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SUMMARY A side channel attack is a means of security attacks that
tries to restore secret information by analyzing side-information such as
electromagnetic wave, heat, electric energy and running time that are unin-
tentionally emitted from a computer system. The side channel attack that
focuses on the running time of a cryptosystem is specifically named a “tim-
ing attack”. Timing attacks are relatively easy to carry out, and particularly
threatening for tiny systems that are used in smart cards and IoT devices
because the system is so simple that the processing time would be clearly
observed from the outside of the card/device. The threat of timing attacks
is especially serious when an attacker actively controls the input to a target
program. Countermeasures are studied to deter such active attacks, but the
attacker still has the chance to learn something about the concealed infor-
mation by passively watching the running time of the target program. The
risk of passive timing attacks can be measured by the mutual information
between the concealed information and the running time. However, the
computation of the mutual information is hardly possible except for toy ex-
amples. This study focuses on three algorithms for RSA decryption, derives
formulas of the mutual information under several assumptions and approx-
imations, and calculates the mutual information numerically for practical
security parameters.
key words: timing attack, quantitative information flow analysis, RSA,
mutual information, entropy

1. Introduction

1.1 Background

A timing attack can be a serious issue to practical information
systems. In a timing attack, an attacker observes the running
time of a target program, and attempts to know about secret
information that is concealed in the program. The attack
becomes a fatal threat if the attacker can actively choose the
input to the target program [1], [6], [11], and countermea-
sures such as bucketing and blinding are studied thereafter.
The bucketing inserts dummy operations to hide real running
time, but it slows down the computation, and furthermore,
its effectiveness is questioned recently [12]. The blinding
is another countermeasure that is effective to programs for
numerical computations. With blinding, the computation
is made in three-steps; blinding, the computation of a core
function, and unblinding (see Fig. 1). In the case of RSA
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Fig. 1 The blinding structure.

decryption m = cd mod n, the blinding operation chooses a
random r and sends c′ = rec mod n to the core function. The
core function computes m′ = c′d mod n as in the usual RSA
decryption, and sends m′ to the unblind operation. The un-
blind operation computes r−1m′ mod n which equals to the
correct value of m. With this blinding, an attacker cannot
“control” the input to the core function, which contributes to
deter an attacker from mounting an active (or chosen-input)
timing attack. On the other hand, the running time of the de-
cryption steps (blinding, core function and unblinding) still
varies according to the decryption key d in the core function.
By any chance, an attacker may be able to learn something
about d from the running time, but the risk of such passive
timing attacks has not been understood well.

Tomeasure the risk of timing attacks, quantitative infor-
mation flow analysis is used in general. Quantitative infor-
mation flow analysis is a method for estimating the amount
of confidential information leaked from programs based on
the information theory.

1.2 Related Studies

This section briefly reviews preceding works made by Köpf
et al. [7], [8] and Kobayashi [5]. They both use mutual infor-
mation to give an upper bound on the amount of information
that leaks through a timing attack.

1.2.1 Köpf’s Studies

Köpf, Durmuth and Smith introduced an information theo-
retic framework to discuss this setting [7], [8]. Köpf et al.
give an upper bound on the amount of information leakage
of decryption key in the event of a timing attack on the RSA
decryption system.

Let K be a random variable of the secret decryption key
d, and Z be a random variable of the running time (such
as the number of clocks) that was used by a single run of
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the RSA decryption program in Fig. 1. We cannot predict
what kind of analysis/computation an attacker may perform,
but he/she should not be able to learn information that is
more than I(K; Z), the mutual information between K and
Z . By definition I(K; Z) = H(Z)−H(Z |K), but it is not easy
to compute H(Z |K) because the computation needs precise
analysis of the relation between the key and the running
time of a complicated RSA decryption algorithms. For this
reason, [7], [8] ignore the conditional entropy, and focus on
H(Z) as an upper-bound of I(K; Z) (and of the information
that an attacker may learn), that is,

I(K; Z) ≤ H(Z).

Since the attacker may be able to make multiple ob-
servations of the running time, say n times, the amount of
leaked information of decryption key can be expressed as
I(K; Zn). Usually, the invocations of the RSA decryption
can be regarded as independent with each other, and the
discussion is simplified by focusing on a relative frequency
of running times rather than the “ordered sequence” of the
observed running times. In [7], [8], Köpf et al. define “type”
as the relative frequency of realizations (z1, z2, · · · , zn) of the
clock sequence (Z1, Z2, · · · , Zn) that is obtained by multiple
observations of the running time. The type is represented
by an m-integer tuple t[z] = (t1, t2, · · · , tm) where m is the
number of possible values of Z . Let assume for example that
Z takes either of 5, 10, 15 or 20 as its realized value (m = 4
in this case). The type of z = (15,10,15,20,15,5,15,10) is
defined as t[z] = (1,2,4,1) because z contains 1 occurence
of the first value 5, 2 occurences of the second value 10, and
so on. Since observation times are random variables, the
type can be regarded as a random variable which we denote
by Tm,n hereafter. Since the order of the observed execution
times does not affect the mutual information, the equation
I(K; Zn) = I(K;Tm,n) holds, and

I(K; Zn) ≤ H(Tm,n)

holds.
Köpf assumes that the types follow a uniform distribu-

tion in order to simplify the discussion. Under the assump-
tion, the equation H(Tm,n) = log2 |Tm,n | holds, and

I(K; Zn) ≤ log2 |Tm,n |

holds. In [7], Köpf introduces a naive upper-bound |Tm,n | ≤

(n + 1) |Z | . Therefore, the inequation

I(K; Zn) ≤ |Z | log2(n + 1)

can be derived. In [8], Köpf et al. derive the equation |Tm,n | =(n+ |Z |−1
n

)
, and a tighter upper bound

I(K; Zn) ≤ log2

(
n + |Z | − 1

n

)
.

1.2.2 Kobayashi’s Studies

Kopf et al. assumed that the type Tm,n obeys uniform dis-
tribution. The assumption makes discussion simple, but it

brings a quite loose and useless upper bound of H(Tm,n).
Kobayashi noticed that Tm,n indeed obeys a multinomial dis-
tribution, and obtained a better upper bound of H(Tm,n) by
using an asymptotic formula of the entropy of multinomial
distributions [5]. Because Tm,n obeys a multinomial distri-
bution, we can write

PTm,n (t1, · · · , tm) =
(

n
t1, · · · , tm

)
pt11 · · · p

tm
m

where
( n
t1 , · · · ,tm

)
= n!

t1!· · ·tm! , pi is the probability of obtaining
the i-th execution result, and t1 + · · · + tm = n. There is no
known closed-form formula of the entropy of multinomial
distribution, but Cichoń et al. [2] derived an asymptotic ap-
proximation of the entropy of the multinomial distribution
as

H(Tm,n) ≈
1
2

log2

(
(2πne)m−1 p1 · · · pm

)
+

1
12n

©­«3m − 2 −
m∑
j=1

1
pj

ª®¬
that is good for n → ∞. Kobayashi determined p1, . . . , pm
experimentally, and derived a tighter upper bound on the
amount of leaked information than in previous studies.

However, Kobayashi also evaluates the amount of in-
formation leakage about the decryption key ignoring the
conditional entropy term H(Zn |K). That is, the upper bound
of I(K; Zn) = I(K;Tm,n) is somewhat loose.

1.3 Contribution of This Study

In the authors’ recognition, an essential aspect of timing at-
tacks is perished if H(Z |K) is ignored, because the attack
is based on the fact that the uncertainty of the key is re-
duced by observing the running time of the target. The main
goal of this study is to derive both of H(Z) and H(Z |K) for
three programs, namely,Binarymethod,ModBinmethod and
CRT-ModBin method for RSA decryption. The derivation
is not very strict in the sense that we use several assump-
tions and approximations, but our experiments supports that
the assumptions and approximations are feasible and reason-
able for practical choices of parameters (i.e. a key of several
hundred or thousand bits). The formulas can be used to com-
pute I(K; Z), the amount of information that leaks through
the running time of the program. Table 1 summarizes the
numerical results of the computation of I(K; Z) for the three
algorithmswith key length l from 128 to 2048. The tablewill
be reviewed in later sections. From this table, we confirmed
that the amount of decryption key information leaked by the
timing attack is negligible. It is also noted that numerical
results of this kind enable us to compare the security of dif-
ferent algorithms and different implementations, which has
been made heuristically so far and caused a lot of confusion.
The approach and the result of study give theoretical base-
ment to that kind of discussion, and contribute to precise
understanding of implementations of cryptosystems.
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Table 1 Numerical calculations of I (K ; Z).
Binary ModBin CRT-ModBin

l I (K ; Z) H(Z) I (K ; Z) I (K ; Zp , Zq )

128 4.6311 8.4684 3.2113 5.5556
256 5.0907 9.8066 3.7143 6.4226
512 5.5693 11.2205 4.2479 7.4286
1024 6.0583 12.6755 4.7879 8.4959
2048 6.5527 - - 9.5758

Algorithm 1 Binary method algorithm
Input: c, d = (dt−1 · · · d0)2, n
Output: m = cd mod n
1: m = c
2: for i = t − 2 to 0 do
3: m = m2 mod n
4: if di = 1 then
5: m = mc mod n
6: end if
7: end for
8: return m

2. Preliminary

2.1 RSA Decryption Algorithm

The RSA decryption is realized by a computation

m = cd mod n (1)

where n is a product of two primes p and q, d is a decryption
key, and c andm are a ciphertext and a plaintext, respectively.
Throughout this paper, we let l be the bit length of the modu-
lus n. In practice, n is very large and several algorithms have
been investigated for efficient computation of (1). Among
such algorithms, we focus Binary method (Algorithm 1),
ModBin method (Algorithm 3) and CRT-ModBin method
(Algorithm 4).

In these algorithms, the computation is carried out
based on the binary representation dt−1 · · · d0 of the decryp-
tion key d, where t is the most significant nonzero bit of the
l-bit binary representation of d (i.e. dl−1 = · · · = dt = 0 and
dt−1 = 1), and called the actual key length of d. The Mod-
Bin method utilizes a Montgomery reduction (Algorithm 2)
and a predetermined constant r that satisfies n < r and
gcd(r,n) = 1 (the choice of r is arbitrary but it is common
to take r as a power of 2). The algorithm also uses two addi-
tional constants r2 = r2 mod n and n′ = (−1) ·n−1 mod r . In
the CRT-ModBin method, we are using dp = d mod (p− 1),
dq = d mod (q − 1), and q−1 which is the integer satisfying
qq−1 ≡ 1 mod p.

2.2 Notations and Assumptions

We would like to estimate how much information of d leaks
through a running time of the RSA decryption program.
It is assumed that the decryption is implemented with the
blinding technique, and that the blinding and unblinding

Algorithm 2 Montgomery reduction MR(x)
Input: x, n, n′, r
Output: The result of Montgomery reduction of x
1: m1 = ( x mod r ) n′ mod r
2: m2 = ( x +m1n ) / r
3: if m2 < n then
4: return m2
5: else
6: return m2 mod n
7: end if

Algorithm 3 ModBin method
Input: c, d = (dt−1 · · · d0)2, n, r2
Output: m = cd mod n
1: c′ =MR(cr2)
2: m′ = c′

3: for i = t − 2 to 0 do
4: m′ =MR(m′m′)
5: if di = 1 then
6: m′ =MR(m′c′)
7: end if
8: end for
9: m =MR(m′)
10: return m

Algorithm 4 CRT-ModBin method
Input: c, p, q, dp , dq , q

−1, n

Output: m = cd mod n
1: cp = c mod p
2: cq = c mod q
3: mp = ModBin(cp , dp , p)
4: mq = ModBin(cq , dq , q)
5: return mq + q(q

−1(mp −mq ) mod p)

always take constant running time. This means that the
variation of the running time of the program all comes from
the core function. An attacker knows the algorithm that is
used in the core function, but neither control nor know the
input that is given to the core function.

For information theoretical discussion, we use K as
the random variable of the decryption key d, and T and W
as the random variables of the actual key length and the
Hamming weight of d, respectively. And we assume that
ciphertexts are generated randomly. At the beginning, an
attacker has no information of d, which we model as the
following Assumption 1.

Assumption 1: The decryption keyK distributes uniformly
in the space of l-bit binary integers.

We note that Assumption 1 is not very precise, as an attacker
should know that d is odd and d0 = 1. It is not difficult to
accommodate this condition in the discussion, butwe assume
for simplicity that d0 is not known to an attacker. With this
assumption, we have, for example,

PT ,W (t, w) =
(

t − 1
w − 1

)
· 2−l . (2)

Consider that either of Algorithms 1, 3 or 4 is im-
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plemented in the core function of an RSA decryption pro-
gram. Usually, the word size of a processor is much smaller
than the key length l, and the multiplication of l-bit inte-
gers requires considerably longer time than simple atomic
operations. Similar attention is needed for the modulo com-
putation a mod b for two l-bit integers a and b; if a ≥ b,
then we have to perform a reduction (the computation of
the remainder) and the computation of a mod b takes long
time; if a < b, on the other hand, then the reduction is not
necessary and almost no computation is needed to perform
a mod b. These observation suggests that the running time
of the program depends on the number of multiplications
and the number of reductions that are performed in the pro-
gram. Let Y1 and Y2 be random variables of the numbers
of multiplications and reductions that are performed in the
program, respectively, and Z be a random variable of the
number of clocks consumed by the program (for simplicity,
we may call Z a running time).

Assumption 2: We have Z = c0 + cmY1 + crY2, where c0
is a constant that corresponds to the number of clocks for
the blinding, unblinding, and other atomic operations in the
core function, cm and cr are the numbers of clocks for a
multiplication and a reduction, respectively.

The constant c0 is irrelevant to information theoretical
discussion, and we let c0 = 0 for the simplicity and assume
Z = cmY1 + crY2 hereafter.

It is understood from the pseudo-programs that Y1 and
Y2 are determined from T and W , and the following lemma
holds.

Lemma 2.1: I(K; Z) = I(T,W ; Z)

Proof : For theMarkov chainK ⇒ (T,W) ⇒ (Y1,Y2) ⇒
Z (Fig. 2), the data processing inequality (Lemma 2.8.1 of
[3]) guarantees that I(K; Z) ≤ min{I(K;T,W), I(T,W ; Z)}.
The values of T and W are uniquely determined for a given
value of K , and therefore H(T,W |K) = 0. It follows that

I(T,W ; Z) = H(T,W) − H(T,W |Z)
≤ H(T,W)
= H(T,W) − H(T,W |K)
= I(K;T,W)

and we have I(K; Z) ≤ I(T,W ; Z). The equality holds if and
only if I(T,W ; Z |K) = 0, which is true in our case because

Fig. 2 Bayesian network for some random variables.

I(T,W ; Z |K) = H(T,W |K) − H(T,W |K, Z) = H(T,W |K) −
H(T,W |K) = 0 (note: our discussion corresponds to the
case of I(Y ; Z) ≥ I(X; Z) in the proof of Lemma 2.8.1 of [3]
whose equality holds if and only if I(Y ; Z |X) = 0). �

3. Binary Method

The probability distributions of Y1 and Y2 in the Binary
method (Algorithm 1) are investigated first. Let t and w
be realized values of T and W , respectively. It is easily
understood from the pseudo-program that the number of
multiplications Y1 always equal to (t − 1) + (w − 1).

The number of reductions Y2 is not obvious because
modulo computations do not always invoke reductions. In-
stead of tracing the values of m2 (at line 3) and mc (at line
5) precisely, we put the following simple assumption and
regard the modulo computations as Bernoulli trials.

Assumption 3: At lines 3 and 5 of the Binary method
(Algorithm 1), the value of m distributes uniformly in
{0, . . . ,n − 1}.

WriteY2 = Y2,1+Y2,2 whereY2,1 andY2,2 denote the number of
reductions that are performed at lines 3 and 5 of the program,
respectively.

Lemma 3.1: If n → ∞, then PY2,1 |T ,W (t − 1|t, w) = 1 and
PY2,2 |T ,W (w − 1|t, w) = 1 (and hence Y2 is always t + w − 2).

Proof : A reduction is performed at line 3 if m2 ≥ n,
which is an event with probability 1 − 1/

√
n → 1 by As-

sumption 3. Since line 3 is visited t − 1 times, Y2,1 = t − 1 if
n→∞.

The discussion is little bit complicated for line 5 because
of the uniformly distributing c. In the fifth line, a reduction
is not needed if mc < n, which holds with probability 1 if
c = 0, and with probability 1/c if c > 0. This means that the
distribution ofY2,2 is defined as a superposition of n different
binomial distributions that correspond to n different values
of c that are equiprobable;

PY2,2 |T ,W (y |t, w) =
1
n
· 0 +

1
n

n−1∑
c=1

Bin[w − 1, y,1 − (1/c)]

where Bin[a, b, p] =
(a
b

)
pb(1 − p)a−b .

Next consider PY2,2 |T ,W (w − 1|t, w) which is

1
n

n−1∑
c=1

(
1 −

1
c

)w−1
= 0 +

1
n

n−1∑
c=2

(
1 −

1
c

)w−1

≥
1
n

n−1∑
c=2

∫ c

c−1

(
1 −

1
x

)w−1
dx

=
1
n

∫ n−1

1

(
1 −

1
c

)w−1
dc

=
1
n

∫ n−1

1

w−1∑
i=0

(
w − 1

i

) (
−

1
c

)w−1−i
dc
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=
1
n

w−1∑
i=0

((
w − 1

i

) ∫ n−1

1

(
−

1
c

)w−1−i
dc

)
=

1
n

w−3∑
i=0

©­«
(
w − 1

i

) [
−

1
i + 2 − w

(
−

1
c

)w−2−i
]n−1

1

ª®¬
+

1
n

(
w − 1
w − 2

)
[− log c]n−1

1

+
1
n

(
w − 1
w − 1

) [
−

(
−

1
c

)−1
]n−1

1

.

Note that
(
1 − 1

c

)w−1
≥

∫ c

c−1

(
1 − 1

x

)w−1
dx holds because

f (x) =
(
1 − 1

x

)w−1
is a monotonically increasing function

for x > 0. If n→∞, then the first term (the summation) and
second term in the above formula diminish to zero because
1/n→ 0. The third term remains undiminished, and we can
write

PY2,2 |T ,W (w − 1|t, w) ≥
n − 2

n
→ 1.

This lower bound and a trivial upper bound PY2,2 |T ,W (w −
1|t, w) ≤ 1 implies that PY2,2 |T ,W (w − 1|t, w) = 1 if n→ ∞,
and therefore Y2,2 = w − 1. �

The discussion of Y2 involves some assumptions and
approximations. To verify the feasibility of the discussion,
an experiment is conducted. We selected decryption keys
with t = 1024 and w = 512, run the Binary method with
these keys for randomly generated 10,000 ciphertexts, and
counted the number of reductions actually performed in each
run of the program. With this experiment, we confirmed
that the number of reductions is 1534 = t + w − 2 in all of
the 10,000 trials for all keys (see Fig. 3). The verification
is also made for keys with different parameters, and all the
results supports that the assumptions and approximations are
feasible. Based on this verification, we let PY2 (t +w −2) = 1
in the following discussion.

If n is sufficiently large, then T and W decide the val-
ues of Y1 and Y2 uniquely, and hence decide the value of

Fig. 3 The number of Y2 in Binary method.

Z uniquely also. This implies that H(Z |T,W) = 0 and
I(T,W ; Z) = H(Z). To compute H(Z), we clarify the prob-
ability distribution of Z . With Assumption 2, we have
Z = cmY1 + crY2 = (t + w − 2)(cm + cr ). If Z = z, then
t and w must satisfy t + w = 2 + z/(cm + cr ), from which
t ≥ 1 + z/(2(cm + cr )) and w = 2 − t + z/(cm + cr ). Conse-
quently

PZ (z) =
l∑

t=1+z/(2(cm+cr ))
PT ,W (t,2 − t + z/(cm + cr ))

= 2−l
l∑

t=1+z/(2(cm+cr ))

(
t − 1

1 − t + z/(cm + cr )

)
by (2). With this formula, we can compute H(Z) = I(K; Z)
in the Binary method. Take cm = cr = (l/32)2 as in [7], and
the mutual information I(K; Z) = H(Z) is computed as in
Table 1.

We note that H(Z) has been recognized as an upper-
bound of I(K; Z) in the discussion of Köpf and Durmuth
for [7] and Kobayashi for [5], but it turned out that H(Z)
coincides with I(K; Z) in the Binary method. It is also noted
that, in the Binary method, the realized value of Z does not
change as far as the same decryption key is used. This implies
that an attacker is not able to obtain additional information
even if he/she makes multiple observations of the running
time, and I(K; Zs) = H(Z) for an arbitrary s.

4. ModBin Method

In the ModBin algorithm (Algorithm 3), the function MR
is called t + w times in total. The function call of MR at
lines 1, 4 and 6 invokes three multiplications each (one to
compute the argument and two inside of MR), and the func-
tion call of MR at line 9 (which is visited only once) invokes
two multiplications only. Therefore, the total number of
multiplications is always y1 = 3(t + w) − 1.

Wemove our attention to the number of reductions. For
simplicity, we ignore two reductions in the lines 1 and 9 of
Algorithm 3 because their contribution to the running time is
little. In theModBin algorithm, all modulo computations are
performed in the MR algorithm; two modulo computations
at line 1 and one modulo computation at line 6. Similarly to
the previous section, we assume the following.

Assumption 4: At lines 4 and 6 of the ModBin algorithm
(Algorithm 3), m′ distributes uniformly in {0, . . . ,n − 1}.

Unfortunately, the assumption does not simplify the
discussion drastically as in the previous section. The num-
ber of reductions that are performed in MR(m′m′) and
MR(m′c′) are different in general because m′m′ and m′c′

obey different distributions. For detailed discussion, let
Y2 = Y2,1 + Y2,2 + · · · + Y2,6, where Y2,1 and Y2,2 are random
variables of the number of reductions that are performed
by modulo computations (x mod r) and ((·)n′ mod r) at line
1 of MR(m′m′), respectively, Y2,3 denotes the number of
reductions that are performed by (m2 mod n) at line 6 of
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MR(m′m′), andY2,4,Y2,5 andY2,6 denote corresponding num-
bers in MR(m′c′).

Lemma 4.1: If n→∞, then PY2,1 |T ,W (t − 1|t, w),PY2,2 |T ,W

(t − 1|t, w),PY2,4 |T ,W (w − 1|t, w), and PY2,5 |T ,W (w − 1|t, w) all
approximate to 1, and

PY2,3 |T ,W (y |t, w) = Bin[t − 1, y,n/(3r)],

PY2,6 |T ,W (y |t, w) =
1
n
·

n−1∑
c′=0

Bin[w − 1, y, c′/(2r)],

where Bin[a, b, p] =
(a
b

)
pb(1 − p)a−b .

Proof : The approximations for Y2,1, Y2,2, Y2,4 and
Y2,5 can be shown similarly to Lemma 3.1. As for Y2,3 and
Y2,6, the probability of m2 ≥ n in MR(m′m′) is n/(3r), and
that ofMR(m′c′) is c′/(2r) [11]. Therefore, PY2,3 |T ,W (y |t, w)
is the binomial distribution with probability n/(3r), and
PY2,6 |T ,W (y |t, w) is the superposition of binomial distribu-
tions where c′ distributes uniformly. �
The computation of PY2,6 |T ,W can be done by replacing the
sum by integration, and then bymaking some recursive com-
putation based on a partial integration. First,

PY2,6 |T ,W (y |t, w)

=
1
n

n−1∑
c′=0

(
w − 1
y

) (
1 −

c′

2r

)w−1−y (
c′

2r

) y
≈

1
n

∫ n−1

0

(
w − 1
y

) (
1 −

x
2r

)w−1−y ( x
2r

) y
dx

=
2r
n

(
w − 1
y

) ∫ (n−1)/(2r)

0
(1 − h)w−1−y hydh.

To proceed the computation further, we define I(u, s) =∫ α

0
(1−h)shudh where α is a constant and s,u are variables.

Using partial integration, I(u, s) is expanded as follows:

I(u, s) = αu+1(1 − α)s ·
1

u + 1
+

s
u + 1

I(u + 1, s − 1).

From the above result, we can compute I(u, s) with only
s recursion. With these investigations, we can calculate
PY2,6 |T ,W (y |t, w) with manageable complexity (see Fig. 4).

Similarly to the previous section, we let PY2,1 |T ,W (t −
1|t, w) = PY2,2 |T ,W (t−1|t, w) = 1 and PY2,4 |T ,W (w−1|t, w) =
PY2,5 |T ,W (w − 1|t, w) = 1 by assuming n → ∞. With this
simplification, we have

PY2 |T ,W (y |t, w) =∑
y3+y6=y−2(t+w−2)

PY2,3 |T ,W (y3 |t, w)PY2,6 |T ,W (y6 |t, w).

(3)

The derivation of (3) is based on several assumptions and
approximations. To verify if the derivation is reason-
able or not, numerical experiments are conducted. Fig. 5
shows the distribution of PY2 |T ,W computed from (3) with

Fig. 4 Comparing PY2,6 |T ,W (y6 |t , w) × 100, 000 and experiment value
in ModBin method.

Fig. 5 Comparing PY2 |T ,W (y |t , w) × 100, 000 and experiment value in
ModBin method.

l = 1024, t = 1024 and w = 512, and the relative frequency
of the number of reductions that are performed in an actual
run of Algorithm 3. We can confirm that the formula finely
explains the result of the experiment, and we conjecture that
the derivation of (3) is sufficiently reasonable. We also con-
ducted the above experiments with many different keys and
confirmed the reasonability in (3).

The running time Z is characterized by Y1 and Y2. Let
cm and cr be the numbers of clocks that are needed to per-
form a multiplication and a reduction, respectively. We have
Z = (3(t + w) − 1)cm + crY2 because Z = cmY1 + crY2
by Assumption 2 and Y1 = 3(t + w) − 1. If Z = z, then
Y2 = (z − (3(t + w) − 1)cm)/cr , and therefore

PZ |T ,W (z |t, w) = PY2 |T ,W

(
z − (3(t + w) − 1)cm

cr
|t, w

)
.

Notice that PY2 |T ,W has been derived in (3), and
PZ |T ,W (z |t, w) can be numerically computable for given
z, t and w. We also have PZ (z) =

∑
(t ,w) PZ |T ,W (z |t, w) ·

PT ,W (t, w), where PT ,W (t, w) is given as (2). We can com-
pute H(Z) by using PZ , H(Z |T,W) by using PZ |T ,W and
PT ,W , and I(K; Z) = I(T,W ; Z) = H(Z) − H(Z |T,W). We
remark that the values of I(K; Z), H(Z) and H(Z |T,W) de-
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pend on n/r because PY2,3 |T ,W and PY2,6 |T ,W , and conse-
quently PZ |T ,W and PY2 |T ,W , involve n/r in their expres-
sions. Numerical computation shows that I(K; Z) tend to
decrease as n/r increases, even though the phenomenon is
not justified mathematically because the expression is too
complicated to analyze. If this phenomenon holds in gen-
eral, then it suggests that using n that is slightly smaller than
a power of 2, namely r , is advantageous in decreasing the
information leakage of the decryption key.

With setting 0.80 < n/r < 0.81, the result of numerical
computation is shown in Table 1, where cm = (l/32)2 but
cr = (l/32) since a reduction can be replaced by shift oper-
ation because r is usually a power of 2, and the reduction at
line 6 of MR can be replaced subtraction operation because
0 ≤ m2 < 2n [5].

5. CRT-ModBin Method

For the CRT-ModBin method (Algorithm 4), it is difficult to
take the same approach as previous sections because dp =

d mod (p − 1) and dq = d mod (q − 1) are used instead of
d. Therefore, we take an approach that is different from
previous sections at two points.

The first difference is the target of an attacker; we con-
sider a scenario that the attacker tries to find dp and dq instead
of d. Let K = (Kp,Kq) where Kp and Kq are random vari-
ables of dp and dq . Similarly, we introduce random variables
Tp , Tq , Wp and Wq for the actual key lengths and the Ham-
ming weights of dp and dq . We assume for simplicity thatTp

and Tq are independent, and so are Wp and Wq . The above
assumption is conjectured to be reasonable because p and q
are unknown prime numbers chosen independently and there
is no mathematical relationship between dp and dq . The sec-
ond difference we introduce is the ability of an attacker; we
assume that an attacker is able to know the running time Zp

for the computation of ModBin(cp, dp, p) and the running
time Zq for the computation of ModBin(cq, dq,q). This as-
sumption seems unrealistic at a glance, but not impossible
if an attacker has some control over a target system, as con-
sidered in Flush+Reload attack [13]. In the Flush+Reload
attack, an attacker is able to run a program in the same system
as the target decryption program, and the attacker’s program
share the same cache memory as the target program. The
attacker flushes out the cache memory, let the target program
run, and reloads the memory line which might be accessed
by the target program. If the reload operation takes a short
time, then the memory line must be in the cache, which is the
evidence that the target program has accessed the memory
line. If the reload takes long time, then the target program
did not access that memory line. In the case of CRT-ModBin
method, a Flush+Reload attacker who watches an access to
dq is able to detect when the program starts the computation
of ModBin(cq, dq,q), and thus separate Z to Zp and Zq .

Lemma 5.1: I(K; Zp, Zq) = I(Zp;Tp,Wp) + I(Zq;Tq,Wq)

Sketch of Proof : The random variable K is replaced
by Kp and Kq , and then by Tp , Tq , Wp and Wq as in the

previous sections. Use the fact that Zp (resp. Zq) depends
only on Tp and Wp (resp. Tq and Wq). �

Notice that I(Zp;Tp,Wp) and I(Zq;Tq,Wq) are the mu-
tual information of ModBin method, but the length of “keys”
dp and dq is l/2 in the CRT-ModBin method. Consequently,
I(K; Zp, Zq) is twice as that of l/2-bit ModBin method (see
Table 1).

We emphasize that the attacker model is different for
CRT-ModBin method, and the mutual computation in the
Table 1 cannot be compared naively. Just regard the mutual
information in Table 1 for the CRT-ModBin method as an
upperbound of the information leakage for the attacker who
cannot separate the running time to Zp and Zq .

6. Conclusion

This study derived well-defined formulas that give approxi-
mations of the mutual information I(K; Z) between the run-
ning time Z and the decryption key K that is concealed
in RSA decryption algorithms. The mutual information
I(K; Z) is an important measure of the security of a pro-
gram against passive timing attacks, but the computation of
I(K; Z) is quite difficult in general. Existing studies such as
[7] and [5] focused an obvious upper-bound H(Z) instead of
I(K; Z), but it can make fatal misleads. For example, one
may consider that the ModBin method leaks more informa-
tion than the Binary method because H(Z) of the ModBin
method is greater than H(Z) of the Binary method (see Ta-
ble 1, and pay attention that H(Z) = I(K; Z) for the Binary
method). This study revealed that such an implication is
completely wrong; I(K; Z) of the ModBin method is less
than I(K; Z) of the Binary method, and the ModBin method
leaks less information than the Binary method. The study
allows precise security comparison of different algorithms,
and helps understanding the essential risk of passive timing
attacks.
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