavily makes impacts on the OFDM performance. In this paper,
a new Bayesian learning-assisted joint CFO tracking and channel impulse
response estimation is proposed. The proposed algorithm is modified from
a Bayesian learning-assisted estimation (BLAE) algorithm in the literature.
The BLAE is expectation-maximization (EM)-based and displays the esti-
mator mean square error (MSE) lower than the Cramer-Rao bound (CRB)
when the CFO value is near zero. However, its MSE value may increase
quickly as the CFO value goes away from zero. Hence, the CFO estima-
tor of the BLAE is replaced to solve the problem. Originally, the design
criterion of the single-time-sample (STS) CFO estimator in the literature
is maximum likelihood (ML)-based. Its MSE performance can reach the
CRB. Also, its CFO estimation range can reach the widest range required
for a CFO tracking estimator. For a CFO normalized by the sub-carrier
spacing, the widest tracking range required is from —0.5 to +0.5. Here, we
apply the STS CFO estimator design method to the EM-based Bayesian
learning framework. The resultant Bayesian learning-assisted STS algo-
rithm displays the MSE performance lower than the CRB, and its CFO
estimation range is between +0.5. With such a Bayesian learning design
criterion, the additional channel noise power and power delay profile must
be estimated, as compared with the ML-based design criterion. With the
additional channel statistical information, the derived algorithm presents
the MSE performance better than the CRB. Two frequency-selective chan-
nels are adopted for computer simulations. One has fixed tap weights, and
the other is Rayleigh fading. Comparisons with the most related algorithms
are also been provided.

key words: orthogonal frequency division multiplexing, carrier frequency
offset, channel estimation, Cramer-Rao bound, Bayesian learning

1. Introduction

Orthogonal frequency division multiplexing (OFDM) is
very sensitive to the carrier frequency offset (CFO), which
arises from the Doppler shift and/or the mismatch between
the transmitter and the receiver oscillators [1]. The CFO
can heavily degrade the system performance, and there have
been many research reports on the CFO estimation, e.g.,
[2]-[4] and references therein.

To gain high estimation precision, the maximum like-
lihood (ML)-based algorithms are the most popular [2]-
[4]. For the joint CFO tracking and channel impulse re-
sponse (CIR) estimation, an ML CIR estimator is certainly
the choice, e.g., [S]-[10] and references therein. As for the
CFO estimator design, there have been various ML-based
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design methods as discussed below. In [5], the conven-
tional steepest-descent method was used for the CFO es-
timator. In [6]-[9], to make mathematical tractability, the
Taylor approximations were made by taking the Taylor se-
ries truncated to finite orders for the CFO estimator design.
In particular, by the order-recursive [8] or the high-order [9]
Taylor approximation, the widest CFO estimation range re-
quired for a CFO tracking estimator can be reached. For
a CFO normalized by the sub-carrier spacing, the widest
tracking range required is from —0.5 to +0.5 [4]. However,
their computational complexities are quite large. In [10], in-
stead of directly using the whole received signal block as
the above mentioned [5]-[9], the authors first designed a
set of crude ML CFO estimators based on each single-time-
slot sample. Then, these crude CFO estimators were lin-
early combined in the minimum mean square error (MMSE)
sense to obtain a more accurate CFO estimator, called the
single-time-sample (STS) ML CFO estimator. The CFO es-
timation range of the STS-ML CFO estimator can reach be-
tween —0.5 and +0.5 without resorting to the order-recursive
[8] or the high-order [9] Taylor approximation. Thus, the
high computational complexity is avoided. By the way, for
brevity, the joint CFO tracking and CIR estimation algo-
rithm reported in [10] is called the STS-ML algorithm in
this paper.

One thing must be made clear that there are two ver-
sions, Version A and Version B, were presented for the STS-
ML algorithms in [10]. In this paper, the STS-ML algorithm
is specifically referred to the Version B algorithm because it
is the most related to our proposed algorithm.

Next, the optimal mean square error (MSE) perfor-
mance for the ML-based algorithms, e.g., [S]-[10] and ref-
erences therein, is the Cramer-Rao bound (CRB) [11]. To
acquire the MSE performance lower than the CRB, we must
resort to other design criterions. It is well known that an
MMSE CIR estimator displays better MSE than an ML. CIR
estimator [12]. Therefore, we focus on the joint CFO track-
ing and MMSE CIR estimation in this paper.

An MMSE CIR estimate can be seen as a weighted
ML CIR estimate [12]. The additional channel noise power
(CNP) and the power delay profile (PDP) must be provided
for those weighting factors in an MMSE CIR estimator.
Therefore, the computational complexity of an MMSE CIR
estimator is higher than that of an ML CIR estimator. For-
tunately, the incremental complexity is moderate when a
preamble sequence with constant amplitude is adopted.

Assisted by the expectation-maximization (EM) algo-
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rithm, the joint CFO tracking and CIR estimation algorithms
developed in [13]-[16] adopt the MMSE CIR. However, in
[13] and [14], the MMSE CIR estimators are approximated
by the ML CIR estimators for complexity reduction. In
[15], the CNP and PDP are assumed having been perfectly
estimated. Only the Bayesian learning-assisted estimation
(BLAE) algorithm developed in [16] takes the CNP estima-
tor and the PDP estimator into account. The weakness of
the BLAE is that its CFO estimation range is very small.

In this paper, a Bayesian learning-assisted STS
(BLASTS) algorithm for the joint CFO tracking and CIR
estimation will be proposed. We will replace the CFO es-
timator of the BLAE with that of the STS-ML. The choice
of the CIR estimator in the BLAE is due to the fact that its
CIR estimator is optimal in the MMSE sense. In addition,
the choice of the CFO estimator in the STS-ML lies on its
wide CFO estimation range. Notice that the resultant STS
CFO estimator is an EM-based CFO estimator instead of an
ML-based one as presented in [10]. In brief, the proposed
BLASTS is a joint MMSE CIR and STS CFO estimation.
It turns out that the BLASTS consists of an MMSE CIR
estimator, a CNP estimator, a PDP estimator and an STS
CFO estimator. The computer simulations comparing the
BLASTS with the BLAE and the STS-ML will also be pro-
vided.

2. System Model

Consider an OFDM system with N sub-carriers. Its n th sub-
carrier information symbol X, is placed at the n th diagonal
entry of the diagonal matrix Uy = Diag{Xy, X1, -, Xn-1}.
The column vector h of size L denotes the CIR and
is a circularly symmetric complex Gaussian random vec-
tor with mean vector 0; and covariance matrix C;, =
Diagf{ag, 41, -+, -1}, where 0 stands for an all-zero col-
umn vector of size L. The Gaussian random vector can
also be denoted as CN(0.,C;,). The column vector w of
size N represents the channel noise vector and is modeled
as CN(Oy, pIy), where Iy stands for the identity matrix of
size N. Fy stands for the N-point discrete Fourier trans-
form (DFT) matrix with the (m,n)th entry being e=/27"/N
form e {0,1,--- ,N—-1}andn € {0,1,--- ,N — 1}. Then,
we define F as the first L column vectors of Fy. The CFO
normalized by the sub-carrier spacing is denoted by ¢, which
is unitless because of taking the normalization. For a CFO
tracking problem, 6 may be between —0.5 and +0.5.

After the removal of the cyclic prefix, the received sig-
nal vector is given by

r= D;Ah +w, N

where Ds = Diag {eﬂ’ro'%, T ,eﬂ”(N‘l)'%} and A =
FZU xFr/N with the superscript H denoting the Hermi-
tian transpose. The nth time-slot sample r, of r =
[ro, 71, »rv—117 with the superscript 7 denoting the trans-
pose is given by

rp = e’z’m‘s/NaZh + w,, 2)
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where al is the nth row vector of A = [ag, a1, ,ay_1]7,
and w, represents the nth entry of w = [wo, wy, - ,wy_1]".

Taking the logarithm on the joint probability density
function (PDF) p (r, h) of the received signal r and the CIR
h, we can obtain [11]

Inp(r,h) = In p(h) + In p(r|h)
L-1
= —Llnz- ) Ind—h"C;'h
=0
— Nln(p) - Ir — DsARJ* /p. ?3)

Then, taking the logarithm on the joint PDF p (r,, k) of the
received nth time-slot sample r,, of r and the CIR &, we can
obtain

Inp (ry, k) = In p(h) + In p (r,|h)
L-1
= —Llnz- ) Iny - h"C;'h
=0

— In(mp) — |rn - ejz’”"s/Na,{h|2 /p. 4)

3. BLASTS Algorithm Derivation

The CIR estimator and the PDP estimator are the same as
those in [16] without any modifications. They are briefly
reviewed first and are followed by the CNP estimator. The
CNP estimator is largely the same as that in [16] except for
a slight modification to its expression. Then, the detailed
derivation process for the EM-based STS CFO estimator is
described. Finally, the BLASTS algorithm is provided.

3.1 CIR Estimator and PDP Estimator

The CIR estimator is the mean of k& conditioned on r, given
by [16, Eq. (10)]

-1
Ehlr{h} = ”h|r = (C;lp + AHA) AHDﬁHr’ (5)

where E.{ }denotes taking the expectation with respect to
h conditioned on r and g, is the brief notation for Ej,{h}
for later use. In fact, the CIR estimator of (5) is equivalent
to an MMSE CIR estimator [11, Ch. 12].

Based on the EM algorithm displayed in [16], the PDP
estimator maximizes Ey, {In p(r, h)}. By setting the deriva-
tive of Ej,{In p(r, h)} with respect to A; to zero, the PDP
estimator can be obtained as [16, Eq. (15)]

2
A= [Cyylyy + '[ﬂhlr]l ) (6)
where
Ciir =p(Ci'p + A" 4)" )

is the covariance matrix of & conditioned on r, [ ];; de-
notes the (/,)th entry of the matrix inside the brackets,
[ 1; is the /th entry of the vector inside the brackets, and
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le{0,1,--- ,L—1}.
3.2 CNP Estimator

The CNP estimator based on the EM algorithm displayed in
[16] also maximizes Ej, {In p (r, h)}. By setting the deriva-
tive of Ey, {In p (r, h)} with respect to p to zero, the CNP
estimator can be expressed as [16, Eq. (18)]

% [|r|2 —2Re {rHD(;A,uhI,} + Pi-1

Te{(Cino = Citin) (Cieio + ety )}
- % [|r|2 - 2r'' DsApy,

+Tr {AH A (Ch\r,(i) + l‘h\rl‘f\r)}] ’ ®)

where each additional subscript (i) denotes the ith iteration
in an iterative adaption process, and, to arrive at the 2nd
equality of (8), the property that r/ D;Ap,,, is real and the
equality pii-1)(Cip iy — Criit)) = A7 A [16, Eq. (A.2)] have
been used. It can be readily found that the Hermitian of
rf DsApy,, goes back to itself by substituting g, of (5)
into r DsApy,,. Therefore, that r' DsApy, is real has been
proved. Notice that the CNP estimator in [16] adopts the
1st equality of (8) whereas the CNP estimator chosen in this
paper adopts the 2nd equality of (8). The reason for choos-
ing the 2nd equality of (8) is that A” A is a constant matrix
known to the receiver. However, the values of Cj;y and
C),i-1) are unreliable before the iteration process converges.

P =

3.3 STS CFO Estimator

Instead of maximizing Ey, {In p (r, h)} for the CFO estima-
tor design adopted in [16], we maximize Ej, {In p (r,, h)}
first for developing a set of crude CFO estimators. Then, we
linearly combined these crude CFO estimators in the MMSE
sense, leading to a more accurate CFO estimator.

By setting the derivative of Ej, {In p (r,, h)} with re-
spect to ¢ to zero, the result is

Im {r el2mmoIN g yh‘,} =0, ©)

where Im{ } represents taking the imaginary part. Further-
more, we define Sn as the nth STS CFO estimate of 6. Then,
the solution to (9) can be expressed as

A N T "
5, = %Arg{rn (anmy,) ) (10)
where Arg{ } is the angle of the complex number in the

braces and 8, = 0 since ry contains no CFO.
Let the estimation error of ,, be Ad,, = d,, — 6. Then,

Ab, %Arg {rn (a,{ /’lh\r)* e_j27rn15/N}

_ N It ol (1)
2mn |“£ .uh\riz ,

* .
e j2nnd /N }
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where the small ASn assumption, i.e.,

M} Im{r, (ar{ﬂh ) e*j27rn6/N}

T P =
Al'g {rn (anﬂhlr) 4 Re { (a I-l]|) ]27rn6/N}

(12)

with Re{ } representing taking the real part, and the high
signal-to-noise ratio (SNR) have been used to reach the 2nd
equality of (11). Furthermore, the MSE of 5, can be ob-
tained as

2
E, {(AS,,)Z} S — (13)
8n2n? |a£”h\r|

where E,, { } denotes taking the expectation with respect
to w, and E,, {wwH} = ply and E,, {wa} = Oy, with Oy
representing the all-zero N X N matrix, have been used to
arrive at (13).

To proceed, the proposed CFO estimator is constructed
by linearly combined those crude CFO estimators, given by
6 = 3N a,d, with V'@, = 1. Next, define the esti-
mation error of the proposed CFO estimator as A§ = § — 6.
Then, the weights {a,} are determined by minimizing the
MSE

-1

{A6 }: d——r (14)

2
n=1 8n%n? |aTI~lh|r|
subject to ZnNz‘l' a, = 1. By employing the Lagrange method
[17], the solution for @, can be expressed as
2
2 laTﬂhlrl
ﬂh|rAHQNAﬂh\r

with @, = Diag{0, 1,--- , N—1}. Accordingly, the proposed
CFO estimator is given by

Ilﬁ,AHszvFAﬂmr
n=1 '“h|rAHQNA'“hIr

15)

n

(16)

with T = Dlag {8(), 31, e, 8N—1}~

In an iterative adaption process, we reconsider the role
that & of (16) represents. At the ith iteration, 6 of (16) is
redefined as the difference A(S(l) between present estimate
5 and the previous estimate 8_1), i.e.,

Aby = b — by, 17
Hence, we rewrite (16) as
H HAN2
o M, ATONAL Ay,
Ady = —7 <8 (18)
h|rA QNAIJh\r

with
AF(,‘) = Dlag {ASO’(,‘), A(ASW), e, AgN—l,(i)} (19)

and
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Ad ) = %Arg ey, (arpmy,) V). )

Recall that ry contains no CFO, so we set Adg,;, = 0.
3.4 Proposed BLASTS Algorithm

Reorganizing the order of (5)—(8) and (17)—(20), along with
the incorporation of the subscript (i) representing the ith it-
eration, we obtain the BLASTS algorithm, given by

_ -1
Chriy = Pi-1) [Ch,zi_l)P(i—n + AHA] , (21

_ -1
iy = [Ch,l(i_l)P(H) + AHA] A"DY r (22)

OG-y
Lo
Pi) =y [|"| - ZrHDS(i,l)Aﬂhlr,(i)

+Tr {AHA [Cmr,m + Hh\r,a)ﬂhH\r,(z')]} ] ’ 23)

2
A1y = [Chra Iy + [ ] (24)
AS Ilﬁr,(i)AHszvAr(i) A/"hlr,(i) 25)
o = ’
MZ,-’(i)AHQZZVA”]1|r,(i)
3(,') = 3(,’,1) + AS(,'), (26)
where
AT, = Diag{Ado i), Ad1 gy, -+ » Adn_10)}» (27)
N N
Ao,y = —
D= D
: Arg {e_ﬂma“?l)/Nrn (a;ﬂhlr,(i))*} (28)
and [/ €{0,1,---, L — 1}. The initial values are set as A; ) =

1, P = 0 and 8(0) =0.
4. Simulation Results and Discussions

Consider N = 64 for the OFDM system, and L = 16 for
the maximum CIR length. Two channels, called Channel A
and Channel B, are adopted for the computer simulations.
The Channel A model is fixed and the Channel B model is
Rayleigh fading. Both the channels have the same non-zero
power delay profile {4; = ae 't 1=0,1,---,7), where a is
for the power control. Therefore, both the channel sparsity
ratios are 0.5. For the Channel A model, the /th non-zero

channel tap weight is e/3/ \/>.] _ e=™/* when we set the to-

tal channel power to 1. The preamble is set to be the Zadoff-
Jjxin?

Chu sequence {X,, =env ,n=0,1,--- ,63} [18], [19]. The
Zadoff-Chu sequence with the constant amplitude and zero
auto-correlation waveform is optimal for the ML CIR esti-
mation [20]. For all the simulation results, the CRB curves
[9], [10] are also provided for comparison.

Form Fig. 1, the CFO MSE curve of the STS-ML [10]
overlaps with that of the CRB. In addition, the CFO MSE
values of the BLAE [16] are smaller than the CRB val-
ues when the CFO values are between —0.025 and 0.025.
However, the CFO MSE values of the BLAE grow rapidly
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Fig.1 CFO estimator MSE versus CFO for various algorithms at 30 dB
SNR for Channel A.

STS-ML,5=0.1
—%— STS-ML,5=0.3
—&— STS-ML,§=0.5 |1
BLASTS,d=0.1
—FH— BLASTS,§=0.3
—A— BLASTS,d=0.5 |

MSE of CFO estimator
=]
(45

10-5 L

-6 L L
10 0 20 40 60 80 100

Number of iterations

Fig.2 Learning curve comparison for the STS-ML and the proposed
BLASTS at 30 dB SNR for Channel A.

when the CFO values go further away from zero, show-
ing small CFO estimation range. Noticeably, our proposed
BLASTS keeps all the way the lowest CFO MSE values
among them, showing the best CFO MSE performance and
the wide CFO estimation range. The only short overlap be-
tween the BLASTS and the BLAE occurs only when the
CFO values are between —0.01 and 0.01.

From Fig.2, the proposed BLASTS shows the faster
convergence speeds than the STS-ML does at the same CFO
values. Furthermore, the steady-state MSE curves of the
STS-ML approach to the CRB curve whereas those of the
proposed BLASTS all converge below the CRB curve.

Let us assume that a total of S iterations are needed for
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Table1 Computational complexity.
STS-ML BLASTS
real S(BNL + 21N | S(8NL + 21N +
multiplication | + L + 7) 14L—-8)+2N +1
real division S S(L+1)
.. S(4NL — 2L S4NL+3L—-1)+
real addition ~1) N—1
Exp () SL SL
Arg () S(N—-1) S(N—-1)
Table2  Complexity comparisons with CFO = 0.5.
STS-ML BLASTS
veal 650,012 555,993
multiplication
real division 68 969
real addition 276,284 236,214
Exp () 1,088 912
Arg () 4,284 3,591
5 —*%— 8TS-ML,6=0.2
10°F —H&— STS-ML,6=0.4 |}
—&— STS-ML,0=0.5
BLASTS,4=0.2

—O— BLASTS,6=0.4 ||
—%— BLASTS,§=0.5

MSE of CFO estimator
3
n

—_

=1
i
T

—-
S
f=2]

SNR (dB)

Fig.3 CFO estimator MSE comparison for the STS-ML and the pro-
posed BLASTS for Channel A.

achieving the steady-state MSE of a learning curve. Then,
the various mathematical operation numbers for the STS-
ML and the BLASTS are listed in Table 1, where Exp( )
stands for the natural exponential function. Consider the
case of ¢ equal to 0.5. Then, from Fig. 2, the number of S is
57 for the BLASTS while that of S is 68 for the STS-ML.
The numbers for the various mathematical operations are list
and compared in Table 2. We notice that only the number
of the division operation required for the BLASTS is larger
than that required for the STS-ML. For all the other kinds of
mathematical operations, the STS-ML is much more com-
putationally expensive than the BLASTS. However, the as-
sessment on the overall complexity required for each of the
two algorithms is out of the scope of this paper.
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Fig.4 CIR estimator MSE comparison for the STS-ML and the proposed
BLASTS for Channel A.
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Fig.5 CFO estimator MSE performance of the BLAE for Channel A.

For the CFO estimator MSE vs. SNR in Fig.3, the
proposed BLASTS shows the smaller MSE values than the
STS-ML does. The similar results for the CIR estimator
MSE values of the two algorithms are shown in Fig. 4.

In Fig. 5, the Bayesian learning assisted BLAE [16] al-
gorithm displays the MSE values smaller than the CRB val-
ues for 6 = 0.01. However, its MSE values increase as the
CFO values grow. When the CFO is set at 0.06, its MSE
curve greatly departs away from the CRB curve. On the
contrary, as having been shown in Fig. 3, both the BLASTS
and the STS-ML perform well even though the CFO values
goup to 0.5.

Finally, in Figs.6 and 7, we demonstrate the results
of applying the BLASTS and the STS-ML to Channel B,
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Fig.6  CFO estimator MSE comparison for the STS-ML and the pro-
posed BLASTS for Channel B.
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Fig.7 CIR estimator MSE comparison for the STS-ML and the proposed
BLASTS for Channel B.

i.e., the Rayleigh fading channel model. Once again, the
BLASTS shows the better MSE performance than the STS-
ML does.

5. Conclusions

The BLAE algorithm can achieve the MSE values lower
than the CRB values. However, it happens only at small
CFO values between —0.025 and 0.025. In addition, the
conventional STS-ML algorithm has the wide CFO estima-
tion range from —0.5 to +0.5, and its MSE performance can
achieve the CRB. In this paper, we replace the CFO estima-
tor in the BLAE with the STS CFO estimator in the STS-
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ML. Furthermore, the incorporated STS CFO estimator is
redesigned by the EM-based method instead of the original
ML-based method. The proposed BLASTS algorithm in-
herits the low MSE property from the BLAE and the wide
CFO estimation property from the STS-ML. At the same
time, the convergence speeds of the learning curves have
also been improved as compared with those of the STS-
ML. These results have been demonstrated by the computer
simulations considering a fixed and a Rayleigh frequency-
selective channels.
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